|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import os
- import shutil
- import tempfile
- import unittest
-
- from modelscope.hub.snapshot_download import snapshot_download
- from modelscope.models.nlp.sbert_for_sequence_classification import \
- SbertTextClassfier
- from modelscope.msdatasets import MsDataset
- from modelscope.trainers import build_trainer
- from modelscope.utils.constant import ModelFile
- from modelscope.utils.test_utils import test_level
-
-
- class TestTrainerWithNlp(unittest.TestCase):
-
- def setUp(self):
- print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
- self.tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(self.tmp_dir):
- os.makedirs(self.tmp_dir)
-
- from datasets import Dataset
- dataset_dict = {
- 'sentence1': [
- 'This is test sentence1-1', 'This is test sentence2-1',
- 'This is test sentence3-1'
- ],
- 'sentence2': [
- 'This is test sentence1-2', 'This is test sentence2-2',
- 'This is test sentence3-2'
- ],
- 'label': [0, 1, 1]
- }
- dataset = Dataset.from_dict(dataset_dict)
-
- class MsDatasetDummy(MsDataset):
-
- def __len__(self):
- return len(self._hf_ds)
-
- self.dataset = MsDatasetDummy(dataset)
-
- def tearDown(self):
- shutil.rmtree(self.tmp_dir)
- super().tearDown()
-
- @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
- def test_trainer(self):
- model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base'
- kwargs = dict(
- model=model_id,
- train_dataset=self.dataset,
- eval_dataset=self.dataset,
- work_dir=self.tmp_dir)
-
- trainer = build_trainer(default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(10):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_trainer_with_model_and_args(self):
- tmp_dir = tempfile.TemporaryDirectory().name
- if not os.path.exists(tmp_dir):
- os.makedirs(tmp_dir)
-
- model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base'
- cache_path = snapshot_download(model_id)
- model = SbertTextClassfier.from_pretrained(cache_path)
- kwargs = dict(
- cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
- model=model,
- train_dataset=self.dataset,
- eval_dataset=self.dataset,
- max_epochs=2,
- work_dir=self.tmp_dir)
-
- trainer = build_trainer(default_args=kwargs)
- trainer.train()
- results_files = os.listdir(self.tmp_dir)
- self.assertIn(f'{trainer.timestamp}.log.json', results_files)
- for i in range(2):
- self.assertIn(f'epoch_{i+1}.pth', results_files)
-
-
- if __name__ == '__main__':
- unittest.main()
|