You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_trainer_with_nlp.py 3.1 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091
  1. # Copyright (c) Alibaba, Inc. and its affiliates.
  2. import os
  3. import shutil
  4. import tempfile
  5. import unittest
  6. from modelscope.hub.snapshot_download import snapshot_download
  7. from modelscope.models.nlp.sbert_for_sequence_classification import \
  8. SbertTextClassfier
  9. from modelscope.msdatasets import MsDataset
  10. from modelscope.trainers import build_trainer
  11. from modelscope.utils.constant import ModelFile
  12. from modelscope.utils.test_utils import test_level
  13. class TestTrainerWithNlp(unittest.TestCase):
  14. def setUp(self):
  15. print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
  16. self.tmp_dir = tempfile.TemporaryDirectory().name
  17. if not os.path.exists(self.tmp_dir):
  18. os.makedirs(self.tmp_dir)
  19. from datasets import Dataset
  20. dataset_dict = {
  21. 'sentence1': [
  22. 'This is test sentence1-1', 'This is test sentence2-1',
  23. 'This is test sentence3-1'
  24. ],
  25. 'sentence2': [
  26. 'This is test sentence1-2', 'This is test sentence2-2',
  27. 'This is test sentence3-2'
  28. ],
  29. 'label': [0, 1, 1]
  30. }
  31. dataset = Dataset.from_dict(dataset_dict)
  32. class MsDatasetDummy(MsDataset):
  33. def __len__(self):
  34. return len(self._hf_ds)
  35. self.dataset = MsDatasetDummy(dataset)
  36. def tearDown(self):
  37. shutil.rmtree(self.tmp_dir)
  38. super().tearDown()
  39. @unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
  40. def test_trainer(self):
  41. model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base'
  42. kwargs = dict(
  43. model=model_id,
  44. train_dataset=self.dataset,
  45. eval_dataset=self.dataset,
  46. work_dir=self.tmp_dir)
  47. trainer = build_trainer(default_args=kwargs)
  48. trainer.train()
  49. results_files = os.listdir(self.tmp_dir)
  50. self.assertIn(f'{trainer.timestamp}.log.json', results_files)
  51. for i in range(10):
  52. self.assertIn(f'epoch_{i+1}.pth', results_files)
  53. @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
  54. def test_trainer_with_model_and_args(self):
  55. tmp_dir = tempfile.TemporaryDirectory().name
  56. if not os.path.exists(tmp_dir):
  57. os.makedirs(tmp_dir)
  58. model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base'
  59. cache_path = snapshot_download(model_id)
  60. model = SbertTextClassfier.from_pretrained(cache_path)
  61. kwargs = dict(
  62. cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
  63. model=model,
  64. train_dataset=self.dataset,
  65. eval_dataset=self.dataset,
  66. max_epochs=2,
  67. work_dir=self.tmp_dir)
  68. trainer = build_trainer(default_args=kwargs)
  69. trainer.train()
  70. results_files = os.listdir(self.tmp_dir)
  71. self.assertIn(f'{trainer.timestamp}.log.json', results_files)
  72. for i in range(2):
  73. self.assertIn(f'epoch_{i+1}.pth', results_files)
  74. if __name__ == '__main__':
  75. unittest.main()