@@ -3,3 +3,4 @@ from .nli_model import * # noqa F403 | |||
from .palm_for_text_generation import * # noqa F403 | |||
from .sbert_for_sentence_similarity import * # noqa F403 | |||
from .sbert_for_token_classification import * # noqa F403 | |||
from .sentiment_classification_model import * # noqa F403 |
@@ -0,0 +1,85 @@ | |||
import os | |||
from typing import Any, Dict | |||
import numpy as np | |||
import torch | |||
from sofa import SbertConfig, SbertModel | |||
from sofa.models.sbert.modeling_sbert import SbertPreTrainedModel | |||
from torch import nn | |||
from transformers.activations import ACT2FN, get_activation | |||
from transformers.models.bert.modeling_bert import SequenceClassifierOutput | |||
from modelscope.utils.constant import Tasks | |||
from ..base import Model, Tensor | |||
from ..builder import MODELS | |||
__all__ = ['SbertForSentimentClassification'] | |||
class SbertTextClassifier(SbertPreTrainedModel): | |||
def __init__(self, config): | |||
super().__init__(config) | |||
self.num_labels = config.num_labels | |||
self.config = config | |||
self.encoder = SbertModel(config, add_pooling_layer=True) | |||
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |||
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |||
def forward(self, input_ids=None, token_type_ids=None): | |||
outputs = self.encoder( | |||
input_ids, | |||
token_type_ids=token_type_ids, | |||
return_dict=None, | |||
) | |||
pooled_output = outputs[1] | |||
pooled_output = self.dropout(pooled_output) | |||
logits = self.classifier(pooled_output) | |||
return logits | |||
@MODELS.register_module( | |||
Tasks.sentiment_classification, | |||
module_name=r'sbert-sentiment-classification') | |||
class SbertForSentimentClassification(Model): | |||
def __init__(self, model_dir: str, *args, **kwargs): | |||
"""initialize the text generation model from the `model_dir` path. | |||
Args: | |||
model_dir (str): the model path. | |||
model_cls (Optional[Any], optional): model loader, if None, use the | |||
default loader to load model weights, by default None. | |||
""" | |||
super().__init__(model_dir, *args, **kwargs) | |||
self.model_dir = model_dir | |||
self.model = SbertTextClassifier.from_pretrained( | |||
model_dir, num_labels=2) | |||
self.model.eval() | |||
def forward(self, input: Dict[str, Any]) -> Dict[str, np.ndarray]: | |||
"""return the result by the model | |||
Args: | |||
input (Dict[str, Any]): the preprocessed data | |||
Returns: | |||
Dict[str, np.ndarray]: results | |||
Example: | |||
{ | |||
'predictions': array([1]), # lable 0-negative 1-positive | |||
'probabilities': array([[0.11491239, 0.8850876 ]], dtype=float32), | |||
'logits': array([[-0.53860897, 1.5029076 ]], dtype=float32) # true value | |||
} | |||
""" | |||
input_ids = torch.tensor(input['input_ids'], dtype=torch.long) | |||
token_type_ids = torch.tensor( | |||
input['token_type_ids'], dtype=torch.long) | |||
with torch.no_grad(): | |||
logits = self.model(input_ids, token_type_ids) | |||
probs = logits.softmax(-1).numpy() | |||
pred = logits.argmax(-1).numpy() | |||
logits = logits.numpy() | |||
res = {'predictions': pred, 'probabilities': probs, 'logits': logits} | |||
return res |
@@ -22,8 +22,11 @@ DEFAULT_MODEL_FOR_PIPELINE = { | |||
Tasks.image_matting: ('image-matting', 'damo/cv_unet_image-matting'), | |||
Tasks.nli: ('nlp_structbert_nli_chinese-base', | |||
'damo/nlp_structbert_nli_chinese-base'), | |||
Tasks.text_classification: | |||
('bert-sentiment-analysis', 'damo/bert-base-sst2'), | |||
Tasks.sentiment_classification: | |||
('sbert-sentiment-classification', | |||
'damo/nlp_structbert_sentiment-classification_chinese-base'), | |||
Tasks.text_classification: ('bert-sentiment-analysis', | |||
'damo/bert-base-sst2'), | |||
Tasks.text_generation: ('palm2.0', | |||
'damo/nlp_palm2.0_text-generation_chinese-base'), | |||
Tasks.image_captioning: ('ofa', 'damo/ofa_image-caption_coco_large_en'), | |||
@@ -1,5 +1,6 @@ | |||
from .nli_pipeline import * # noqa F403 | |||
from .sentence_similarity_pipeline import * # noqa F403 | |||
from .sentiment_classification_pipeline import * # noqa F403 | |||
from .sequence_classification_pipeline import * # noqa F403 | |||
from .text_generation_pipeline import * # noqa F403 | |||
from .word_segmentation_pipeline import * # noqa F403 |
@@ -0,0 +1,90 @@ | |||
import os | |||
import uuid | |||
from typing import Any, Dict, Union | |||
import json | |||
import numpy as np | |||
from modelscope.models.nlp import SbertForSentimentClassification | |||
from modelscope.preprocessors import SentimentClassificationPreprocessor | |||
from modelscope.utils.constant import Tasks | |||
from ...models import Model | |||
from ..base import Input, Pipeline | |||
from ..builder import PIPELINES | |||
__all__ = ['SentimentClassificationPipeline'] | |||
@PIPELINES.register_module( | |||
Tasks.sentiment_classification, | |||
module_name=r'sbert-sentiment-classification') | |||
class SentimentClassificationPipeline(Pipeline): | |||
def __init__(self, | |||
model: Union[SbertForSentimentClassification, str], | |||
preprocessor: SentimentClassificationPreprocessor = None, | |||
**kwargs): | |||
"""use `model` and `preprocessor` to create a nlp text classification pipeline for prediction | |||
Args: | |||
model (SbertForSentimentClassification): a model instance | |||
preprocessor (SentimentClassificationPreprocessor): a preprocessor instance | |||
""" | |||
assert isinstance(model, str) or isinstance(model, SbertForSentimentClassification), \ | |||
'model must be a single str or SbertForSentimentClassification' | |||
sc_model = model if isinstance( | |||
model, | |||
SbertForSentimentClassification) else Model.from_pretrained(model) | |||
if preprocessor is None: | |||
preprocessor = SentimentClassificationPreprocessor( | |||
sc_model.model_dir, | |||
first_sequence='first_sequence', | |||
second_sequence='second_sequence') | |||
super().__init__(model=sc_model, preprocessor=preprocessor, **kwargs) | |||
self.label_path = os.path.join(sc_model.model_dir, | |||
'label_mapping.json') | |||
with open(self.label_path) as f: | |||
self.label_mapping = json.load(f) | |||
self.label_id_to_name = { | |||
idx: name | |||
for name, idx in self.label_mapping.items() | |||
} | |||
def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, str]: | |||
"""process the prediction results | |||
Args: | |||
inputs (Dict[str, Any]): _description_ | |||
Returns: | |||
Dict[str, str]: the prediction results | |||
""" | |||
probs = inputs['probabilities'] | |||
logits = inputs['logits'] | |||
predictions = np.argsort(-probs, axis=-1) | |||
preds = predictions[0] | |||
b = 0 | |||
new_result = list() | |||
for pred in preds: | |||
new_result.append({ | |||
'pred': self.label_id_to_name[pred], | |||
'prob': float(probs[b][pred]), | |||
'logit': float(logits[b][pred]) | |||
}) | |||
new_results = list() | |||
new_results.append({ | |||
'id': | |||
inputs['id'][b] if 'id' in inputs else str(uuid.uuid4()), | |||
'output': | |||
new_result, | |||
'predictions': | |||
new_result[0]['pred'], | |||
'probabilities': | |||
','.join([str(t) for t in inputs['probabilities'][b]]), | |||
'logits': | |||
','.join([str(t) for t in inputs['logits'][b]]) | |||
}) | |||
return new_results[0] |
@@ -7,5 +7,4 @@ from .common import Compose | |||
from .image import LoadImage, load_image | |||
from .multi_model import OfaImageCaptionPreprocessor | |||
from .nlp import * # noqa F403 | |||
from .nlp import NLIPreprocessor, TextGenerationPreprocessor | |||
from .text_to_speech import * # noqa F403 |
@@ -13,7 +13,7 @@ from .builder import PREPROCESSORS | |||
__all__ = [ | |||
'Tokenize', 'SequenceClassificationPreprocessor', | |||
'TextGenerationPreprocessor', 'TokenClassifcationPreprocessor', | |||
'NLIPreprocessor' | |||
'NLIPreprocessor', 'SentimentClassificationPreprocessor' | |||
] | |||
@@ -65,7 +65,6 @@ class NLIPreprocessor(Preprocessor): | |||
sentence2 (str): a sentence | |||
Example: | |||
'you are so beautiful.' | |||
Returns: | |||
Dict[str, Any]: the preprocessed data | |||
""" | |||
@@ -102,6 +101,70 @@ class NLIPreprocessor(Preprocessor): | |||
return rst | |||
@PREPROCESSORS.register_module( | |||
Fields.nlp, module_name=r'sbert-sentiment-classification') | |||
class SentimentClassificationPreprocessor(Preprocessor): | |||
def __init__(self, model_dir: str, *args, **kwargs): | |||
"""preprocess the data via the vocab.txt from the `model_dir` path | |||
Args: | |||
model_dir (str): model path | |||
""" | |||
super().__init__(*args, **kwargs) | |||
from sofa import SbertTokenizer | |||
self.model_dir: str = model_dir | |||
self.first_sequence: str = kwargs.pop('first_sequence', | |||
'first_sequence') | |||
self.second_sequence = kwargs.pop('second_sequence', 'second_sequence') | |||
self.sequence_length = kwargs.pop('sequence_length', 128) | |||
self.tokenizer = SbertTokenizer.from_pretrained(self.model_dir) | |||
@type_assert(object, str) | |||
def __call__(self, data: str) -> Dict[str, Any]: | |||
"""process the raw input data | |||
Args: | |||
data (str): a sentence | |||
Example: | |||
'you are so handsome.' | |||
Returns: | |||
Dict[str, Any]: the preprocessed data | |||
""" | |||
new_data = {self.first_sequence: data} | |||
# preprocess the data for the model input | |||
rst = { | |||
'id': [], | |||
'input_ids': [], | |||
'attention_mask': [], | |||
'token_type_ids': [] | |||
} | |||
max_seq_length = self.sequence_length | |||
text_a = new_data[self.first_sequence] | |||
text_b = new_data.get(self.second_sequence, None) | |||
feature = self.tokenizer( | |||
text_a, | |||
text_b, | |||
padding='max_length', | |||
truncation=True, | |||
max_length=max_seq_length) | |||
rst['id'].append(new_data.get('id', str(uuid.uuid4()))) | |||
rst['input_ids'].append(feature['input_ids']) | |||
rst['attention_mask'].append(feature['attention_mask']) | |||
rst['token_type_ids'].append(feature['token_type_ids']) | |||
return rst | |||
@PREPROCESSORS.register_module( | |||
Fields.nlp, module_name=r'bert-sequence-classification') | |||
class SequenceClassificationPreprocessor(Preprocessor): | |||
@@ -33,6 +33,7 @@ class Tasks(object): | |||
# nlp tasks | |||
word_segmentation = 'word-segmentation' | |||
nli = 'nli' | |||
sentiment_classification = 'sentiment-classification' | |||
sentiment_analysis = 'sentiment-analysis' | |||
sentence_similarity = 'sentence-similarity' | |||
text_classification = 'text-classification' | |||
@@ -0,0 +1,54 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
import unittest | |||
from maas_hub.snapshot_download import snapshot_download | |||
from modelscope.models import Model | |||
from modelscope.models.nlp import SbertForSentimentClassification | |||
from modelscope.pipelines import SentimentClassificationPipeline, pipeline | |||
from modelscope.preprocessors import SentimentClassificationPreprocessor | |||
from modelscope.utils.constant import Tasks | |||
class SentimentClassificationTest(unittest.TestCase): | |||
model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base' | |||
sentence1 = '启动的时候很大声音,然后就会听到1.2秒的卡察的声音,类似齿轮摩擦的声音' | |||
def test_run_from_local(self): | |||
cache_path = snapshot_download(self.model_id) | |||
tokenizer = SentimentClassificationPreprocessor(cache_path) | |||
model = SbertForSentimentClassification( | |||
cache_path, tokenizer=tokenizer) | |||
pipeline1 = SentimentClassificationPipeline( | |||
model, preprocessor=tokenizer) | |||
pipeline2 = pipeline( | |||
Tasks.sentiment_classification, | |||
model=model, | |||
preprocessor=tokenizer) | |||
print(f'sentence1: {self.sentence1}\n' | |||
f'pipeline1:{pipeline1(input=self.sentence1)}') | |||
print() | |||
print(f'sentence1: {self.sentence1}\n' | |||
f'pipeline1: {pipeline2(input=self.sentence1)}') | |||
def test_run_with_model_from_modelhub(self): | |||
model = Model.from_pretrained(self.model_id) | |||
tokenizer = SentimentClassificationPreprocessor(model.model_dir) | |||
pipeline_ins = pipeline( | |||
task=Tasks.sentiment_classification, | |||
model=model, | |||
preprocessor=tokenizer) | |||
print(pipeline_ins(input=self.sentence1)) | |||
def test_run_with_model_name(self): | |||
pipeline_ins = pipeline( | |||
task=Tasks.sentiment_classification, model=self.model_id) | |||
print(pipeline_ins(input=self.sentence1)) | |||
def test_run_with_default_model(self): | |||
pipeline_ins = pipeline(task=Tasks.sentiment_classification) | |||
print(pipeline_ins(input=self.sentence1)) | |||
if __name__ == '__main__': | |||
unittest.main() |