|
|
@@ -11,8 +11,8 @@ from modelscope.utils.constant import Tasks |
|
|
|
|
|
|
|
|
|
|
|
class SentimentClassificationTest(unittest.TestCase): |
|
|
|
model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base' |
|
|
|
sentence1 = '四川商务职业学院和四川财经职业学院哪个好?' |
|
|
|
model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base' |
|
|
|
sentence1 = '启动的时候很大声音,然后就会听到1.2秒的卡察的声音,类似齿轮摩擦的声音' |
|
|
|
|
|
|
|
def test_run_from_local(self): |
|
|
|
cache_path = snapshot_download(self.model_id) |
|
|
@@ -22,7 +22,9 @@ class SentimentClassificationTest(unittest.TestCase): |
|
|
|
pipeline1 = SentimentClassificationPipeline( |
|
|
|
model, preprocessor=tokenizer) |
|
|
|
pipeline2 = pipeline( |
|
|
|
Tasks.sentence_similarity, model=model, preprocessor=tokenizer) |
|
|
|
Tasks.sentiment_classification, |
|
|
|
model=model, |
|
|
|
preprocessor=tokenizer) |
|
|
|
print(f'sentence1: {self.sentence1}\n' |
|
|
|
f'pipeline1:{pipeline1(input=self.sentence1)}') |
|
|
|
print() |
|
|
@@ -33,18 +35,18 @@ class SentimentClassificationTest(unittest.TestCase): |
|
|
|
model = Model.from_pretrained(self.model_id) |
|
|
|
tokenizer = SentimentClassificationPreprocessor(model.model_dir) |
|
|
|
pipeline_ins = pipeline( |
|
|
|
task=Tasks.sentence_similarity, |
|
|
|
task=Tasks.sentiment_classification, |
|
|
|
model=model, |
|
|
|
preprocessor=tokenizer) |
|
|
|
print(pipeline_ins(input=self.sentence1)) |
|
|
|
|
|
|
|
def test_run_with_model_name(self): |
|
|
|
pipeline_ins = pipeline( |
|
|
|
task=Tasks.sentence_similarity, model=self.model_id) |
|
|
|
task=Tasks.sentiment_classification, model=self.model_id) |
|
|
|
print(pipeline_ins(input=self.sentence1)) |
|
|
|
|
|
|
|
def test_run_with_default_model(self): |
|
|
|
pipeline_ins = pipeline(task=Tasks.sentence_similarity) |
|
|
|
pipeline_ins = pipeline(task=Tasks.sentiment_classification) |
|
|
|
print(pipeline_ins(input=self.sentence1)) |
|
|
|
|
|
|
|
|
|
|
|