@@ -1,7 +1,7 @@ | |||
modelscope.pydatasets package | |||
modelscope.msdatasets package | |||
============================= | |||
.. automodule:: modelscope.pydatasets | |||
.. automodule:: modelscope.msdatasets | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: | |||
@@ -9,10 +9,10 @@ modelscope.pydatasets package | |||
Submodules | |||
---------- | |||
modelscope.pydatasets.py\_dataset module | |||
modelscope.msdatasets.ms\_dataset module | |||
---------------------------------------- | |||
.. automodule:: modelscope.pydatasets.py_dataset | |||
.. automodule:: modelscope.msdatasets.ms_dataset | |||
:members: | |||
:undoc-members: | |||
:show-inheritance: |
@@ -16,7 +16,7 @@ Subpackages | |||
modelscope.models | |||
modelscope.pipelines | |||
modelscope.preprocessors | |||
modelscope.pydatasets | |||
modelscope.msdatasets | |||
modelscope.trainers | |||
modelscope.utils | |||
@@ -3,7 +3,7 @@ | |||
## python环境配置 | |||
首先,参考[文档](https://docs.anaconda.com/anaconda/install/) 安装配置Anaconda环境 | |||
安装完成后,执行如下命令为maas library创建对应的python环境。 | |||
安装完成后,执行如下命令为modelscope library创建对应的python环境。 | |||
```shell | |||
conda create -n modelscope python=3.6 | |||
conda activate modelscope | |||
@@ -105,15 +105,15 @@ import cv2 | |||
import os.path as osp | |||
from modelscope.pipelines import pipeline | |||
from modelscope.utils.constant import Tasks | |||
from modelscope.pydatasets import PyDataset | |||
from modelscope.msdatasets import MsDataset | |||
# 使用图像url构建PyDataset,此处也可通过 input_location = '/dir/to/images' 来使用本地文件夹 | |||
# 使用图像url构建MsDataset,此处也可通过 input_location = '/dir/to/images' 来使用本地文件夹 | |||
input_location = [ | |||
'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/test/maas/image_matting/test.png' | |||
] | |||
dataset = PyDataset.load(input_location, target='image') | |||
dataset = MsDataset.load(input_location, target='image') | |||
img_matting = pipeline(Tasks.image_matting, model='damo/image-matting-person') | |||
# 输入为PyDataset时,输出的结果为迭代器 | |||
# 输入为MsDataset时,输出的结果为迭代器 | |||
result = img_matting(dataset) | |||
cv2.imwrite('result.png', next(result)['output_png']) | |||
print(f'Output written to {osp.abspath("result.png")}') | |||
@@ -187,7 +187,7 @@ def get_file_download_url(model_id: str, file_path: str, revision: str): | |||
""" | |||
Format file download url according to `model_id`, `revision` and `file_path`. | |||
e.g., Given `model_id=john/bert`, `revision=master`, `file_path=README.md`, | |||
the resulted download url is: https://maas.co/api/v1/models/john/bert/repo?Revision=master&FilePath=README.md | |||
the resulted download url is: https://modelscope.co/api/v1/models/john/bert/repo?Revision=master&FilePath=README.md | |||
""" | |||
download_url_template = '{endpoint}/api/v1/models/{model_id}/repo?Revision={revision}&FilePath={file_path}' | |||
return download_url_template.format( | |||
@@ -21,9 +21,11 @@ class Models(object): | |||
sambert_hifi_16k = 'sambert-hifi-16k' | |||
generic_tts_frontend = 'generic-tts-frontend' | |||
hifigan16k = 'hifigan16k' | |||
kws_kwsbp = 'kws-kwsbp' | |||
# multi-modal models | |||
ofa = 'ofa' | |||
clip = 'clip-multi-modal-embedding' | |||
class Pipelines(object): | |||
@@ -56,9 +58,11 @@ class Pipelines(object): | |||
# audio tasks | |||
sambert_hifigan_16k_tts = 'sambert-hifigan-16k-tts' | |||
speech_dfsmn_aec_psm_16k = 'speech-dfsmn-aec-psm-16k' | |||
kws_kwsbp = 'kws-kwsbp' | |||
# multi-modal tasks | |||
image_caption = 'image-caption' | |||
multi_modal_embedding = 'multi-modal-embedding' | |||
class Trainers(object): | |||
@@ -98,6 +102,7 @@ class Preprocessors(object): | |||
# audio preprocessor | |||
linear_aec_fbank = 'linear-aec-fbank' | |||
text_to_tacotron_symbols = 'text-to-tacotron-symbols' | |||
wav_to_lists = 'wav-to-lists' | |||
# multi-modal | |||
ofa_image_caption = 'ofa-image-caption' |
@@ -1,10 +1,11 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
from .audio.kws import GenericKeyWordSpotting | |||
from .audio.tts.am import SambertNetHifi16k | |||
from .audio.tts.vocoder import Hifigan16k | |||
from .base import Model | |||
from .builder import MODELS, build_model | |||
from .multi_model import OfaForImageCaptioning | |||
from .multi_modal import OfaForImageCaptioning | |||
from .nlp import (BertForSequenceClassification, SbertForNLI, | |||
SbertForSentenceSimilarity, SbertForSentimentClassification, | |||
SbertForTokenClassification, StructBertForMaskedLM, | |||
@@ -0,0 +1 @@ | |||
from .generic_key_word_spotting import * # noqa F403 |
@@ -0,0 +1,30 @@ | |||
import os | |||
from typing import Any, Dict | |||
from modelscope.metainfo import Models | |||
from modelscope.models.base import Model | |||
from modelscope.models.builder import MODELS | |||
from modelscope.utils.constant import Tasks | |||
__all__ = ['GenericKeyWordSpotting'] | |||
@MODELS.register_module(Tasks.key_word_spotting, module_name=Models.kws_kwsbp) | |||
class GenericKeyWordSpotting(Model): | |||
def __init__(self, model_dir: str, *args, **kwargs): | |||
"""initialize the info of model. | |||
Args: | |||
model_dir (str): the model path. | |||
""" | |||
self.model_cfg = { | |||
'model_workspace': model_dir, | |||
'config_path': os.path.join(model_dir, 'config.yaml') | |||
} | |||
def forward(self) -> Dict[str, Any]: | |||
"""return the info of the model | |||
""" | |||
return self.model_cfg |
@@ -1 +1,2 @@ | |||
from .clip.clip_model import CLIPForMultiModalEmbedding | |||
from .image_captioning_model import OfaForImageCaptioning |
@@ -0,0 +1,26 @@ | |||
import torch.nn as nn | |||
from transformers import BertConfig, BertForMaskedLM | |||
class TextTransformer(nn.Module): | |||
def __init__(self, config_dict, feat_dim=768): | |||
super(TextTransformer, self).__init__() | |||
bert_config = BertConfig.from_dict(config_dict) | |||
self.bert = BertForMaskedLM(bert_config).bert | |||
self.projector = nn.Linear( | |||
bert_config.hidden_size, feat_dim, bias=False) | |||
def forward(self, input_ids, attention_mask): | |||
trans_features = { | |||
'input_ids': input_ids, | |||
'attention_mask': attention_mask | |||
} | |||
output_states = self.bert(**trans_features, return_dict=False) | |||
output_tokens = output_states[0] | |||
cls_tokens = output_tokens[:, 0, :] | |||
return self.projector(cls_tokens) |
@@ -0,0 +1,158 @@ | |||
import os.path as osp | |||
from typing import Any, Dict | |||
import json | |||
import numpy as np | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
from PIL import Image | |||
from tokenizers import BertWordPieceTokenizer | |||
from torchvision.transforms import Compose, Normalize, Resize, ToTensor | |||
from modelscope.metainfo import Models | |||
from modelscope.models.base import Model | |||
from modelscope.models.builder import MODELS | |||
from modelscope.models.multi_modal.clip.clip_bert import TextTransformer | |||
from modelscope.models.multi_modal.clip.clip_vit import VisionTransformer | |||
from modelscope.utils.constant import Tasks | |||
from modelscope.utils.logger import get_logger | |||
logger = get_logger() | |||
__all__ = ['CLIPForMultiModalEmbedding'] | |||
class CLIPModel(nn.Module): | |||
def __init__(self, model_dir): | |||
super(CLIPModel, self).__init__() | |||
# including vision config and text config | |||
model_config = json.load( | |||
open('{}/encoder_config.json'.format(model_dir))) | |||
# vision encoder | |||
vision_config = model_config['vision_config'] | |||
self.img_size = vision_config['input_resolution'] | |||
self.vision_encoder = VisionTransformer( | |||
input_resolution=self.img_size, | |||
patch_size=vision_config['patch_size'], | |||
width=vision_config['width'], | |||
layers=vision_config['layers'], | |||
heads=vision_config['heads'], | |||
output_dim=vision_config['feat_dim']) | |||
# text encoder | |||
text_config = model_config['text_config'] | |||
self.text_encoder = TextTransformer( | |||
text_config['bert_config'], feat_dim=text_config['feat_dim']) | |||
def forward(self, input_data, input_type): | |||
if input_type == 'img': | |||
img_embedding = self.vision_encoder(input_data) | |||
img_embedding = F.normalize(img_embedding, p=2.0, dim=1) | |||
return img_embedding | |||
elif input_type == 'text': | |||
text_ids_tensor, text_mask_tensor = input_data | |||
text_embedding = self.text_encoder(text_ids_tensor, | |||
text_mask_tensor) | |||
text_embedding = F.normalize(text_embedding, p=2.0, dim=1) | |||
return text_embedding | |||
else: | |||
raise ValueError('Unknown input type') | |||
@MODELS.register_module(Tasks.multi_modal_embedding, module_name=Models.clip) | |||
class CLIPForMultiModalEmbedding(Model): | |||
def __init__(self, model_dir, device_id=-1): | |||
super().__init__(model_dir=model_dir, device_id=device_id) | |||
self.clip_model = CLIPModel(model_dir=model_dir) | |||
pretrained_params = torch.load( | |||
'{}/pytorch_model.bin'.format(model_dir), 'cpu') | |||
self.clip_model.load_state_dict(pretrained_params) | |||
self.clip_model.eval() | |||
self.device_id = device_id | |||
if self.device_id >= 0: | |||
self.clip_model.to('cuda:{}'.format(self.device_id)) | |||
logger.info('Use GPU: {}'.format(self.device_id)) | |||
else: | |||
logger.info('Use CPU for inference') | |||
# image preprocessor | |||
norm_op = Normalize((0.48145466, 0.4578275, 0.40821073), | |||
(0.26862954, 0.26130258, 0.27577711)) | |||
self.img_preprocessor = Compose([ | |||
Resize((self.clip_model.img_size, self.clip_model.img_size), | |||
interpolation=Image.BICUBIC), | |||
ToTensor(), norm_op | |||
]) | |||
# text tokenizer | |||
vocab_path = '{}/vocab.txt'.format(model_dir) | |||
self.text_tokenizer = BertWordPieceTokenizer( | |||
vocab_path, lowercase=False) | |||
self.text_tokenizer.enable_truncation(max_length=30) | |||
def tokenize_text(self, text_str): | |||
tokens = self.text_tokenizer.encode(text_str) | |||
max_tokens = 30 | |||
text_ids_tensor = torch.zeros((1, max_tokens)).long() | |||
text_mask_tensor = torch.zeros((1, max_tokens)) | |||
text_ids, text_mask = tokens.ids, tokens.attention_mask | |||
text_ids_tensor[0, 0:len(text_ids)] = torch.tensor(text_ids) | |||
text_mask_tensor[0, 0:len(text_mask)] = torch.tensor(text_mask) | |||
return text_ids_tensor, text_mask_tensor | |||
def forward(self, input: Dict[str, Any]) -> Dict[str, Any]: | |||
output = {'img_embedding': None, 'text_embedding': None} | |||
if 'img' in input and input['img'] is not None: | |||
input_img = input['img'] | |||
if isinstance(input_img, Image.Image): | |||
img_tensor = self.img_preprocessor(input_img)[None, ...] | |||
elif isinstance(input_img, np.ndarray): | |||
if len(input_img.shape) == 2: | |||
input_img = cv2.cvtColor(input_img, cv2.COLOR_GRAY2BGR) | |||
input_img = input_img[:, :, ::-1] # in rgb order | |||
input_img = Image.fromarray( | |||
input_img.astype('uint8')).convert('RGB') | |||
img_tensor = self.img_preprocessor(input_img)[None, ...] | |||
else: | |||
raise TypeError( | |||
f'img should be either PIL.Image or np.array, but got {type(input_img)}' | |||
) | |||
if self.device_id >= 0: | |||
img_tensor = img_tensor.to('cuda:{}'.format(self.device_id)) | |||
img_embedding = self.clip_model( | |||
input_data=img_tensor, input_type='img') | |||
output['img_embedding'] = img_embedding.data.cpu().numpy() | |||
if 'text' in input and input['text'] is not None: | |||
text_str = input['text'] | |||
if isinstance(text_str, str): | |||
text_ids_tensor, text_mask_tensor = self.tokenize_text( | |||
text_str) | |||
else: | |||
raise TypeError( | |||
f'text should be str, but got {type(text_str)}') | |||
if self.device_id >= 0: | |||
text_ids_tensor = text_ids_tensor.to('cuda:{}'.format( | |||
self.device_id)) | |||
text_mask_tensor = text_mask_tensor.to('cuda:{}'.format( | |||
self.device_id)) | |||
text_embedding = self.clip_model( | |||
input_data=(text_ids_tensor, text_mask_tensor), | |||
input_type='text') | |||
output['text_embedding'] = text_embedding.data.cpu().numpy() | |||
return output | |||
def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||
return inputs |
@@ -0,0 +1,121 @@ | |||
# Copyright 2021 The OpenAI CLIP Authors. All rights reserved. | |||
from collections import OrderedDict | |||
from typing import Tuple, Union | |||
import numpy as np | |||
import torch | |||
import torch.nn.functional as F | |||
from torch import nn | |||
class LayerNorm(nn.LayerNorm): | |||
"""Subclass torch's LayerNorm to handle fp16.""" | |||
def forward(self, x: torch.Tensor): | |||
orig_type = x.dtype | |||
ret = super().forward(x.type(torch.float32)) | |||
return ret.type(orig_type) | |||
class QuickGELU(nn.Module): | |||
def forward(self, x: torch.Tensor): | |||
return x * torch.sigmoid(1.702 * x) | |||
class ResidualAttentionBlock(nn.Module): | |||
def __init__(self, | |||
d_model: int, | |||
n_head: int, | |||
attn_mask: torch.Tensor = None): | |||
super().__init__() | |||
self.attn = nn.MultiheadAttention(d_model, n_head) | |||
self.ln_1 = LayerNorm(d_model) | |||
self.mlp = nn.Sequential( | |||
OrderedDict([('c_fc', nn.Linear(d_model, d_model * 4)), | |||
('gelu', QuickGELU()), | |||
('c_proj', nn.Linear(d_model * 4, d_model))])) | |||
self.ln_2 = LayerNorm(d_model) | |||
self.attn_mask = attn_mask | |||
def attention(self, x: torch.Tensor): | |||
self.attn_mask = self.attn_mask.to( | |||
dtype=x.dtype, | |||
device=x.device) if self.attn_mask is not None else None | |||
return self.attn( | |||
x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] | |||
def forward(self, x: torch.Tensor): | |||
x = x + self.attention(self.ln_1(x)) | |||
x = x + self.mlp(self.ln_2(x)) | |||
return x | |||
class Transformer(nn.Module): | |||
def __init__(self, | |||
width: int, | |||
layers: int, | |||
heads: int, | |||
attn_mask: torch.Tensor = None): | |||
super().__init__() | |||
self.width = width | |||
self.layers = layers | |||
self.resblocks = nn.Sequential(*[ | |||
ResidualAttentionBlock(width, heads, attn_mask) | |||
for _ in range(layers) | |||
]) | |||
def forward(self, x: torch.Tensor): | |||
return self.resblocks(x) | |||
class VisionTransformer(nn.Module): | |||
def __init__(self, input_resolution: int, patch_size: int, width: int, | |||
layers: int, heads: int, output_dim: int): | |||
super().__init__() | |||
self.input_resolution = input_resolution | |||
self.output_dim = output_dim | |||
self.conv1 = nn.Conv2d( | |||
in_channels=3, | |||
out_channels=width, | |||
kernel_size=patch_size, | |||
stride=patch_size, | |||
bias=False) | |||
scale = width**-0.5 | |||
self.class_embedding = nn.Parameter(scale * torch.randn(width)) | |||
self.positional_embedding = nn.Parameter(scale * torch.randn( | |||
(input_resolution // patch_size)**2 + 1, width)) | |||
self.ln_pre = LayerNorm(width) | |||
self.transformer = Transformer(width, layers, heads) | |||
self.ln_post = LayerNorm(width) | |||
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) | |||
def forward(self, x: torch.Tensor): | |||
x = self.conv1(x) # shape = [*, width, grid, grid] | |||
x = x.reshape(x.shape[0], x.shape[1], | |||
-1) # shape = [*, width, grid ** 2] | |||
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |||
class_embeddings = self.class_embedding.to(x.dtype) + \ | |||
torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device) | |||
x = torch.cat([class_embeddings, x], dim=1) | |||
x = x + self.positional_embedding.to(x.dtype) | |||
x = self.ln_pre(x) | |||
x = x.permute(1, 0, 2) # NLD -> LND | |||
x = self.transformer(x) | |||
x = x.permute(1, 0, 2) # LND -> NLD | |||
x = self.ln_post(x[:, 0, :]) | |||
if self.proj is not None: | |||
x = x @ self.proj | |||
return x |
@@ -0,0 +1 @@ | |||
from .ms_dataset import MsDataset |
@@ -10,8 +10,8 @@ from datasets.packaged_modules import _PACKAGED_DATASETS_MODULES | |||
from datasets.utils.file_utils import (is_relative_path, | |||
relative_to_absolute_path) | |||
from modelscope.pydatasets.config import MS_DATASETS_CACHE | |||
from modelscope.pydatasets.utils.ms_api import MsApi | |||
from modelscope.msdatasets.config import MS_DATASETS_CACHE | |||
from modelscope.msdatasets.utils.ms_api import MsApi | |||
from modelscope.utils.constant import Hubs | |||
from modelscope.utils.logger import get_logger | |||
@@ -28,9 +28,9 @@ def format_list(para) -> List: | |||
return para | |||
class PyDataset: | |||
class MsDataset: | |||
_hf_ds = None # holds the underlying HuggingFace Dataset | |||
"""A PyDataset backed by hugging face Dataset.""" | |||
"""A MsDataset backed by hugging face Dataset.""" | |||
def __init__(self, hf_ds: Dataset, target: Optional[str] = None): | |||
self._hf_ds = hf_ds | |||
@@ -49,7 +49,7 @@ class PyDataset: | |||
@classmethod | |||
def from_hf_dataset(cls, | |||
hf_ds: Dataset, | |||
target: str = None) -> Union[dict, 'PyDataset']: | |||
target: str = None) -> Union[dict, 'MsDataset']: | |||
if isinstance(hf_ds, Dataset): | |||
return cls(hf_ds, target) | |||
if len(hf_ds.keys()) == 1: | |||
@@ -68,8 +68,8 @@ class PyDataset: | |||
data_files: Optional[Union[str, Sequence[str], | |||
Mapping[str, Union[str, | |||
Sequence[str]]]]] = None | |||
) -> Union[dict, 'PyDataset']: | |||
"""Load a PyDataset from the ModelScope Hub, Hugging Face Hub, urls, or a local dataset. | |||
) -> Union[dict, 'MsDataset']: | |||
"""Load a MsDataset from the ModelScope Hub, Hugging Face Hub, urls, or a local dataset. | |||
Args: | |||
dataset_name (str): Path or name of the dataset. | |||
@@ -82,7 +82,7 @@ class PyDataset: | |||
hub (Hubs, optional): When loading from a remote hub, where it is from | |||
Returns: | |||
PyDataset (obj:`PyDataset`): PyDataset object for a certain dataset. | |||
MsDataset (obj:`MsDataset`): MsDataset object for a certain dataset. | |||
""" | |||
if hub == Hubs.huggingface: | |||
dataset = hf_load_dataset( | |||
@@ -92,9 +92,9 @@ class PyDataset: | |||
split=split, | |||
data_dir=data_dir, | |||
data_files=data_files) | |||
return PyDataset.from_hf_dataset(dataset, target=target) | |||
return MsDataset.from_hf_dataset(dataset, target=target) | |||
else: | |||
return PyDataset._load_ms_dataset( | |||
return MsDataset._load_ms_dataset( | |||
dataset_name, | |||
target=target, | |||
subset_name=subset_name, | |||
@@ -114,7 +114,7 @@ class PyDataset: | |||
data_files: Optional[Union[str, Sequence[str], | |||
Mapping[str, Union[str, | |||
Sequence[str]]]]] = None | |||
) -> Union[dict, 'PyDataset']: | |||
) -> Union[dict, 'MsDataset']: | |||
if isinstance(dataset_name, str): | |||
use_hf = False | |||
if dataset_name in _PACKAGED_DATASETS_MODULES or os.path.isdir(dataset_name) or \ | |||
@@ -153,7 +153,7 @@ class PyDataset: | |||
else: | |||
raise TypeError('path must be a str or a list, but got' | |||
f' {type(dataset_name)}') | |||
return PyDataset.from_hf_dataset(dataset, target=target) | |||
return MsDataset.from_hf_dataset(dataset, target=target) | |||
def to_torch_dataset_with_processors( | |||
self, |
@@ -4,7 +4,7 @@ from typing import Optional | |||
import requests | |||
from modelscope.pydatasets.config import (DOWNLOADED_DATASETS_PATH, | |||
from modelscope.msdatasets.config import (DOWNLOADED_DATASETS_PATH, | |||
MS_HUB_ENDPOINT) | |||
from modelscope.utils.logger import get_logger | |||
@@ -1,2 +1,3 @@ | |||
from .kws_kwsbp_pipeline import * # noqa F403 | |||
from .linear_aec_pipeline import LinearAECPipeline | |||
from .text_to_speech_pipeline import * # noqa F403 |
@@ -0,0 +1,449 @@ | |||
import io | |||
import os | |||
import shutil | |||
import stat | |||
import subprocess | |||
from typing import Any, Dict, List | |||
from modelscope.metainfo import Pipelines | |||
from modelscope.models import Model | |||
from modelscope.pipelines.base import Pipeline | |||
from modelscope.pipelines.builder import PIPELINES | |||
from modelscope.preprocessors import WavToLists | |||
from modelscope.utils.constant import Tasks | |||
__all__ = ['KeyWordSpottingKwsbpPipeline'] | |||
@PIPELINES.register_module( | |||
Tasks.key_word_spotting, module_name=Pipelines.kws_kwsbp) | |||
class KeyWordSpottingKwsbpPipeline(Pipeline): | |||
"""KWS Pipeline - key word spotting decoding | |||
""" | |||
def __init__(self, | |||
config_file: str = None, | |||
model: Model = None, | |||
preprocessor: WavToLists = None, | |||
**kwargs): | |||
"""use `model` and `preprocessor` to create a kws pipeline for prediction | |||
""" | |||
super().__init__( | |||
config_file=config_file, | |||
model=model, | |||
preprocessor=preprocessor, | |||
**kwargs) | |||
assert model is not None, 'kws model should be provided' | |||
assert preprocessor is not None, 'preprocessor is none' | |||
self._preprocessor = preprocessor | |||
self._model = model | |||
def __call__(self, kws_type: str, wav_path: List[str]) -> Dict[str, Any]: | |||
assert kws_type in ['wav', 'pos_testsets', 'neg_testsets', | |||
'roc'], f'kws_type {kws_type} is invalid' | |||
output = self._preprocessor.forward(self._model.forward(), kws_type, | |||
wav_path) | |||
output = self.forward(output) | |||
rst = self.postprocess(output) | |||
return rst | |||
def forward(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||
"""Decoding | |||
""" | |||
# will generate kws result into dump/dump.JOB.log | |||
out = self._run_with_kwsbp(inputs) | |||
return out | |||
def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||
"""process the kws results | |||
""" | |||
pos_result_json = {} | |||
neg_result_json = {} | |||
if inputs['kws_set'] in ['wav', 'pos_testsets', 'roc']: | |||
self._parse_dump_log(pos_result_json, inputs['pos_dump_path']) | |||
if inputs['kws_set'] in ['neg_testsets', 'roc']: | |||
self._parse_dump_log(neg_result_json, inputs['neg_dump_path']) | |||
""" | |||
result_json format example: | |||
{ | |||
"wav_count": 450, | |||
"keywords": ["小云小云"], | |||
"wav_time": 3560.999999, | |||
"detected": [ | |||
{ | |||
"xxx.wav": { | |||
"confidence": "0.990368", | |||
"keyword": "小云小云" | |||
} | |||
}, | |||
{ | |||
"yyy.wav": { | |||
"confidence": "0.990368", | |||
"keyword": "小云小云" | |||
} | |||
}, | |||
...... | |||
], | |||
"detected_count": 429, | |||
"rejected_count": 21, | |||
"rejected": [ | |||
"yyy.wav", | |||
"zzz.wav", | |||
...... | |||
] | |||
} | |||
""" | |||
rst_dict = {'kws_set': inputs['kws_set']} | |||
# parsing the result of wav | |||
if inputs['kws_set'] == 'wav': | |||
rst_dict['wav_count'] = pos_result_json['wav_count'] = inputs[ | |||
'pos_wav_count'] | |||
rst_dict['wav_time'] = round(pos_result_json['wav_time'], 6) | |||
if pos_result_json['detected_count'] == 1: | |||
rst_dict['keywords'] = pos_result_json['keywords'] | |||
rst_dict['detected'] = True | |||
wav_file_name = os.path.basename(inputs['pos_wav_path']) | |||
rst_dict['confidence'] = float(pos_result_json['detected'][0] | |||
[wav_file_name]['confidence']) | |||
else: | |||
rst_dict['detected'] = False | |||
# parsing the result of pos_tests | |||
elif inputs['kws_set'] == 'pos_testsets': | |||
rst_dict['wav_count'] = pos_result_json['wav_count'] = inputs[ | |||
'pos_wav_count'] | |||
rst_dict['wav_time'] = round(pos_result_json['wav_time'], 6) | |||
if pos_result_json.__contains__('keywords'): | |||
rst_dict['keywords'] = pos_result_json['keywords'] | |||
rst_dict['recall'] = round( | |||
pos_result_json['detected_count'] / rst_dict['wav_count'], 6) | |||
if pos_result_json.__contains__('detected_count'): | |||
rst_dict['detected_count'] = pos_result_json['detected_count'] | |||
if pos_result_json.__contains__('rejected_count'): | |||
rst_dict['rejected_count'] = pos_result_json['rejected_count'] | |||
if pos_result_json.__contains__('rejected'): | |||
rst_dict['rejected'] = pos_result_json['rejected'] | |||
# parsing the result of neg_tests | |||
elif inputs['kws_set'] == 'neg_testsets': | |||
rst_dict['wav_count'] = neg_result_json['wav_count'] = inputs[ | |||
'neg_wav_count'] | |||
rst_dict['wav_time'] = round(neg_result_json['wav_time'], 6) | |||
if neg_result_json.__contains__('keywords'): | |||
rst_dict['keywords'] = neg_result_json['keywords'] | |||
rst_dict['fa_rate'] = 0.0 | |||
rst_dict['fa_per_hour'] = 0.0 | |||
if neg_result_json.__contains__('detected_count'): | |||
rst_dict['detected_count'] = neg_result_json['detected_count'] | |||
rst_dict['fa_rate'] = round( | |||
neg_result_json['detected_count'] / rst_dict['wav_count'], | |||
6) | |||
if neg_result_json.__contains__('wav_time'): | |||
rst_dict['fa_per_hour'] = round( | |||
neg_result_json['detected_count'] | |||
/ float(neg_result_json['wav_time'] / 3600), 6) | |||
if neg_result_json.__contains__('rejected_count'): | |||
rst_dict['rejected_count'] = neg_result_json['rejected_count'] | |||
if neg_result_json.__contains__('detected'): | |||
rst_dict['detected'] = neg_result_json['detected'] | |||
# parsing the result of roc | |||
elif inputs['kws_set'] == 'roc': | |||
threshold_start = 0.000 | |||
threshold_step = 0.001 | |||
threshold_end = 1.000 | |||
pos_keywords_list = [] | |||
neg_keywords_list = [] | |||
if pos_result_json.__contains__('keywords'): | |||
pos_keywords_list = pos_result_json['keywords'] | |||
if neg_result_json.__contains__('keywords'): | |||
neg_keywords_list = neg_result_json['keywords'] | |||
keywords_list = list(set(pos_keywords_list + neg_keywords_list)) | |||
pos_result_json['wav_count'] = inputs['pos_wav_count'] | |||
neg_result_json['wav_count'] = inputs['neg_wav_count'] | |||
if len(keywords_list) > 0: | |||
rst_dict['keywords'] = keywords_list | |||
for index in range(len(rst_dict['keywords'])): | |||
cur_keyword = rst_dict['keywords'][index] | |||
output_list = self._generate_roc_list( | |||
start=threshold_start, | |||
step=threshold_step, | |||
end=threshold_end, | |||
keyword=cur_keyword, | |||
pos_inputs=pos_result_json, | |||
neg_inputs=neg_result_json) | |||
rst_dict[cur_keyword] = output_list | |||
return rst_dict | |||
def _run_with_kwsbp(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||
if inputs['kws_set'] == 'roc': | |||
inputs['keyword_grammar_path'] = os.path.join( | |||
inputs['model_workspace'], 'keywords_roc.json') | |||
if inputs['kws_set'] == 'wav': | |||
dump_log_path: str = os.path.join(inputs['pos_dump_path'], | |||
'dump.log') | |||
kws_cmd: str = inputs['kws_tool_path'] + \ | |||
' --sys-dir=' + inputs['model_workspace'] + \ | |||
' --cfg-file=' + inputs['cfg_file_path'] + \ | |||
' --sample-rate=' + inputs['sample_rate'] + \ | |||
' --keyword-grammar=' + inputs['keyword_grammar_path'] + \ | |||
' --wave-scp=' + os.path.join(inputs['pos_data_path'], 'wave.list') + \ | |||
' --num-thread=1 > ' + dump_log_path + ' 2>&1' | |||
os.system(kws_cmd) | |||
if inputs['kws_set'] in ['pos_testsets', 'roc']: | |||
data_dir: str = os.listdir(inputs['pos_data_path']) | |||
wav_list = [] | |||
for i in data_dir: | |||
suffix = os.path.splitext(os.path.basename(i))[1] | |||
if suffix == '.list': | |||
wav_list.append(os.path.join(inputs['pos_data_path'], i)) | |||
j: int = 0 | |||
process = [] | |||
while j < inputs['pos_num_thread']: | |||
wav_list_path: str = inputs['pos_data_path'] + '/wave.' + str( | |||
j) + '.list' | |||
dump_log_path: str = inputs['pos_dump_path'] + '/dump.' + str( | |||
j) + '.log' | |||
kws_cmd: str = inputs['kws_tool_path'] + \ | |||
' --sys-dir=' + inputs['model_workspace'] + \ | |||
' --cfg-file=' + inputs['cfg_file_path'] + \ | |||
' --sample-rate=' + inputs['sample_rate'] + \ | |||
' --keyword-grammar=' + inputs['keyword_grammar_path'] + \ | |||
' --wave-scp=' + wav_list_path + \ | |||
' --num-thread=1 > ' + dump_log_path + ' 2>&1' | |||
p = subprocess.Popen(kws_cmd, shell=True) | |||
process.append(p) | |||
j += 1 | |||
k: int = 0 | |||
while k < len(process): | |||
process[k].wait() | |||
k += 1 | |||
if inputs['kws_set'] in ['neg_testsets', 'roc']: | |||
data_dir: str = os.listdir(inputs['neg_data_path']) | |||
wav_list = [] | |||
for i in data_dir: | |||
suffix = os.path.splitext(os.path.basename(i))[1] | |||
if suffix == '.list': | |||
wav_list.append(os.path.join(inputs['neg_data_path'], i)) | |||
j: int = 0 | |||
process = [] | |||
while j < inputs['neg_num_thread']: | |||
wav_list_path: str = inputs['neg_data_path'] + '/wave.' + str( | |||
j) + '.list' | |||
dump_log_path: str = inputs['neg_dump_path'] + '/dump.' + str( | |||
j) + '.log' | |||
kws_cmd: str = inputs['kws_tool_path'] + \ | |||
' --sys-dir=' + inputs['model_workspace'] + \ | |||
' --cfg-file=' + inputs['cfg_file_path'] + \ | |||
' --sample-rate=' + inputs['sample_rate'] + \ | |||
' --keyword-grammar=' + inputs['keyword_grammar_path'] + \ | |||
' --wave-scp=' + wav_list_path + \ | |||
' --num-thread=1 > ' + dump_log_path + ' 2>&1' | |||
p = subprocess.Popen(kws_cmd, shell=True) | |||
process.append(p) | |||
j += 1 | |||
k: int = 0 | |||
while k < len(process): | |||
process[k].wait() | |||
k += 1 | |||
return inputs | |||
def _parse_dump_log(self, result_json: Dict[str, Any], | |||
dump_path: str) -> Dict[str, Any]: | |||
dump_dir = os.listdir(dump_path) | |||
for i in dump_dir: | |||
basename = os.path.splitext(os.path.basename(i))[0] | |||
# find dump.JOB.log | |||
if 'dump' in basename: | |||
with open( | |||
os.path.join(dump_path, i), mode='r', | |||
encoding='utf-8') as file: | |||
while 1: | |||
line = file.readline() | |||
if not line: | |||
break | |||
else: | |||
result_json = self._parse_result_log( | |||
line, result_json) | |||
def _parse_result_log(self, line: str, | |||
result_json: Dict[str, Any]) -> Dict[str, Any]: | |||
# valid info | |||
if '[rejected]' in line or '[detected]' in line: | |||
detected_count = 0 | |||
rejected_count = 0 | |||
if result_json.__contains__('detected_count'): | |||
detected_count = result_json['detected_count'] | |||
if result_json.__contains__('rejected_count'): | |||
rejected_count = result_json['rejected_count'] | |||
if '[detected]' in line: | |||
# [detected], fname:/xxx/.tmp_pos_testsets/pos_testsets/33.wav, | |||
# kw:小云小云, confidence:0.965155, time:[4.62-5.10], threshold:0.00, | |||
detected_count += 1 | |||
content_list = line.split(', ') | |||
file_name = os.path.basename(content_list[1].split(':')[1]) | |||
keyword = content_list[2].split(':')[1] | |||
confidence = content_list[3].split(':')[1] | |||
keywords_list = [] | |||
if result_json.__contains__('keywords'): | |||
keywords_list = result_json['keywords'] | |||
if keyword not in keywords_list: | |||
keywords_list.append(keyword) | |||
result_json['keywords'] = keywords_list | |||
keyword_item = {} | |||
keyword_item['confidence'] = confidence | |||
keyword_item['keyword'] = keyword | |||
item = {} | |||
item[file_name] = keyword_item | |||
detected_list = [] | |||
if result_json.__contains__('detected'): | |||
detected_list = result_json['detected'] | |||
detected_list.append(item) | |||
result_json['detected'] = detected_list | |||
elif '[rejected]' in line: | |||
# [rejected], fname:/xxx/.tmp_pos_testsets/pos_testsets/28.wav | |||
rejected_count += 1 | |||
content_list = line.split(', ') | |||
file_name = os.path.basename(content_list[1].split(':')[1]) | |||
file_name = file_name.strip().replace('\n', | |||
'').replace('\r', '') | |||
rejected_list = [] | |||
if result_json.__contains__('rejected'): | |||
rejected_list = result_json['rejected'] | |||
rejected_list.append(file_name) | |||
result_json['rejected'] = rejected_list | |||
result_json['detected_count'] = detected_count | |||
result_json['rejected_count'] = rejected_count | |||
elif 'total_proc_time=' in line and 'wav_time=' in line: | |||
# eg: total_proc_time=0.289000(s), wav_time=20.944125(s), kwsbp_rtf=0.013799 | |||
wav_total_time = 0 | |||
content_list = line.split('), ') | |||
if result_json.__contains__('wav_time'): | |||
wav_total_time = result_json['wav_time'] | |||
wav_time_str = content_list[1].split('=')[1] | |||
wav_time_str = wav_time_str.split('(')[0] | |||
wav_time = float(wav_time_str) | |||
wav_time = round(wav_time, 6) | |||
if isinstance(wav_time, float): | |||
wav_total_time += wav_time | |||
result_json['wav_time'] = wav_total_time | |||
return result_json | |||
def _generate_roc_list(self, start: float, step: float, end: float, | |||
keyword: str, pos_inputs: Dict[str, Any], | |||
neg_inputs: Dict[str, Any]) -> Dict[str, Any]: | |||
pos_wav_count = pos_inputs['wav_count'] | |||
neg_wav_time = neg_inputs['wav_time'] | |||
det_lists = pos_inputs['detected'] | |||
fa_lists = neg_inputs['detected'] | |||
threshold_cur = start | |||
""" | |||
input det_lists dict | |||
[ | |||
{ | |||
"xxx.wav": { | |||
"confidence": "0.990368", | |||
"keyword": "小云小云" | |||
} | |||
}, | |||
{ | |||
"yyy.wav": { | |||
"confidence": "0.990368", | |||
"keyword": "小云小云" | |||
} | |||
}, | |||
] | |||
output dict | |||
[ | |||
{ | |||
"threshold": 0.000, | |||
"recall": 0.999888, | |||
"fa_per_hour": 1.999999 | |||
}, | |||
{ | |||
"threshold": 0.001, | |||
"recall": 0.999888, | |||
"fa_per_hour": 1.999999 | |||
}, | |||
] | |||
""" | |||
output = [] | |||
while threshold_cur <= end: | |||
det_count = 0 | |||
fa_count = 0 | |||
for index in range(len(det_lists)): | |||
det_item = det_lists[index] | |||
det_wav_item = det_item.get(next(iter(det_item))) | |||
if det_wav_item['keyword'] == keyword: | |||
confidence = float(det_wav_item['confidence']) | |||
if confidence >= threshold_cur: | |||
det_count += 1 | |||
for index in range(len(fa_lists)): | |||
fa_item = fa_lists[index] | |||
fa_wav_item = fa_item.get(next(iter(fa_item))) | |||
if fa_wav_item['keyword'] == keyword: | |||
confidence = float(fa_wav_item['confidence']) | |||
if confidence >= threshold_cur: | |||
fa_count += 1 | |||
output_item = { | |||
'threshold': round(threshold_cur, 3), | |||
'recall': round(float(det_count / pos_wav_count), 6), | |||
'fa_per_hour': round(fa_count / float(neg_wav_time / 3600), 6) | |||
} | |||
output.append(output_item) | |||
threshold_cur += step | |||
return output |
@@ -6,15 +6,15 @@ from typing import Any, Dict, Generator, List, Union | |||
from modelscope.hub.snapshot_download import snapshot_download | |||
from modelscope.models.base import Model | |||
from modelscope.msdatasets import MsDataset | |||
from modelscope.preprocessors import Preprocessor | |||
from modelscope.pydatasets import PyDataset | |||
from modelscope.utils.config import Config | |||
from modelscope.utils.logger import get_logger | |||
from .outputs import TASK_OUTPUTS | |||
from .util import is_model, is_official_hub_path | |||
Tensor = Union['torch.Tensor', 'tf.Tensor'] | |||
Input = Union[str, tuple, PyDataset, 'PIL.Image.Image', 'numpy.ndarray'] | |||
Input = Union[str, tuple, MsDataset, 'PIL.Image.Image', 'numpy.ndarray'] | |||
InputModel = Union[str, Model] | |||
output_keys = [ | |||
@@ -85,7 +85,7 @@ class Pipeline(ABC): | |||
for ele in input: | |||
output.append(self._process_single(ele, *args, **post_kwargs)) | |||
elif isinstance(input, PyDataset): | |||
elif isinstance(input, MsDataset): | |||
return self._process_iterator(input, *args, **post_kwargs) | |||
else: | |||
@@ -21,7 +21,6 @@ DEFAULT_MODEL_FOR_PIPELINE = { | |||
Tasks.sentence_similarity: | |||
(Pipelines.sentence_similarity, | |||
'damo/nlp_structbert_sentence-similarity_chinese-base'), | |||
Tasks.image_matting: ('image-matting', 'damo/cv_unet_image-matting'), | |||
Tasks.nli: (Pipelines.nli, 'damo/nlp_structbert_nli_chinese-base'), | |||
Tasks.sentiment_classification: | |||
(Pipelines.sentiment_classification, | |||
@@ -44,6 +43,9 @@ DEFAULT_MODEL_FOR_PIPELINE = { | |||
Tasks.fill_mask: (Pipelines.fill_mask, 'damo/nlp_veco_fill-mask-large'), | |||
Tasks.action_recognition: (Pipelines.action_recognition, | |||
'damo/cv_TAdaConv_action-recognition'), | |||
Tasks.multi_modal_embedding: | |||
(Pipelines.multi_modal_embedding, | |||
'damo/multi-modal_clip-vit-large-patch14-chinese_multi-modal-embedding') | |||
} | |||
@@ -1 +1,2 @@ | |||
from .image_captioning_pipeline import ImageCaptionPipeline | |||
from .multi_modal_embedding_pipeline import MultiModalEmbeddingPipeline |
@@ -0,0 +1,34 @@ | |||
from typing import Any, Dict, Union | |||
from modelscope.metainfo import Pipelines | |||
from modelscope.pipelines.base import Input | |||
from modelscope.utils.constant import Tasks | |||
from modelscope.utils.logger import get_logger | |||
from ..base import Model, Pipeline | |||
from ..builder import PIPELINES | |||
logger = get_logger() | |||
@PIPELINES.register_module( | |||
Tasks.multi_modal_embedding, module_name=Pipelines.multi_modal_embedding) | |||
class MultiModalEmbeddingPipeline(Pipeline): | |||
def __init__(self, model: str, device_id: int = -1): | |||
if isinstance(model, str): | |||
pipe_model = Model.from_pretrained(model) | |||
elif isinstance(model, Model): | |||
pipe_model = model | |||
else: | |||
raise NotImplementedError('model must be a single str') | |||
super().__init__(model=pipe_model) | |||
def preprocess(self, input: Input) -> Dict[str, Any]: | |||
return input | |||
def forward(self, input: Dict[str, Any]) -> Dict[str, Any]: | |||
return self.model(input) | |||
def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||
return inputs |
@@ -131,6 +131,13 @@ TASK_OUTPUTS = { | |||
# } | |||
Tasks.image_captioning: ['caption'], | |||
# multi-modal embedding result for single sample | |||
# { | |||
# "img_embedding": np.array with shape [1, D], | |||
# "text_embedding": np.array with shape [1, D] | |||
# } | |||
Tasks.multi_modal_embedding: ['img_embedding', 'text_embedding'], | |||
# visual grounding result for single sample | |||
# { | |||
# "boxes": [ | |||
@@ -5,6 +5,7 @@ from .base import Preprocessor | |||
from .builder import PREPROCESSORS, build_preprocessor | |||
from .common import Compose | |||
from .image import LoadImage, load_image | |||
from .kws import WavToLists | |||
from .multi_modal import OfaImageCaptionPreprocessor | |||
from .nlp import * # noqa F403 | |||
from .space.dialog_intent_prediction_preprocessor import * # noqa F403 | |||
@@ -0,0 +1,253 @@ | |||
import os | |||
import shutil | |||
import stat | |||
from pathlib import Path | |||
from typing import Any, Dict, List | |||
import yaml | |||
from modelscope.metainfo import Preprocessors | |||
from modelscope.models.base import Model | |||
from modelscope.utils.constant import Fields | |||
from .base import Preprocessor | |||
from .builder import PREPROCESSORS | |||
__all__ = ['WavToLists'] | |||
@PREPROCESSORS.register_module( | |||
Fields.audio, module_name=Preprocessors.wav_to_lists) | |||
class WavToLists(Preprocessor): | |||
"""generate audio lists file from wav | |||
Args: | |||
workspace (str): store temporarily kws intermedium and result | |||
""" | |||
def __init__(self, workspace: str = None): | |||
# the workspace path | |||
if len(workspace) == 0: | |||
self._workspace = os.path.join(os.getcwd(), '.tmp') | |||
else: | |||
self._workspace = workspace | |||
if not os.path.exists(self._workspace): | |||
os.mkdir(self._workspace) | |||
def __call__(self, | |||
model: Model = None, | |||
kws_type: str = None, | |||
wav_path: List[str] = None) -> Dict[str, Any]: | |||
"""Call functions to load model and wav. | |||
Args: | |||
model (Model): model should be provided | |||
kws_type (str): kws work type: wav, neg_testsets, pos_testsets, roc | |||
wav_path (List[str]): wav_path[0] is positive wav path, wav_path[1] is negative wav path | |||
Returns: | |||
Dict[str, Any]: the kws result | |||
""" | |||
assert model is not None, 'preprocess kws model should be provided' | |||
assert kws_type in ['wav', 'pos_testsets', 'neg_testsets', 'roc' | |||
], f'preprocess kws_type {kws_type} is invalid' | |||
assert wav_path[0] is not None or wav_path[ | |||
1] is not None, 'preprocess wav_path is invalid' | |||
self._model = model | |||
out = self.forward(self._model.forward(), kws_type, wav_path) | |||
return out | |||
def forward(self, model: Dict[str, Any], kws_type: str, | |||
wav_path: List[str]) -> Dict[str, Any]: | |||
assert len(kws_type) > 0, 'preprocess kws_type is empty' | |||
assert len( | |||
model['config_path']) > 0, 'preprocess model[config_path] is empty' | |||
assert os.path.exists( | |||
model['config_path']), 'model config.yaml is absent' | |||
inputs = model.copy() | |||
inputs['kws_set'] = kws_type | |||
inputs['workspace'] = self._workspace | |||
if wav_path[0] is not None: | |||
inputs['pos_wav_path'] = wav_path[0] | |||
if wav_path[1] is not None: | |||
inputs['neg_wav_path'] = wav_path[1] | |||
out = self._read_config(inputs) | |||
out = self._generate_wav_lists(out) | |||
return out | |||
def _read_config(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||
"""read and parse config.yaml to get all model files | |||
""" | |||
assert os.path.exists( | |||
inputs['config_path']), 'model config yaml file does not exist' | |||
config_file = open(inputs['config_path']) | |||
root = yaml.full_load(config_file) | |||
config_file.close() | |||
inputs['cfg_file'] = root['cfg_file'] | |||
inputs['cfg_file_path'] = os.path.join(inputs['model_workspace'], | |||
root['cfg_file']) | |||
inputs['keyword_grammar'] = root['keyword_grammar'] | |||
inputs['keyword_grammar_path'] = os.path.join( | |||
inputs['model_workspace'], root['keyword_grammar']) | |||
inputs['sample_rate'] = str(root['sample_rate']) | |||
inputs['kws_tool'] = root['kws_tool'] | |||
if os.path.exists( | |||
os.path.join(inputs['workspace'], inputs['kws_tool'])): | |||
inputs['kws_tool_path'] = os.path.join(inputs['workspace'], | |||
inputs['kws_tool']) | |||
elif os.path.exists(os.path.join('/usr/bin', inputs['kws_tool'])): | |||
inputs['kws_tool_path'] = os.path.join('/usr/bin', | |||
inputs['kws_tool']) | |||
elif os.path.exists(os.path.join('/bin', inputs['kws_tool'])): | |||
inputs['kws_tool_path'] = os.path.join('/bin', inputs['kws_tool']) | |||
assert os.path.exists(inputs['kws_tool_path']), 'cannot find kwsbp' | |||
os.chmod(inputs['kws_tool_path'], | |||
stat.S_IXUSR + stat.S_IXGRP + stat.S_IXOTH) | |||
self._config_checking(inputs) | |||
return inputs | |||
def _generate_wav_lists(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||
"""assemble wav lists | |||
""" | |||
if inputs['kws_set'] == 'wav': | |||
inputs['pos_num_thread'] = 1 | |||
wave_scp_content: str = inputs['pos_wav_path'] + '\n' | |||
with open(os.path.join(inputs['pos_data_path'], 'wave.list'), | |||
'a') as f: | |||
f.write(wave_scp_content) | |||
inputs['pos_wav_count'] = 1 | |||
if inputs['kws_set'] in ['pos_testsets', 'roc']: | |||
# find all positive wave | |||
wav_list = [] | |||
wav_dir = inputs['pos_wav_path'] | |||
wav_list = self._recursion_dir_all_wave(wav_list, wav_dir) | |||
list_count: int = len(wav_list) | |||
inputs['pos_wav_count'] = list_count | |||
if list_count <= 128: | |||
inputs['pos_num_thread'] = list_count | |||
j: int = 0 | |||
while j < list_count: | |||
wave_scp_content: str = wav_list[j] + '\n' | |||
wav_list_path = inputs['pos_data_path'] + '/wave.' + str( | |||
j) + '.list' | |||
with open(wav_list_path, 'a') as f: | |||
f.write(wave_scp_content) | |||
j += 1 | |||
else: | |||
inputs['pos_num_thread'] = 128 | |||
j: int = 0 | |||
k: int = 0 | |||
while j < list_count: | |||
wave_scp_content: str = wav_list[j] + '\n' | |||
wav_list_path = inputs['pos_data_path'] + '/wave.' + str( | |||
k) + '.list' | |||
with open(wav_list_path, 'a') as f: | |||
f.write(wave_scp_content) | |||
j += 1 | |||
k += 1 | |||
if k >= 128: | |||
k = 0 | |||
if inputs['kws_set'] in ['neg_testsets', 'roc']: | |||
# find all negative wave | |||
wav_list = [] | |||
wav_dir = inputs['neg_wav_path'] | |||
wav_list = self._recursion_dir_all_wave(wav_list, wav_dir) | |||
list_count: int = len(wav_list) | |||
inputs['neg_wav_count'] = list_count | |||
if list_count <= 128: | |||
inputs['neg_num_thread'] = list_count | |||
j: int = 0 | |||
while j < list_count: | |||
wave_scp_content: str = wav_list[j] + '\n' | |||
wav_list_path = inputs['neg_data_path'] + '/wave.' + str( | |||
j) + '.list' | |||
with open(wav_list_path, 'a') as f: | |||
f.write(wave_scp_content) | |||
j += 1 | |||
else: | |||
inputs['neg_num_thread'] = 128 | |||
j: int = 0 | |||
k: int = 0 | |||
while j < list_count: | |||
wave_scp_content: str = wav_list[j] + '\n' | |||
wav_list_path = inputs['neg_data_path'] + '/wave.' + str( | |||
k) + '.list' | |||
with open(wav_list_path, 'a') as f: | |||
f.write(wave_scp_content) | |||
j += 1 | |||
k += 1 | |||
if k >= 128: | |||
k = 0 | |||
return inputs | |||
def _recursion_dir_all_wave(self, wav_list, | |||
dir_path: str) -> Dict[str, Any]: | |||
dir_files = os.listdir(dir_path) | |||
for file in dir_files: | |||
file_path = os.path.join(dir_path, file) | |||
if os.path.isfile(file_path): | |||
if file_path.endswith('.wav') or file_path.endswith('.WAV'): | |||
wav_list.append(file_path) | |||
elif os.path.isdir(file_path): | |||
self._recursion_dir_all_wave(wav_list, file_path) | |||
return wav_list | |||
def _config_checking(self, inputs: Dict[str, Any]): | |||
if inputs['kws_set'] in ['wav', 'pos_testsets', 'roc']: | |||
inputs['pos_data_path'] = os.path.join(inputs['workspace'], | |||
'pos_data') | |||
if not os.path.exists(inputs['pos_data_path']): | |||
os.mkdir(inputs['pos_data_path']) | |||
else: | |||
shutil.rmtree(inputs['pos_data_path']) | |||
os.mkdir(inputs['pos_data_path']) | |||
inputs['pos_dump_path'] = os.path.join(inputs['workspace'], | |||
'pos_dump') | |||
if not os.path.exists(inputs['pos_dump_path']): | |||
os.mkdir(inputs['pos_dump_path']) | |||
else: | |||
shutil.rmtree(inputs['pos_dump_path']) | |||
os.mkdir(inputs['pos_dump_path']) | |||
if inputs['kws_set'] in ['neg_testsets', 'roc']: | |||
inputs['neg_data_path'] = os.path.join(inputs['workspace'], | |||
'neg_data') | |||
if not os.path.exists(inputs['neg_data_path']): | |||
os.mkdir(inputs['neg_data_path']) | |||
else: | |||
shutil.rmtree(inputs['neg_data_path']) | |||
os.mkdir(inputs['neg_data_path']) | |||
inputs['neg_dump_path'] = os.path.join(inputs['workspace'], | |||
'neg_dump') | |||
if not os.path.exists(inputs['neg_dump_path']): | |||
os.mkdir(inputs['neg_dump_path']) | |||
else: | |||
shutil.rmtree(inputs['neg_dump_path']) | |||
os.mkdir(inputs['neg_dump_path']) |
@@ -1 +0,0 @@ | |||
from .py_dataset import PyDataset |
@@ -56,11 +56,13 @@ class Tasks(object): | |||
auto_speech_recognition = 'auto-speech-recognition' | |||
text_to_speech = 'text-to-speech' | |||
speech_signal_process = 'speech-signal-process' | |||
key_word_spotting = 'key-word-spotting' | |||
# multi-modal tasks | |||
image_captioning = 'image-captioning' | |||
visual_grounding = 'visual-grounding' | |||
text_to_image_synthesis = 'text-to-image-synthesis' | |||
multi_modal_embedding = 'multi-modal-embedding' | |||
class InputFields(object): | |||
@@ -3,10 +3,9 @@ import unittest | |||
import datasets as hfdata | |||
from modelscope.models import Model | |||
from modelscope.msdatasets import MsDataset | |||
from modelscope.preprocessors import SequenceClassificationPreprocessor | |||
from modelscope.preprocessors.base import Preprocessor | |||
from modelscope.pydatasets import PyDataset | |||
from modelscope.utils.constant import Hubs | |||
from modelscope.utils.test_utils import require_tf, require_torch, test_level | |||
@@ -31,15 +30,15 @@ class ImgPreprocessor(Preprocessor): | |||
} | |||
class PyDatasetTest(unittest.TestCase): | |||
class MsDatasetTest(unittest.TestCase): | |||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
def test_ds_basic(self): | |||
ms_ds_full = PyDataset.load('squad') | |||
ms_ds_full = MsDataset.load('squad') | |||
ms_ds_full_hf = hfdata.load_dataset('squad') | |||
ms_ds_train = PyDataset.load('squad', split='train') | |||
ms_ds_train = MsDataset.load('squad', split='train') | |||
ms_ds_train_hf = hfdata.load_dataset('squad', split='train') | |||
ms_image_train = PyDataset.from_hf_dataset( | |||
ms_image_train = MsDataset.from_hf_dataset( | |||
hfdata.load_dataset('beans', split='train')) | |||
self.assertEqual(ms_ds_full['train'][0], ms_ds_full_hf['train'][0]) | |||
self.assertEqual(ms_ds_full['validation'][0], | |||
@@ -58,7 +57,7 @@ class PyDatasetTest(unittest.TestCase): | |||
nlp_model.model_dir, | |||
first_sequence='context', | |||
second_sequence=None) | |||
ms_ds_train = PyDataset.load('squad', split='train') | |||
ms_ds_train = MsDataset.load('squad', split='train') | |||
pt_dataset = ms_ds_train.to_torch_dataset(preprocessors=preprocessor) | |||
import torch | |||
dataloader = torch.utils.data.DataLoader(pt_dataset, batch_size=5) | |||
@@ -75,7 +74,7 @@ class PyDatasetTest(unittest.TestCase): | |||
nlp_model.model_dir, | |||
first_sequence='context', | |||
second_sequence=None) | |||
ms_ds_train = PyDataset.load('squad', split='train') | |||
ms_ds_train = MsDataset.load('squad', split='train') | |||
tf_dataset = ms_ds_train.to_tf_dataset( | |||
batch_size=5, | |||
shuffle=True, | |||
@@ -86,7 +85,7 @@ class PyDatasetTest(unittest.TestCase): | |||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
@require_torch | |||
def test_to_torch_dataset_img(self): | |||
ms_image_train = PyDataset.from_hf_dataset( | |||
ms_image_train = MsDataset.from_hf_dataset( | |||
hfdata.load_dataset('beans', split='train')) | |||
pt_dataset = ms_image_train.to_torch_dataset( | |||
preprocessors=ImgPreprocessor( | |||
@@ -100,7 +99,7 @@ class PyDatasetTest(unittest.TestCase): | |||
def test_to_tf_dataset_img(self): | |||
import tensorflow as tf | |||
tf.compat.v1.enable_eager_execution() | |||
ms_image_train = PyDataset.load('beans', split='train') | |||
ms_image_train = MsDataset.load('beans', split='train') | |||
tf_dataset = ms_image_train.to_tf_dataset( | |||
batch_size=5, | |||
shuffle=True, |
@@ -8,8 +8,8 @@ import unittest | |||
import cv2 | |||
from modelscope.fileio import File | |||
from modelscope.msdatasets import MsDataset | |||
from modelscope.pipelines import pipeline | |||
from modelscope.pydatasets import PyDataset | |||
from modelscope.utils.constant import ModelFile, Tasks | |||
from modelscope.utils.test_utils import test_level | |||
@@ -7,8 +7,8 @@ import unittest | |||
import cv2 | |||
from modelscope.fileio import File | |||
from modelscope.msdatasets import MsDataset | |||
from modelscope.pipelines import pipeline | |||
from modelscope.pydatasets import PyDataset | |||
from modelscope.utils.constant import ModelFile, Tasks | |||
from modelscope.utils.test_utils import test_level | |||
@@ -37,7 +37,7 @@ class ImageMattingTest(unittest.TestCase): | |||
# alternatively: | |||
# input_location = '/dir/to/images' | |||
dataset = PyDataset.load(input_location, target='image') | |||
dataset = MsDataset.load(input_location, target='image') | |||
img_matting = pipeline(Tasks.image_matting, model=self.model_id) | |||
# note that for dataset output, the inference-output is a Generator that can be iterated. | |||
result = img_matting(dataset) | |||
@@ -62,7 +62,7 @@ class ImageMattingTest(unittest.TestCase): | |||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
def test_run_with_modelscope_dataset(self): | |||
dataset = PyDataset.load('beans', split='train', target='image') | |||
dataset = MsDataset.load('beans', split='train', target='image') | |||
img_matting = pipeline(Tasks.image_matting, model=self.model_id) | |||
result = img_matting(dataset) | |||
for i in range(10): | |||
@@ -0,0 +1,334 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
import os | |||
import shutil | |||
import tarfile | |||
import unittest | |||
import requests | |||
from modelscope.metainfo import Pipelines, Preprocessors | |||
from modelscope.models import Model | |||
from modelscope.pipelines import pipeline | |||
from modelscope.preprocessors import build_preprocessor | |||
from modelscope.utils.constant import Fields, InputFields, Tasks | |||
from modelscope.utils.test_utils import test_level | |||
KWSBP_URL = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/KWS/tools/kwsbp' | |||
POS_WAV_FILE = '20200707_spk57db_storenoise52db_40cm_xiaoyun_sox_6.wav' | |||
POS_WAV_URL = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/KWS/pos_testset/' + POS_WAV_FILE | |||
POS_TESTSETS_FILE = 'pos_testsets.tar.gz' | |||
POS_TESTSETS_URL = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/KWS/pos_testsets.tar.gz' | |||
NEG_TESTSETS_FILE = 'neg_testsets.tar.gz' | |||
NEG_TESTSETS_URL = 'https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/KWS/neg_testsets.tar.gz' | |||
def un_tar_gz(fname, dirs): | |||
t = tarfile.open(fname) | |||
t.extractall(path=dirs) | |||
class KeyWordSpottingTest(unittest.TestCase): | |||
def setUp(self) -> None: | |||
self.model_id = 'damo/speech_charctc_kws_phone-xiaoyunxiaoyun' | |||
self.workspace = os.path.join(os.getcwd(), '.tmp') | |||
if not os.path.exists(self.workspace): | |||
os.mkdir(self.workspace) | |||
def tearDown(self) -> None: | |||
if os.path.exists(self.workspace): | |||
shutil.rmtree(self.workspace) | |||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level') | |||
def test_run_with_wav(self): | |||
# wav, neg_testsets, pos_testsets, roc | |||
kws_set = 'wav' | |||
# downloading wav file | |||
wav_file_path = os.path.join(self.workspace, POS_WAV_FILE) | |||
if not os.path.exists(wav_file_path): | |||
r = requests.get(POS_WAV_URL) | |||
with open(wav_file_path, 'wb') as f: | |||
f.write(r.content) | |||
# downloading kwsbp | |||
kwsbp_file_path = os.path.join(self.workspace, 'kwsbp') | |||
if not os.path.exists(kwsbp_file_path): | |||
r = requests.get(KWSBP_URL) | |||
with open(kwsbp_file_path, 'wb') as f: | |||
f.write(r.content) | |||
model = Model.from_pretrained(self.model_id) | |||
self.assertTrue(model is not None) | |||
cfg_preprocessor = dict( | |||
type=Preprocessors.wav_to_lists, workspace=self.workspace) | |||
preprocessor = build_preprocessor(cfg_preprocessor, Fields.audio) | |||
self.assertTrue(preprocessor is not None) | |||
kwsbp_16k_pipline = pipeline( | |||
pipeline_name=Pipelines.kws_kwsbp, | |||
model=model, | |||
preprocessor=preprocessor) | |||
self.assertTrue(kwsbp_16k_pipline is not None) | |||
kws_result = kwsbp_16k_pipline( | |||
kws_type=kws_set, wav_path=[wav_file_path, None]) | |||
self.assertTrue(kws_result.__contains__('detected')) | |||
""" | |||
kws result json format example: | |||
{ | |||
'wav_count': 1, | |||
'kws_set': 'wav', | |||
'wav_time': 9.132938, | |||
'keywords': ['小云小云'], | |||
'detected': True, | |||
'confidence': 0.990368 | |||
} | |||
""" | |||
if kws_result.__contains__('keywords'): | |||
print('test_run_with_wav keywords: ', kws_result['keywords']) | |||
print('test_run_with_wav detected result: ', kws_result['detected']) | |||
print('test_run_with_wav wave time(seconds): ', kws_result['wav_time']) | |||
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level') | |||
def test_run_with_pos_testsets(self): | |||
# wav, neg_testsets, pos_testsets, roc | |||
kws_set = 'pos_testsets' | |||
# downloading pos_testsets file | |||
testsets_file_path = os.path.join(self.workspace, POS_TESTSETS_FILE) | |||
if not os.path.exists(testsets_file_path): | |||
r = requests.get(POS_TESTSETS_URL) | |||
with open(testsets_file_path, 'wb') as f: | |||
f.write(r.content) | |||
testsets_dir_name = os.path.splitext( | |||
os.path.basename(POS_TESTSETS_FILE))[0] | |||
testsets_dir_name = os.path.splitext( | |||
os.path.basename(testsets_dir_name))[0] | |||
# wav_file_path = <cwd>/.tmp_pos_testsets/pos_testsets/ | |||
wav_file_path = os.path.join(self.workspace, testsets_dir_name) | |||
# untar the pos_testsets file | |||
if not os.path.exists(wav_file_path): | |||
un_tar_gz(testsets_file_path, self.workspace) | |||
# downloading kwsbp -- a kws batch processing tool | |||
kwsbp_file_path = os.path.join(self.workspace, 'kwsbp') | |||
if not os.path.exists(kwsbp_file_path): | |||
r = requests.get(KWSBP_URL) | |||
with open(kwsbp_file_path, 'wb') as f: | |||
f.write(r.content) | |||
model = Model.from_pretrained(self.model_id) | |||
self.assertTrue(model is not None) | |||
cfg_preprocessor = dict( | |||
type=Preprocessors.wav_to_lists, workspace=self.workspace) | |||
preprocessor = build_preprocessor(cfg_preprocessor, Fields.audio) | |||
self.assertTrue(preprocessor is not None) | |||
kwsbp_16k_pipline = pipeline( | |||
pipeline_name=Pipelines.kws_kwsbp, | |||
model=model, | |||
preprocessor=preprocessor) | |||
self.assertTrue(kwsbp_16k_pipline is not None) | |||
kws_result = kwsbp_16k_pipline( | |||
kws_type=kws_set, wav_path=[wav_file_path, None]) | |||
self.assertTrue(kws_result.__contains__('recall')) | |||
""" | |||
kws result json format example: | |||
{ | |||
'wav_count': 450, | |||
'kws_set': 'pos_testsets', | |||
'wav_time': 3013.759254, | |||
'keywords': ["小云小云"], | |||
'recall': 0.953333, | |||
'detected_count': 429, | |||
'rejected_count': 21, | |||
'rejected': [ | |||
'yyy.wav', | |||
'zzz.wav', | |||
...... | |||
] | |||
} | |||
""" | |||
if kws_result.__contains__('keywords'): | |||
print('test_run_with_pos_testsets keywords: ', | |||
kws_result['keywords']) | |||
print('test_run_with_pos_testsets recall: ', kws_result['recall']) | |||
print('test_run_with_pos_testsets wave time(seconds): ', | |||
kws_result['wav_time']) | |||
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level') | |||
def test_run_with_neg_testsets(self): | |||
# wav, neg_testsets, pos_testsets, roc | |||
kws_set = 'neg_testsets' | |||
# downloading neg_testsets file | |||
testsets_file_path = os.path.join(self.workspace, NEG_TESTSETS_FILE) | |||
if not os.path.exists(testsets_file_path): | |||
r = requests.get(NEG_TESTSETS_URL) | |||
with open(testsets_file_path, 'wb') as f: | |||
f.write(r.content) | |||
testsets_dir_name = os.path.splitext( | |||
os.path.basename(NEG_TESTSETS_FILE))[0] | |||
testsets_dir_name = os.path.splitext( | |||
os.path.basename(testsets_dir_name))[0] | |||
# wav_file_path = <cwd>/.tmp_neg_testsets/neg_testsets/ | |||
wav_file_path = os.path.join(self.workspace, testsets_dir_name) | |||
# untar the neg_testsets file | |||
if not os.path.exists(wav_file_path): | |||
un_tar_gz(testsets_file_path, self.workspace) | |||
# downloading kwsbp -- a kws batch processing tool | |||
kwsbp_file_path = os.path.join(self.workspace, 'kwsbp') | |||
if not os.path.exists(kwsbp_file_path): | |||
r = requests.get(KWSBP_URL) | |||
with open(kwsbp_file_path, 'wb') as f: | |||
f.write(r.content) | |||
model = Model.from_pretrained(self.model_id) | |||
self.assertTrue(model is not None) | |||
cfg_preprocessor = dict( | |||
type=Preprocessors.wav_to_lists, workspace=self.workspace) | |||
preprocessor = build_preprocessor(cfg_preprocessor, Fields.audio) | |||
self.assertTrue(preprocessor is not None) | |||
kwsbp_16k_pipline = pipeline( | |||
pipeline_name=Pipelines.kws_kwsbp, | |||
model=model, | |||
preprocessor=preprocessor) | |||
self.assertTrue(kwsbp_16k_pipline is not None) | |||
kws_result = kwsbp_16k_pipline( | |||
kws_type=kws_set, wav_path=[None, wav_file_path]) | |||
self.assertTrue(kws_result.__contains__('fa_rate')) | |||
""" | |||
kws result json format example: | |||
{ | |||
'wav_count': 751, | |||
'kws_set': 'neg_testsets', | |||
'wav_time': 3572.180812, | |||
'keywords': ['小云小云'], | |||
'fa_rate': 0.001332, | |||
'fa_per_hour': 1.007788, | |||
'detected_count': 1, | |||
'rejected_count': 750, | |||
'detected': [ | |||
{ | |||
'6.wav': { | |||
'confidence': '0.321170' | |||
} | |||
} | |||
] | |||
} | |||
""" | |||
if kws_result.__contains__('keywords'): | |||
print('test_run_with_neg_testsets keywords: ', | |||
kws_result['keywords']) | |||
print('test_run_with_neg_testsets fa rate: ', kws_result['fa_rate']) | |||
print('test_run_with_neg_testsets fa per hour: ', | |||
kws_result['fa_per_hour']) | |||
print('test_run_with_neg_testsets wave time(seconds): ', | |||
kws_result['wav_time']) | |||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
def test_run_with_roc(self): | |||
# wav, neg_testsets, pos_testsets, roc | |||
kws_set = 'roc' | |||
# downloading neg_testsets file | |||
testsets_file_path = os.path.join(self.workspace, NEG_TESTSETS_FILE) | |||
if not os.path.exists(testsets_file_path): | |||
r = requests.get(NEG_TESTSETS_URL) | |||
with open(testsets_file_path, 'wb') as f: | |||
f.write(r.content) | |||
testsets_dir_name = os.path.splitext( | |||
os.path.basename(NEG_TESTSETS_FILE))[0] | |||
testsets_dir_name = os.path.splitext( | |||
os.path.basename(testsets_dir_name))[0] | |||
# neg_file_path = <workspace>/.tmp_roc/neg_testsets/ | |||
neg_file_path = os.path.join(self.workspace, testsets_dir_name) | |||
# untar the neg_testsets file | |||
if not os.path.exists(neg_file_path): | |||
un_tar_gz(testsets_file_path, self.workspace) | |||
# downloading pos_testsets file | |||
testsets_file_path = os.path.join(self.workspace, POS_TESTSETS_FILE) | |||
if not os.path.exists(testsets_file_path): | |||
r = requests.get(POS_TESTSETS_URL) | |||
with open(testsets_file_path, 'wb') as f: | |||
f.write(r.content) | |||
testsets_dir_name = os.path.splitext( | |||
os.path.basename(POS_TESTSETS_FILE))[0] | |||
testsets_dir_name = os.path.splitext( | |||
os.path.basename(testsets_dir_name))[0] | |||
# pos_file_path = <workspace>/.tmp_roc/pos_testsets/ | |||
pos_file_path = os.path.join(self.workspace, testsets_dir_name) | |||
# untar the pos_testsets file | |||
if not os.path.exists(pos_file_path): | |||
un_tar_gz(testsets_file_path, self.workspace) | |||
# downloading kwsbp -- a kws batch processing tool | |||
kwsbp_file_path = os.path.join(self.workspace, 'kwsbp') | |||
if not os.path.exists(kwsbp_file_path): | |||
r = requests.get(KWSBP_URL) | |||
with open(kwsbp_file_path, 'wb') as f: | |||
f.write(r.content) | |||
model = Model.from_pretrained(self.model_id) | |||
self.assertTrue(model is not None) | |||
cfg_preprocessor = dict( | |||
type=Preprocessors.wav_to_lists, workspace=self.workspace) | |||
preprocessor = build_preprocessor(cfg_preprocessor, Fields.audio) | |||
self.assertTrue(preprocessor is not None) | |||
kwsbp_16k_pipline = pipeline( | |||
pipeline_name=Pipelines.kws_kwsbp, | |||
model=model, | |||
preprocessor=preprocessor) | |||
self.assertTrue(kwsbp_16k_pipline is not None) | |||
kws_result = kwsbp_16k_pipline( | |||
kws_type=kws_set, wav_path=[pos_file_path, neg_file_path]) | |||
""" | |||
kws result json format example: | |||
{ | |||
'kws_set': 'roc', | |||
'keywords': ['小云小云'], | |||
'小云小云': [ | |||
{'threshold': 0.0, 'recall': 0.953333, 'fa_per_hour': 1.007788}, | |||
{'threshold': 0.001, 'recall': 0.953333, 'fa_per_hour': 1.007788}, | |||
...... | |||
{'threshold': 0.999, 'recall': 0.004444, 'fa_per_hour': 0.0} | |||
] | |||
} | |||
""" | |||
if kws_result.__contains__('keywords'): | |||
find_keyword = kws_result['keywords'][0] | |||
print('test_run_with_roc keywords: ', find_keyword) | |||
keyword_list = kws_result[find_keyword] | |||
for item in iter(keyword_list): | |||
threshold: float = item['threshold'] | |||
recall: float = item['recall'] | |||
fa_per_hour: float = item['fa_per_hour'] | |||
print(' threshold:', threshold, ' recall:', recall, | |||
' fa_per_hour:', fa_per_hour) | |||
if __name__ == '__main__': | |||
unittest.main() |
@@ -0,0 +1,52 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
import unittest | |||
import numpy as np | |||
from modelscope.models import Model | |||
from modelscope.pipelines import pipeline | |||
from modelscope.utils.constant import Tasks | |||
from modelscope.utils.test_utils import test_level | |||
class MultiModalEmbeddingTest(unittest.TestCase): | |||
model_id = 'damo/multi-modal_clip-vit-large-patch14-chinese_multi-modal-embedding' | |||
test_text = {'text': '一张风景图'} | |||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
def test_run(self): | |||
pipe_line_multi_modal_embedding = pipeline( | |||
Tasks.multi_modal_embedding, model=self.model_id) | |||
test_str_embedding = pipe_line_multi_modal_embedding( | |||
self.test_text)['text_embedding'] | |||
print(np.sum(np.abs(test_str_embedding))) | |||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
def test_run_with_model_from_modelhub(self): | |||
model = Model.from_pretrained(self.model_id) | |||
pipe_line_multi_modal_embedding = pipeline( | |||
task=Tasks.multi_modal_embedding, model=model) | |||
test_str_embedding = pipe_line_multi_modal_embedding( | |||
self.test_text)['text_embedding'] | |||
print(np.sum(np.abs(test_str_embedding))) | |||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
def test_run_with_model_name(self): | |||
pipe_line_multi_modal_embedding = pipeline( | |||
task=Tasks.multi_modal_embedding, model=self.model_id) | |||
test_str_embedding = pipe_line_multi_modal_embedding( | |||
self.test_text)['text_embedding'] | |||
print(np.sum(np.abs(test_str_embedding))) | |||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
def test_run_with_default_model(self): | |||
pipe_line_multi_modal_embedding = pipeline( | |||
task=Tasks.multi_modal_embedding) | |||
test_str_embedding = pipe_line_multi_modal_embedding( | |||
self.test_text)['text_embedding'] | |||
print(np.sum(np.abs(test_str_embedding))) | |||
if __name__ == '__main__': | |||
unittest.main() |
@@ -34,7 +34,7 @@ class SpeechSignalProcessTest(unittest.TestCase): | |||
# A temporary hack to provide c++ lib. Download it first. | |||
download(AEC_LIB_URL, AEC_LIB_FILE) | |||
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level') | |||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level') | |||
def test_run(self): | |||
download(NEAREND_MIC_URL, NEAREND_MIC_FILE) | |||
download(FAREND_SPEECH_URL, FAREND_SPEECH_FILE) | |||
@@ -3,9 +3,9 @@ import shutil | |||
import unittest | |||
from modelscope.models import Model | |||
from modelscope.msdatasets import MsDataset | |||
from modelscope.pipelines import SequenceClassificationPipeline, pipeline | |||
from modelscope.preprocessors import SequenceClassificationPreprocessor | |||
from modelscope.pydatasets import PyDataset | |||
from modelscope.utils.constant import Hubs, Tasks | |||
from modelscope.utils.test_utils import test_level | |||
@@ -28,7 +28,7 @@ class SequenceClassificationTest(unittest.TestCase): | |||
print(data) | |||
def printDataset(self, dataset: PyDataset): | |||
def printDataset(self, dataset: MsDataset): | |||
for i, r in enumerate(dataset): | |||
if i > 10: | |||
break | |||
@@ -50,7 +50,7 @@ class SequenceClassificationTest(unittest.TestCase): | |||
text_classification = pipeline( | |||
task=Tasks.text_classification, model=self.model_id) | |||
result = text_classification( | |||
PyDataset.load( | |||
MsDataset.load( | |||
'glue', | |||
subset_name='sst2', | |||
split='train', | |||
@@ -62,7 +62,7 @@ class SequenceClassificationTest(unittest.TestCase): | |||
def test_run_with_default_model(self): | |||
text_classification = pipeline(task=Tasks.text_classification) | |||
result = text_classification( | |||
PyDataset.load( | |||
MsDataset.load( | |||
'glue', | |||
subset_name='sst2', | |||
split='train', | |||
@@ -78,7 +78,7 @@ class SequenceClassificationTest(unittest.TestCase): | |||
text_classification = pipeline( | |||
Tasks.text_classification, model=model, preprocessor=preprocessor) | |||
# loaded from huggingface dataset | |||
dataset = PyDataset.load( | |||
dataset = MsDataset.load( | |||
'glue', | |||
subset_name='sst2', | |||
split='train', | |||
@@ -91,7 +91,7 @@ class SequenceClassificationTest(unittest.TestCase): | |||
def test_run_with_modelscope_dataset(self): | |||
text_classification = pipeline(task=Tasks.text_classification) | |||
# loaded from modelscope dataset | |||
dataset = PyDataset.load( | |||
dataset = MsDataset.load( | |||
'squad', split='train', target='context', hub=Hubs.modelscope) | |||
result = text_classification(dataset) | |||
self.printDataset(result) | |||