|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import shutil
- import unittest
-
- from modelscope.models import Model
- from modelscope.msdatasets import MsDataset
- from modelscope.pipelines import SequenceClassificationPipeline, pipeline
- from modelscope.preprocessors import SequenceClassificationPreprocessor
- from modelscope.utils.constant import Hubs, Tasks
- from modelscope.utils.test_utils import test_level
-
-
- class SequenceClassificationTest(unittest.TestCase):
-
- def setUp(self) -> None:
- self.model_id = 'damo/bert-base-sst2'
-
- def predict(self, pipeline_ins: SequenceClassificationPipeline):
- from easynlp.appzoo import load_dataset
-
- set = load_dataset('glue', 'sst2')
- data = set['test']['sentence'][:3]
-
- results = pipeline_ins(data[0])
- print(results)
- results = pipeline_ins(data[1])
- print(results)
-
- print(data)
-
- def printDataset(self, dataset: MsDataset):
- for i, r in enumerate(dataset):
- if i > 10:
- break
- print(r)
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_with_model_from_modelhub(self):
- model = Model.from_pretrained(self.model_id)
- preprocessor = SequenceClassificationPreprocessor(
- model.model_dir, first_sequence='sentence', second_sequence=None)
- pipeline_ins = pipeline(
- task=Tasks.text_classification,
- model=model,
- preprocessor=preprocessor)
- self.predict(pipeline_ins)
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_with_model_name(self):
- text_classification = pipeline(
- task=Tasks.text_classification, model=self.model_id)
- result = text_classification(
- MsDataset.load(
- 'glue',
- subset_name='sst2',
- split='train',
- target='sentence',
- hub=Hubs.huggingface))
- self.printDataset(result)
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_with_default_model(self):
- text_classification = pipeline(task=Tasks.text_classification)
- result = text_classification(
- MsDataset.load(
- 'glue',
- subset_name='sst2',
- split='train',
- target='sentence',
- hub=Hubs.huggingface))
- self.printDataset(result)
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_with_dataset(self):
- model = Model.from_pretrained(self.model_id)
- preprocessor = SequenceClassificationPreprocessor(
- model.model_dir, first_sequence='sentence', second_sequence=None)
- text_classification = pipeline(
- Tasks.text_classification, model=model, preprocessor=preprocessor)
- # loaded from huggingface dataset
- dataset = MsDataset.load(
- 'glue',
- subset_name='sst2',
- split='train',
- target='sentence',
- hub=Hubs.huggingface)
- result = text_classification(dataset)
- self.printDataset(result)
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_with_modelscope_dataset(self):
- text_classification = pipeline(task=Tasks.text_classification)
- # loaded from modelscope dataset
- dataset = MsDataset.load(
- 'squad', split='train', target='context', hub=Hubs.modelscope)
- result = text_classification(dataset)
- self.printDataset(result)
-
-
- if __name__ == '__main__':
- unittest.main()
|