* format pipeline output and check it * fix UT * add docstr to clarify the difference between model.postprocess and pipeline.postprocess Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9051405master
| @@ -6,7 +6,8 @@ DOCKER_FULL_NAME = $(DOCKER_REGISTRY)/$(DOCKER_ORG)/$(DOCKER_IMAGE) | |||
| # CUDA_VERSION = 11.3 | |||
| # CUDNN_VERSION = 8 | |||
| BASE_RUNTIME = reg.docker.alibaba-inc.com/pai-dlc/pytorch-training:1.10PAI-gpu-py36-cu113-ubuntu18.04 | |||
| BASE_DEVEL = reg.docker.alibaba-inc.com/pai-dlc/pytorch-training:1.10PAI-gpu-py36-cu113-ubuntu18.04 | |||
| # BASE_DEVEL = reg.docker.alibaba-inc.com/pai-dlc/pytorch-training:1.10PAI-gpu-py36-cu113-ubuntu18.04 | |||
| BASE_DEVEL = pytorch/pytorch:1.10.0-cuda11.3-cudnn8-devel | |||
| MODELSCOPE_VERSION = $(shell git describe --tags --always) | |||
| @@ -8,13 +8,29 @@ | |||
| # For reference: | |||
| # https://docs.docker.com/develop/develop-images/build_enhancements/ | |||
| #ARG BASE_IMAGE=reg.docker.alibaba-inc.com/pai-dlc/pytorch-training:1.10PAI-gpu-py36-cu113-ubuntu18.04 | |||
| #FROM ${BASE_IMAGE} as dev-base | |||
| # ARG BASE_IMAGE=reg.docker.alibaba-inc.com/pai-dlc/pytorch-training:1.10PAI-gpu-py36-cu113-ubuntu18.04 | |||
| # FROM ${BASE_IMAGE} as dev-base | |||
| FROM reg.docker.alibaba-inc.com/pai-dlc/pytorch-training:1.10PAI-gpu-py36-cu113-ubuntu18.04 as dev-base | |||
| # FROM reg.docker.alibaba-inc.com/pai-dlc/pytorch-training:1.10PAI-gpu-py36-cu113-ubuntu18.04 as dev-base | |||
| FROM pytorch/pytorch:1.10.0-cuda11.3-cudnn8-devel | |||
| # FROM pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime | |||
| # config pip source | |||
| RUN mkdir /root/.pip | |||
| COPY docker/rcfiles/pip.conf.tsinghua /root/.pip/pip.conf | |||
| COPY docker/rcfiles/sources.list.aliyun /etc/apt/sources.list | |||
| # Install essential Ubuntu packages | |||
| RUN apt-get update &&\ | |||
| apt-get install -y software-properties-common \ | |||
| build-essential \ | |||
| git \ | |||
| wget \ | |||
| vim \ | |||
| curl \ | |||
| zip \ | |||
| zlib1g-dev \ | |||
| unzip \ | |||
| pkg-config | |||
| # install modelscope and its python env | |||
| WORKDIR /opt/modelscope | |||
| @@ -20,16 +20,24 @@ class Model(ABC): | |||
| self.model_dir = model_dir | |||
| def __call__(self, input: Dict[str, Tensor]) -> Dict[str, Tensor]: | |||
| return self.post_process(self.forward(input)) | |||
| return self.postprocess(self.forward(input)) | |||
| @abstractmethod | |||
| def forward(self, input: Dict[str, Tensor]) -> Dict[str, Tensor]: | |||
| pass | |||
| def post_process(self, input: Dict[str, Tensor], | |||
| **kwargs) -> Dict[str, Tensor]: | |||
| # model specific postprocess, implementation is optional | |||
| # will be called in Pipeline and evaluation loop(in the future) | |||
| def postprocess(self, input: Dict[str, Tensor], | |||
| **kwargs) -> Dict[str, Tensor]: | |||
| """ Model specific postprocess and convert model output to | |||
| standard model outputs. | |||
| Args: | |||
| inputs: input data | |||
| Return: | |||
| dict of results: a dict containing outputs of model, each | |||
| output should have the standard output name. | |||
| """ | |||
| return input | |||
| @classmethod | |||
| @@ -1,5 +1,7 @@ | |||
| import os | |||
| from typing import Any, Dict | |||
| import json | |||
| import numpy as np | |||
| from modelscope.utils.constant import Tasks | |||
| @@ -34,6 +36,11 @@ class BertForSequenceClassification(Model): | |||
| ('token_type_ids', torch.LongTensor)], | |||
| output_keys=['predictions', 'probabilities', 'logits']) | |||
| self.label_path = os.path.join(self.model_dir, 'label_mapping.json') | |||
| with open(self.label_path) as f: | |||
| self.label_mapping = json.load(f) | |||
| self.id2label = {idx: name for name, idx in self.label_mapping.items()} | |||
| def forward(self, input: Dict[str, Any]) -> Dict[str, np.ndarray]: | |||
| """return the result by the model | |||
| @@ -50,3 +57,13 @@ class BertForSequenceClassification(Model): | |||
| } | |||
| """ | |||
| return self.model.predict(input) | |||
| def postprocess(self, inputs: Dict[str, np.ndarray], | |||
| **kwargs) -> Dict[str, np.ndarray]: | |||
| # N x num_classes | |||
| probs = inputs['probabilities'] | |||
| result = { | |||
| 'probs': probs, | |||
| } | |||
| return result | |||
| @@ -12,6 +12,7 @@ from modelscope.pydatasets import PyDataset | |||
| from modelscope.utils.config import Config | |||
| from modelscope.utils.hub import get_model_cache_dir | |||
| from modelscope.utils.logger import get_logger | |||
| from .outputs import TASK_OUTPUTS | |||
| from .util import is_model_name | |||
| Tensor = Union['torch.Tensor', 'tf.Tensor'] | |||
| @@ -106,8 +107,25 @@ class Pipeline(ABC): | |||
| out = self.preprocess(input) | |||
| out = self.forward(out) | |||
| out = self.postprocess(out, **post_kwargs) | |||
| self._check_output(out) | |||
| return out | |||
| def _check_output(self, input): | |||
| # this attribute is dynamically attached by registry | |||
| # when cls is registered in registry using task name | |||
| task_name = self.group_key | |||
| if task_name not in TASK_OUTPUTS: | |||
| logger.warning(f'task {task_name} output keys are missing') | |||
| return | |||
| output_keys = TASK_OUTPUTS[task_name] | |||
| missing_keys = [] | |||
| for k in output_keys: | |||
| if k not in input: | |||
| missing_keys.append(k) | |||
| if len(missing_keys) > 0: | |||
| raise ValueError(f'expected output keys are {output_keys}, ' | |||
| f'those {missing_keys} are missing') | |||
| def preprocess(self, inputs: Input) -> Dict[str, Any]: | |||
| """ Provide default implementation based on preprocess_cfg and user can reimplement it | |||
| """ | |||
| @@ -125,4 +143,14 @@ class Pipeline(ABC): | |||
| @abstractmethod | |||
| def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||
| """ If current pipeline support model reuse, common postprocess | |||
| code should be write here. | |||
| Args: | |||
| inputs: input data | |||
| Return: | |||
| dict of results: a dict containing outputs of model, each | |||
| output should have the standard output name. | |||
| """ | |||
| raise NotImplementedError('postprocess') | |||
| @@ -41,50 +41,29 @@ class SequenceClassificationPipeline(Pipeline): | |||
| second_sequence=None) | |||
| super().__init__(model=sc_model, preprocessor=preprocessor, **kwargs) | |||
| from easynlp.utils import io | |||
| self.label_path = os.path.join(sc_model.model_dir, | |||
| 'label_mapping.json') | |||
| with io.open(self.label_path) as f: | |||
| self.label_mapping = json.load(f) | |||
| self.label_id_to_name = { | |||
| idx: name | |||
| for name, idx in self.label_mapping.items() | |||
| } | |||
| assert hasattr(self.model, 'id2label'), \ | |||
| 'id2label map should be initalizaed in init function.' | |||
| def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, str]: | |||
| def postprocess(self, | |||
| inputs: Dict[str, Any], | |||
| topk: int = 5) -> Dict[str, str]: | |||
| """process the prediction results | |||
| Args: | |||
| inputs (Dict[str, Any]): _description_ | |||
| inputs (Dict[str, Any]): input data dict | |||
| topk (int): return topk classification result. | |||
| Returns: | |||
| Dict[str, str]: the prediction results | |||
| """ | |||
| # NxC np.ndarray | |||
| probs = inputs['probs'][0] | |||
| num_classes = probs.shape[0] | |||
| topk = min(topk, num_classes) | |||
| top_indices = np.argpartition(probs, -topk)[-topk:] | |||
| cls_ids = top_indices[np.argsort(probs[top_indices])] | |||
| probs = probs[cls_ids].tolist() | |||
| probs = inputs['probabilities'] | |||
| logits = inputs['logits'] | |||
| predictions = np.argsort(-probs, axis=-1) | |||
| preds = predictions[0] | |||
| b = 0 | |||
| new_result = list() | |||
| for pred in preds: | |||
| new_result.append({ | |||
| 'pred': self.label_id_to_name[pred], | |||
| 'prob': float(probs[b][pred]), | |||
| 'logit': float(logits[b][pred]) | |||
| }) | |||
| new_results = list() | |||
| new_results.append({ | |||
| 'id': | |||
| inputs['id'][b] if 'id' in inputs else str(uuid.uuid4()), | |||
| 'output': | |||
| new_result, | |||
| 'predictions': | |||
| new_result[0]['pred'], | |||
| 'probabilities': | |||
| ','.join([str(t) for t in inputs['probabilities'][b]]), | |||
| 'logits': | |||
| ','.join([str(t) for t in inputs['logits'][b]]) | |||
| }) | |||
| cls_names = [self.model.id2label[cid] for cid in cls_ids] | |||
| return new_results[0] | |||
| return {'scores': probs, 'labels': cls_names} | |||
| @@ -56,4 +56,4 @@ class TextGenerationPipeline(Pipeline): | |||
| '').split('[SEP]')[0].replace('[CLS]', | |||
| '').replace('[SEP]', | |||
| '').replace('[UNK]', '') | |||
| return {'pred_string': pred_string} | |||
| return {'text': pred_string} | |||
| @@ -0,0 +1,98 @@ | |||
| # Copyright (c) Alibaba, Inc. and its affiliates. | |||
| from modelscope.utils.constant import Tasks | |||
| TASK_OUTPUTS = { | |||
| # ============ vision tasks =================== | |||
| # image classification result for single sample | |||
| # { | |||
| # "labels": ["dog", "horse", "cow", "cat"], | |||
| # "scores": [0.9, 0.1, 0.05, 0.05] | |||
| # } | |||
| Tasks.image_classification: ['scores', 'labels'], | |||
| Tasks.image_tagging: ['scores', 'labels'], | |||
| # object detection result for single sample | |||
| # { | |||
| # "boxes": [ | |||
| # [x1, y1, x2, y2], | |||
| # [x1, y1, x2, y2], | |||
| # [x1, y1, x2, y2], | |||
| # ], | |||
| # "labels": ["dog", "horse", "cow", "cat"], | |||
| # "scores": [0.9, 0.1, 0.05, 0.05] | |||
| # } | |||
| Tasks.object_detection: ['scores', 'labels', 'boxes'], | |||
| # instance segmentation result for single sample | |||
| # { | |||
| # "masks": [ | |||
| # np.array in bgr channel order | |||
| # ], | |||
| # "labels": ["dog", "horse", "cow", "cat"], | |||
| # "scores": [0.9, 0.1, 0.05, 0.05] | |||
| # } | |||
| Tasks.image_segmentation: ['scores', 'labels', 'boxes'], | |||
| # image generation/editing/matting result for single sample | |||
| # { | |||
| # "output_png": np.array with shape(h, w, 4) | |||
| # for matting or (h, w, 3) for general purpose | |||
| # } | |||
| Tasks.image_editing: ['output_png'], | |||
| Tasks.image_matting: ['output_png'], | |||
| Tasks.image_generation: ['output_png'], | |||
| # pose estimation result for single sample | |||
| # { | |||
| # "poses": np.array with shape [num_pose, num_keypoint, 3], | |||
| # each keypoint is a array [x, y, score] | |||
| # "boxes": np.array with shape [num_pose, 4], each box is | |||
| # [x1, y1, x2, y2] | |||
| # } | |||
| Tasks.pose_estimation: ['poses', 'boxes'], | |||
| # ============ nlp tasks =================== | |||
| # text classification result for single sample | |||
| # { | |||
| # "labels": ["happy", "sad", "calm", "angry"], | |||
| # "scores": [0.9, 0.1, 0.05, 0.05] | |||
| # } | |||
| Tasks.text_classification: ['scores', 'labels'], | |||
| # text generation result for single sample | |||
| # { | |||
| # "text": "this is text generated by a model." | |||
| # } | |||
| Tasks.text_generation: ['text'], | |||
| # ============ audio tasks =================== | |||
| # ============ multi-modal tasks =================== | |||
| # image caption result for single sample | |||
| # { | |||
| # "caption": "this is an image caption text." | |||
| # } | |||
| Tasks.image_captioning: ['caption'], | |||
| # visual grounding result for single sample | |||
| # { | |||
| # "boxes": [ | |||
| # [x1, y1, x2, y2], | |||
| # [x1, y1, x2, y2], | |||
| # [x1, y1, x2, y2], | |||
| # ], | |||
| # "scores": [0.9, 0.1, 0.05, 0.05] | |||
| # } | |||
| Tasks.visual_grounding: ['boxes', 'scores'], | |||
| # text_to_image result for a single sample | |||
| # { | |||
| # "image": np.ndarray with shape [height, width, 3] | |||
| # } | |||
| Tasks.text_to_image_synthesis: ['image'] | |||
| } | |||
| @@ -51,7 +51,7 @@ class Tasks(object): | |||
| text_to_speech = 'text-to-speech' | |||
| speech_signal_process = 'speech-signal-process' | |||
| # multi-media | |||
| # multi-modal tasks | |||
| image_captioning = 'image-captioning' | |||
| visual_grounding = 'visual-grounding' | |||
| text_to_image_synthesis = 'text-to-image-synthesis' | |||
| @@ -69,6 +69,7 @@ class Registry(object): | |||
| f'{self._name}[{group_key}]') | |||
| self._modules[group_key][module_name] = module_cls | |||
| module_cls.group_key = group_key | |||
| if module_name in self._modules[default_group]: | |||
| if id(self._modules[default_group][module_name]) == id(module_cls): | |||
| @@ -35,9 +35,10 @@ class CustomPipelineTest(unittest.TestCase): | |||
| CustomPipeline1() | |||
| def test_custom(self): | |||
| dummy_task = 'dummy-task' | |||
| @PIPELINES.register_module( | |||
| group_key=Tasks.image_tagging, module_name='custom-image') | |||
| group_key=dummy_task, module_name='custom-image') | |||
| class CustomImagePipeline(Pipeline): | |||
| def __init__(self, | |||
| @@ -67,32 +68,29 @@ class CustomPipelineTest(unittest.TestCase): | |||
| outputs['filename'] = inputs['url'] | |||
| img = inputs['img'] | |||
| new_image = img.resize((img.width // 2, img.height // 2)) | |||
| outputs['resize_image'] = np.array(new_image) | |||
| outputs['dummy_result'] = 'dummy_result' | |||
| outputs['output_png'] = np.array(new_image) | |||
| return outputs | |||
| def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |||
| return inputs | |||
| self.assertTrue('custom-image' in PIPELINES.modules[default_group]) | |||
| add_default_pipeline_info(Tasks.image_tagging, 'custom-image') | |||
| add_default_pipeline_info(dummy_task, 'custom-image', overwrite=True) | |||
| pipe = pipeline(pipeline_name='custom-image') | |||
| pipe2 = pipeline(Tasks.image_tagging) | |||
| pipe2 = pipeline(dummy_task) | |||
| self.assertTrue(type(pipe) is type(pipe2)) | |||
| img_url = 'http://pai-vision-data-hz.oss-cn-zhangjiakou.' \ | |||
| 'aliyuncs.com/data/test/images/image1.jpg' | |||
| output = pipe(img_url) | |||
| self.assertEqual(output['filename'], img_url) | |||
| self.assertEqual(output['resize_image'].shape, (318, 512, 3)) | |||
| self.assertEqual(output['dummy_result'], 'dummy_result') | |||
| self.assertEqual(output['output_png'].shape, (318, 512, 3)) | |||
| outputs = pipe([img_url for i in range(4)]) | |||
| self.assertEqual(len(outputs), 4) | |||
| for out in outputs: | |||
| self.assertEqual(out['filename'], img_url) | |||
| self.assertEqual(out['resize_image'].shape, (318, 512, 3)) | |||
| self.assertEqual(out['dummy_result'], 'dummy_result') | |||
| self.assertEqual(out['output_png'].shape, (318, 512, 3)) | |||
| if __name__ == '__main__': | |||