Adding the new task of sentence_similarity, in which the model is the sofa version of structbert Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9016402 * sbert-sentence-similarity * [to #42322933] pip8 * merge with master for file dirs update * add test cases * pre-commit lint check * remove useless file * download models again~ * skip time consuming test case * update for pr reviews * merge with master * add test level * reset test level to env level * [to #42322933] init * [to #42322933] init * adding purge logic in test * merge with head * change test level * using sequence classification processor for similaritymaster
@@ -2,4 +2,4 @@ | |||
from .base import Model | |||
from .builder import MODELS, build_model | |||
from .nlp import BertForSequenceClassification | |||
from .nlp import BertForSequenceClassification, SbertForSentenceSimilarity |
@@ -1,2 +1,3 @@ | |||
from .sentence_similarity_model import * # noqa F403 | |||
from .sequence_classification_model import * # noqa F403 | |||
from .text_generation_model import * # noqa F403 |
@@ -0,0 +1,88 @@ | |||
import os | |||
from typing import Any, Dict | |||
import json | |||
import numpy as np | |||
import torch | |||
from sofa import SbertModel | |||
from sofa.models.sbert.modeling_sbert import SbertPreTrainedModel | |||
from torch import nn | |||
from modelscope.utils.constant import Tasks | |||
from ..base import Model, Tensor | |||
from ..builder import MODELS | |||
__all__ = ['SbertForSentenceSimilarity'] | |||
class SbertTextClassifier(SbertPreTrainedModel): | |||
def __init__(self, config): | |||
super().__init__(config) | |||
self.num_labels = config.num_labels | |||
self.config = config | |||
self.encoder = SbertModel(config, add_pooling_layer=True) | |||
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |||
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |||
def forward(self, input_ids=None, token_type_ids=None): | |||
outputs = self.encoder( | |||
input_ids, | |||
token_type_ids=token_type_ids, | |||
return_dict=None, | |||
) | |||
pooled_output = outputs[1] | |||
pooled_output = self.dropout(pooled_output) | |||
logits = self.classifier(pooled_output) | |||
return logits | |||
@MODELS.register_module( | |||
Tasks.sentence_similarity, | |||
module_name=r'sbert-base-chinese-sentence-similarity') | |||
class SbertForSentenceSimilarity(Model): | |||
def __init__(self, model_dir: str, *args, **kwargs): | |||
"""initialize the sentence similarity model from the `model_dir` path. | |||
Args: | |||
model_dir (str): the model path. | |||
model_cls (Optional[Any], optional): model loader, if None, use the | |||
default loader to load model weights, by default None. | |||
""" | |||
super().__init__(model_dir, *args, **kwargs) | |||
self.model_dir = model_dir | |||
self.model = SbertTextClassifier.from_pretrained( | |||
model_dir, num_labels=2) | |||
self.model.eval() | |||
self.label_path = os.path.join(self.model_dir, 'label_mapping.json') | |||
with open(self.label_path) as f: | |||
self.label_mapping = json.load(f) | |||
self.id2label = {idx: name for name, idx in self.label_mapping.items()} | |||
def forward(self, input: Dict[str, Any]) -> Dict[str, np.ndarray]: | |||
"""return the result by the model | |||
Args: | |||
input (Dict[str, Any]): the preprocessed data | |||
Returns: | |||
Dict[str, np.ndarray]: results | |||
Example: | |||
{ | |||
'predictions': array([1]), # lable 0-negative 1-positive | |||
'probabilities': array([[0.11491239, 0.8850876 ]], dtype=float32), | |||
'logits': array([[-0.53860897, 1.5029076 ]], dtype=float32) # true value | |||
} | |||
""" | |||
input_ids = torch.tensor(input['input_ids'], dtype=torch.long) | |||
token_type_ids = torch.tensor( | |||
input['token_type_ids'], dtype=torch.long) | |||
with torch.no_grad(): | |||
logits = self.model(input_ids, token_type_ids) | |||
probs = logits.softmax(-1).numpy() | |||
pred = logits.argmax(-1).numpy() | |||
logits = logits.numpy() | |||
res = {'predictions': pred, 'probabilities': probs, 'logits': logits} | |||
return res |
@@ -15,7 +15,7 @@ from modelscope.utils.logger import get_logger | |||
from .util import is_model_name | |||
Tensor = Union['torch.Tensor', 'tf.Tensor'] | |||
Input = Union[str, PyDataset, 'PIL.Image.Image', 'numpy.ndarray'] | |||
Input = Union[str, tuple, PyDataset, 'PIL.Image.Image', 'numpy.ndarray'] | |||
InputModel = Union[str, Model] | |||
output_keys = [ | |||
@@ -13,6 +13,9 @@ PIPELINES = Registry('pipelines') | |||
DEFAULT_MODEL_FOR_PIPELINE = { | |||
# TaskName: (pipeline_module_name, model_repo) | |||
Tasks.sentence_similarity: | |||
('sbert-base-chinese-sentence-similarity', | |||
'damo/nlp_structbert_sentence-similarity_chinese-base'), | |||
Tasks.image_matting: ('image-matting', 'damo/cv_unet_image-matting_damo'), | |||
Tasks.text_classification: | |||
('bert-sentiment-analysis', 'damo/bert-base-sst2'), | |||
@@ -1,2 +1,3 @@ | |||
from .sentence_similarity_pipeline import * # noqa F403 | |||
from .sequence_classification_pipeline import * # noqa F403 | |||
from .text_generation_pipeline import * # noqa F403 |
@@ -0,0 +1,65 @@ | |||
import os | |||
import uuid | |||
from typing import Any, Dict, Union | |||
import json | |||
import numpy as np | |||
from modelscope.models.nlp import SbertForSentenceSimilarity | |||
from modelscope.preprocessors import SequenceClassificationPreprocessor | |||
from modelscope.utils.constant import Tasks | |||
from ...models import Model | |||
from ..base import Input, Pipeline | |||
from ..builder import PIPELINES | |||
__all__ = ['SentenceSimilarityPipeline'] | |||
@PIPELINES.register_module( | |||
Tasks.sentence_similarity, | |||
module_name=r'sbert-base-chinese-sentence-similarity') | |||
class SentenceSimilarityPipeline(Pipeline): | |||
def __init__(self, | |||
model: Union[SbertForSentenceSimilarity, str], | |||
preprocessor: SequenceClassificationPreprocessor = None, | |||
**kwargs): | |||
"""use `model` and `preprocessor` to create a nlp sentence similarity pipeline for prediction | |||
Args: | |||
model (SbertForSentenceSimilarity): a model instance | |||
preprocessor (SequenceClassificationPreprocessor): a preprocessor instance | |||
""" | |||
assert isinstance(model, str) or isinstance(model, SbertForSentenceSimilarity), \ | |||
'model must be a single str or SbertForSentenceSimilarity' | |||
sc_model = model if isinstance( | |||
model, | |||
SbertForSentenceSimilarity) else Model.from_pretrained(model) | |||
if preprocessor is None: | |||
preprocessor = SequenceClassificationPreprocessor( | |||
sc_model.model_dir, | |||
first_sequence='first_sequence', | |||
second_sequence='second_sequence') | |||
super().__init__(model=sc_model, preprocessor=preprocessor, **kwargs) | |||
assert hasattr(self.model, 'id2label'), \ | |||
'id2label map should be initalizaed in init function.' | |||
def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, str]: | |||
"""process the prediction results | |||
Args: | |||
inputs (Dict[str, Any]): _description_ | |||
Returns: | |||
Dict[str, str]: the prediction results | |||
""" | |||
probs = inputs['probabilities'][0] | |||
num_classes = probs.shape[0] | |||
top_indices = np.argpartition(probs, -num_classes)[-num_classes:] | |||
cls_ids = top_indices[np.argsort(-probs[top_indices], axis=-1)] | |||
probs = probs[cls_ids].tolist() | |||
cls_names = [self.model.id2label[cid] for cid in cls_ids] | |||
b = 0 | |||
return {'scores': probs[b], 'labels': cls_names[b]} |
@@ -5,4 +5,3 @@ from .builder import PREPROCESSORS, build_preprocessor | |||
from .common import Compose | |||
from .image import LoadImage, load_image | |||
from .nlp import * # noqa F403 | |||
from .nlp import TextGenerationPreprocessor |
@@ -10,7 +10,10 @@ from modelscope.utils.type_assert import type_assert | |||
from .base import Preprocessor | |||
from .builder import PREPROCESSORS | |||
__all__ = ['Tokenize', 'SequenceClassificationPreprocessor'] | |||
__all__ = [ | |||
'Tokenize', 'SequenceClassificationPreprocessor', | |||
'TextGenerationPreprocessor' | |||
] | |||
@PREPROCESSORS.register_module(Fields.nlp) | |||
@@ -28,7 +31,7 @@ class Tokenize(Preprocessor): | |||
@PREPROCESSORS.register_module( | |||
Fields.nlp, module_name=r'bert-sentiment-analysis') | |||
Fields.nlp, module_name=r'bert-sequence-classification') | |||
class SequenceClassificationPreprocessor(Preprocessor): | |||
def __init__(self, model_dir: str, *args, **kwargs): | |||
@@ -48,21 +51,42 @@ class SequenceClassificationPreprocessor(Preprocessor): | |||
self.sequence_length = kwargs.pop('sequence_length', 128) | |||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_dir) | |||
print(f'this is the tokenzier {self.tokenizer}') | |||
@type_assert(object, str) | |||
def __call__(self, data: str) -> Dict[str, Any]: | |||
@type_assert(object, (str, tuple)) | |||
def __call__(self, data: Union[str, tuple]) -> Dict[str, Any]: | |||
"""process the raw input data | |||
Args: | |||
data (str): a sentence | |||
Example: | |||
'you are so handsome.' | |||
data (str or tuple): | |||
sentence1 (str): a sentence | |||
Example: | |||
'you are so handsome.' | |||
or | |||
(sentence1, sentence2) | |||
sentence1 (str): a sentence | |||
Example: | |||
'you are so handsome.' | |||
sentence2 (str): a sentence | |||
Example: | |||
'you are so beautiful.' | |||
Returns: | |||
Dict[str, Any]: the preprocessed data | |||
""" | |||
new_data = {self.first_sequence: data} | |||
if not isinstance(data, tuple): | |||
data = ( | |||
data, | |||
None, | |||
) | |||
sentence1, sentence2 = data | |||
new_data = { | |||
self.first_sequence: sentence1, | |||
self.second_sequence: sentence2 | |||
} | |||
# preprocess the data for the model input | |||
rst = { | |||
@@ -31,6 +31,7 @@ class Tasks(object): | |||
# nlp tasks | |||
sentiment_analysis = 'sentiment-analysis' | |||
sentence_similarity = 'sentence-similarity' | |||
text_classification = 'text-classification' | |||
relation_extraction = 'relation-extraction' | |||
zero_shot = 'zero-shot' | |||
@@ -0,0 +1,67 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
import shutil | |||
import unittest | |||
from maas_hub.snapshot_download import snapshot_download | |||
from modelscope.models import Model | |||
from modelscope.models.nlp import SbertForSentenceSimilarity | |||
from modelscope.pipelines import SentenceSimilarityPipeline, pipeline | |||
from modelscope.preprocessors import SequenceClassificationPreprocessor | |||
from modelscope.utils.constant import Tasks | |||
from modelscope.utils.hub import get_model_cache_dir | |||
from modelscope.utils.test_utils import test_level | |||
class SentenceSimilarityTest(unittest.TestCase): | |||
model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base' | |||
sentence1 = '今天气温比昨天高么?' | |||
sentence2 = '今天湿度比昨天高么?' | |||
def setUp(self) -> None: | |||
# switch to False if downloading everytime is not desired | |||
purge_cache = True | |||
if purge_cache: | |||
shutil.rmtree( | |||
get_model_cache_dir(self.model_id), ignore_errors=True) | |||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level') | |||
def test_run(self): | |||
cache_path = snapshot_download(self.model_id) | |||
tokenizer = SequenceClassificationPreprocessor(cache_path) | |||
model = SbertForSentenceSimilarity(cache_path, tokenizer=tokenizer) | |||
pipeline1 = SentenceSimilarityPipeline(model, preprocessor=tokenizer) | |||
pipeline2 = pipeline( | |||
Tasks.sentence_similarity, model=model, preprocessor=tokenizer) | |||
print('test1') | |||
print(f'sentence1: {self.sentence1}\nsentence2: {self.sentence2}\n' | |||
f'pipeline1:{pipeline1(input=(self.sentence1, self.sentence2))}') | |||
print() | |||
print( | |||
f'sentence1: {self.sentence1}\nsentence2: {self.sentence2}\n' | |||
f'pipeline1: {pipeline2(input=(self.sentence1, self.sentence2))}') | |||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level') | |||
def test_run_with_model_from_modelhub(self): | |||
model = Model.from_pretrained(self.model_id) | |||
tokenizer = SequenceClassificationPreprocessor(model.model_dir) | |||
pipeline_ins = pipeline( | |||
task=Tasks.sentence_similarity, | |||
model=model, | |||
preprocessor=tokenizer) | |||
print(pipeline_ins(input=(self.sentence1, self.sentence2))) | |||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level') | |||
def test_run_with_model_name(self): | |||
pipeline_ins = pipeline( | |||
task=Tasks.sentence_similarity, model=self.model_id) | |||
print(pipeline_ins(input=(self.sentence1, self.sentence2))) | |||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level') | |||
def test_run_with_default_model(self): | |||
pipeline_ins = pipeline(task=Tasks.sentence_similarity) | |||
print(pipeline_ins(input=(self.sentence1, self.sentence2))) | |||
if __name__ == '__main__': | |||
unittest.main() |