plug finetune :已在du reader- robust数据集上回归至最佳结果 Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/10916382master^2
@@ -338,6 +338,7 @@ class Trainers(object): | |||
nlp_veco_trainer = 'nlp-veco-trainer' | |||
nlp_text_ranking_trainer = 'nlp-text-ranking-trainer' | |||
text_generation_trainer = 'text-generation-trainer' | |||
nlp_plug_trainer = 'nlp-plug-trainer' | |||
# audio trainers | |||
speech_frcrn_ans_cirm_16k = 'speech_frcrn_ans_cirm_16k' | |||
@@ -500,6 +501,9 @@ class Hooks(object): | |||
# CLIP logit_scale clamp | |||
ClipClampLogitScaleHook = 'ClipClampLogitScaleHook' | |||
# train | |||
DeepspeedHook = 'DeepspeedHook' | |||
class LR_Schedulers(object): | |||
"""learning rate scheduler is defined here | |||
@@ -0,0 +1,88 @@ | |||
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
"""PyTorch DataLoader for TFRecords""" | |||
import math | |||
import torch | |||
from torch.optim.lr_scheduler import _LRScheduler | |||
class AnnealingLR(_LRScheduler): | |||
"""Anneals the learning rate from start to zero along a cosine curve.""" | |||
DECAY_STYLES = ['linear', 'cosine', 'exponential', 'constant', 'None'] | |||
def __init__(self, | |||
optimizer, | |||
start_lr, | |||
warmup_iter, | |||
num_iters, | |||
decay_style=None, | |||
last_iter=-1): | |||
self.optimizer = optimizer | |||
self.start_lr = start_lr | |||
self.warmup_iter = warmup_iter | |||
self._step_count = last_iter + 1 | |||
self.end_iter = num_iters | |||
self.decay_style = decay_style.lower() if isinstance(decay_style, | |||
str) else None | |||
self.step(self._step_count) | |||
if torch.distributed.get_rank() == 0: | |||
print('learning rate decaying', decay_style) | |||
def get_lr(self): | |||
# https://openreview.net/pdf?id=BJYwwY9ll pg. 4 | |||
if self.warmup_iter > 0 and self._step_count <= self.warmup_iter: | |||
return float(self.start_lr) * self._step_count / self.warmup_iter | |||
else: | |||
if self.decay_style == self.DECAY_STYLES[0]: | |||
return self.start_lr * (( | |||
self.end_iter - # noqa W504 | |||
(self._step_count - self.warmup_iter)) / self.end_iter) | |||
elif self.decay_style == self.DECAY_STYLES[1]: | |||
return self.start_lr / 2.0 * ( | |||
math.cos(math.pi * (self._step_count - self.warmup_iter) | |||
/ self.end_iter) + 1) | |||
elif self.decay_style == self.DECAY_STYLES[2]: | |||
# TODO: implement exponential decay | |||
return self.start_lr | |||
else: | |||
return self.start_lr | |||
def step(self, step_num=None): | |||
if step_num is None: | |||
step_num = self._step_count + 1 | |||
self._step_count = step_num | |||
new_lr = self.get_lr() | |||
for group in self.optimizer.param_groups: | |||
group['lr'] = new_lr | |||
def state_dict(self): | |||
sd = { | |||
'start_lr': self.start_lr, | |||
'warmup_iter': self.warmup_iter, | |||
'_step_count': self._step_count, | |||
'decay_style': self.decay_style, | |||
'end_iter': self.end_iter | |||
} | |||
return sd | |||
def load_state_dict(self, sd): | |||
self.start_lr = sd['start_lr'] | |||
self.warmup_iter = sd['warmup_iter'] | |||
self._step_count = sd['_step_count'] | |||
self.end_iter = sd['end_iter'] | |||
self.decay_style = sd['decay_style'] | |||
self.step(self._step_count) |
@@ -1009,6 +1009,118 @@ class PlugModel(torch.nn.Module): | |||
sequence_output=sequence_output, | |||
parallel_output=parallel_output) | |||
@staticmethod | |||
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): | |||
# This function has been mostly taken from huggingface conversational ai code at | |||
# https://medium.com/huggingface/how-to-build-a-state-of-the-art- | |||
# conversational-ai-with-transfer-learning-2d818ac26313 | |||
if top_k > 0: | |||
# Remove all tokens with a probability less than the last token of the top-k | |||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, | |||
None] | |||
logits[indices_to_remove] = filter_value | |||
if top_p > 0.0: | |||
# convert to 1D | |||
logits = logits.view(logits.size()[1]).contiguous() | |||
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |||
cumulative_probs = torch.cumsum( | |||
F.softmax(sorted_logits, dim=-1), dim=-1) | |||
# Remove tokens with cumulative probability above the threshold | |||
sorted_indices_to_remove = cumulative_probs > top_p | |||
# Shift the indices to the right to keep also the first token above the threshold | |||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ | |||
..., :-1].clone() | |||
sorted_indices_to_remove[..., 0] = 0 | |||
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |||
logits[indices_to_remove] = filter_value | |||
# going back to 2D | |||
logits = logits.view(1, -1).contiguous() | |||
return logits | |||
def generate(self, input, out_length=128, model_cfg=None, *kwargs): | |||
device = torch.cuda.current_device() | |||
batch_size = input['input_ids'].shape[0] | |||
tokens = input['input_ids'].view(1, -1).contiguous().to(device) | |||
dec_input_ids = input['dec_input_ids'].to(device) | |||
attention_mask = input['attention_mask'].to(device) | |||
self.model.eval() | |||
with torch.no_grad(): | |||
# Only supports batch_size=1 | |||
all_generate_tokens = [] | |||
generate_tokens = [] | |||
counter = 0 | |||
sequence_output = None | |||
vocab_size = self.config.original_vocab_size | |||
sep_token_idx = 102 # index of [SEP] token in BertTokenizer | |||
while counter < out_length: | |||
if counter % 128 == 0 and counter != 0: | |||
# Sliding window | |||
generate_tokens.append(sep_token_idx) | |||
start = (tokens == sep_token_idx).nonzero( | |||
as_tuple=True)[-1] | |||
if start + len(generate_tokens) >= 512: | |||
tokens = torch.cat([ | |||
tokens[:start], | |||
torch.cuda.LongTensor(generate_tokens) | |||
], -1)[-512:] | |||
else: | |||
tokens[0][start:start + len(generate_tokens | |||
)] = torch.cuda.LongTensor( | |||
generate_tokens) | |||
attention_mask = (tokens != 0) | |||
dec_input_ids = input['dec_input_ids'].to(device) | |||
generate_tokens = [] | |||
sequence_output = None | |||
position_ids = torch.full([batch_size, 1], | |||
len(generate_tokens), | |||
dtype=torch.long, | |||
device=device) | |||
_, logits, sequence_output = self.model( | |||
tokens, | |||
None, | |||
attention_mask, | |||
dec_input_ids, | |||
attention_mask, | |||
position_ids, | |||
is_infer=True, | |||
sequence_output=sequence_output, | |||
parallel_output=False) | |||
logits = logits[:, -1, :] | |||
logits = logits / model_cfg['temperature'] | |||
logits = self.top_k_logits( | |||
logits, top_k=model_cfg['top_k'], top_p=model_cfg['top_p']) | |||
log_probs = F.softmax(logits, dim=-1) | |||
prev = torch.argmax(log_probs, 1).unsqueeze(1) | |||
# prev = torch.multinomial(log_probs, num_samples=1) | |||
prev_token = prev[0].item() | |||
if prev_token >= vocab_size: | |||
prev_token = 100 | |||
prev[0] = 100 | |||
if prev_token == 102 and len(all_generate_tokens) > int( | |||
max(1, out_length) * 0.8): | |||
break | |||
if prev_token == 102: | |||
counter += 1 | |||
continue | |||
dec_input_ids = torch.cat([dec_input_ids, prev], dim=1) | |||
generate_tokens.append(prev_token) | |||
all_generate_tokens.append(prev_token) | |||
counter += 1 | |||
generate_context = [] | |||
for token in all_generate_tokens: | |||
if generate_context and generate_context[ | |||
-1] == 100 and token == 100: | |||
continue | |||
else: | |||
generate_context.append(token) | |||
return {'generate_context': generate_context} | |||
def state_dict(self, destination=None, prefix='', keep_vars=False): | |||
return self.model.state_dict( | |||
destination=destination, prefix=prefix, keep_vars=keep_vars) | |||
@@ -225,7 +225,7 @@ class PlugNLGConfig(PlugNLUConfig): | |||
fp32_layernorm=True, | |||
fp32_embedding=False, | |||
fp32_tokentypes=False, | |||
layernorm_epsilon=1e-5, | |||
layernorm_epsilon=1e-12, | |||
attn_separate=False, | |||
**kwargs): | |||
super().__init__(layer_norm_eps=layernorm_epsilon, **kwargs) | |||
@@ -75,7 +75,7 @@ class DistributedPlug(TorchModel): | |||
seed = 42 if 'seed' not in kwargs else kwargs['seed'] | |||
set_random_seed_mpu(seed) | |||
self.iteration = 0 | |||
self.dist_model = self.initialize_model(path_load_tag='model') | |||
self.model = self.initialize_model(path_load_tag='model') | |||
def initialize_model(self, path_load_tag='model'): | |||
"""Build the model.""" | |||
@@ -120,115 +120,28 @@ class DistributedPlug(TorchModel): | |||
model.module.model.load_state_dict(load_model, strict=False) | |||
return model | |||
@staticmethod | |||
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): | |||
# This function has been mostly taken from huggingface conversational ai code at | |||
# https://medium.com/huggingface/how-to-build-a-state-of-the-art- | |||
# conversational-ai-with-transfer-learning-2d818ac26313 | |||
if top_k > 0: | |||
# Remove all tokens with a probability less than the last token of the top-k | |||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, | |||
None] | |||
logits[indices_to_remove] = filter_value | |||
if top_p > 0.0: | |||
# convert to 1D | |||
logits = logits.view(logits.size()[1]).contiguous() | |||
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |||
cumulative_probs = torch.cumsum( | |||
F.softmax(sorted_logits, dim=-1), dim=-1) | |||
# Remove tokens with cumulative probability above the threshold | |||
sorted_indices_to_remove = cumulative_probs > top_p | |||
# Shift the indices to the right to keep also the first token above the threshold | |||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ | |||
..., :-1].clone() | |||
sorted_indices_to_remove[..., 0] = 0 | |||
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |||
logits[indices_to_remove] = filter_value | |||
# going back to 2D | |||
logits = logits.view(1, -1).contiguous() | |||
return logits | |||
def forward(self, | |||
input_tokens, | |||
token_type_ids=None, | |||
attention_mask=None, | |||
target_tokens=None, | |||
position_ids=None, | |||
decode_attention_mask=None, | |||
checkpoint_activations=False, | |||
is_infer=False, | |||
sequence_output=None, | |||
parallel_output=True): | |||
return self.model( | |||
input_tokens, | |||
token_type_ids, | |||
attention_mask, | |||
target_tokens, | |||
position_ids, | |||
decode_attention_mask, | |||
checkpoint_activations=checkpoint_activations, | |||
is_infer=is_infer, | |||
sequence_output=sequence_output, | |||
parallel_output=parallel_output) | |||
def generate(self, input: Dict[str, Tensor], out_length=128, *kwargs): | |||
device = torch.cuda.current_device() | |||
batch_size = input['input_ids'].shape[0] | |||
tokens = input['input_ids'].view(1, -1).contiguous().to(device) | |||
dec_input_ids = input['dec_input_ids'].to(device) | |||
attention_mask = input['attention_mask'].to(device) | |||
self.dist_model.eval() | |||
with torch.no_grad(): | |||
# Only supports batch_size=1 | |||
all_generate_tokens = [] | |||
generate_tokens = [] | |||
counter = 0 | |||
sequence_output = None | |||
vocab_size = self.config.original_vocab_size | |||
sep_token_idx = 102 # index of [SEP] token in BertTokenizer | |||
while counter < out_length: | |||
if counter % 128 == 0 and counter != 0: | |||
# Sliding window | |||
generate_tokens.append(sep_token_idx) | |||
start = (tokens == sep_token_idx).nonzero( | |||
as_tuple=True)[-1] | |||
if start + len(generate_tokens) >= 512: | |||
tokens = torch.cat([ | |||
tokens[:start], | |||
torch.cuda.LongTensor(generate_tokens) | |||
], -1)[-512:] | |||
else: | |||
tokens[0][start:start + len(generate_tokens | |||
)] = torch.cuda.LongTensor( | |||
generate_tokens) | |||
attention_mask = (tokens != 0) | |||
dec_input_ids = input['dec_input_ids'].to(device) | |||
generate_tokens = [] | |||
sequence_output = None | |||
position_ids = torch.full([batch_size, 1], | |||
len(generate_tokens), | |||
dtype=torch.long, | |||
device=device) | |||
_, logits, sequence_output = self.dist_model( | |||
tokens, | |||
None, | |||
attention_mask, | |||
dec_input_ids, | |||
attention_mask, | |||
position_ids, | |||
is_infer=True, | |||
sequence_output=sequence_output, | |||
parallel_output=False) | |||
logits = logits[:, -1, :] | |||
logits = logits / self.model_cfg['temperature'] | |||
logits = self.top_k_logits( | |||
logits, | |||
top_k=self.model_cfg['top_k'], | |||
top_p=self.model_cfg['top_p']) | |||
log_probs = F.softmax(logits, dim=-1) | |||
prev = torch.multinomial(log_probs, num_samples=1) | |||
prev_token = prev[0].item() | |||
if prev_token >= vocab_size: | |||
prev_token = 100 | |||
prev[0] = 100 | |||
if prev_token == 102 and len(all_generate_tokens) > int( | |||
max(1, out_length) * 0.8): | |||
break | |||
if prev_token == 102: | |||
counter += 1 | |||
continue | |||
dec_input_ids = torch.cat([dec_input_ids, prev], dim=1) | |||
generate_tokens.append(prev_token) | |||
all_generate_tokens.append(prev_token) | |||
counter += 1 | |||
generate_context = [] | |||
for token in all_generate_tokens: | |||
if generate_context and generate_context[ | |||
-1] == 100 and token == 100: | |||
continue | |||
else: | |||
generate_context.append(token) | |||
return {'generate_context': generate_context} | |||
return self.model.generate(input, out_length, self.model_cfg, *kwargs) |
@@ -0,0 +1,225 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
import torch | |||
class TextGenerator(object): | |||
def __init__(self, | |||
model, | |||
vocab, | |||
symbols, | |||
global_scorer=None, | |||
logger=None, | |||
dump_beam=''): | |||
self.alpha = 0.6 | |||
self.logger = logger | |||
self.cuda = (torch.cuda.device_count() > 0) | |||
self.model = model | |||
# TODO generator | |||
self.vocab = vocab | |||
self.symbols = symbols | |||
self.start_token = 101 # ['[PAD]'] | |||
self.end_token = 102 # '[PAD]'] | |||
self.global_scorer = global_scorer | |||
self.beam_size = 5 | |||
self.min_length = 5 | |||
self.max_length = 384 | |||
self.dump_beam = dump_beam | |||
# for debugging | |||
self.beam_trace = self.dump_beam != '' | |||
self.beam_accum = None | |||
if self.beam_trace: | |||
self.beam_accum = { | |||
'predicted_ids': [], | |||
'beam_parent_ids': [], | |||
'scores': [], | |||
'log_probs': [] | |||
} | |||
def _build_target_tokens(self, pred): | |||
tokens = [] | |||
for tok in pred: | |||
tok = int(tok) | |||
tokens.append(tok) | |||
if tokens[-1] == self.end_token: | |||
tokens = tokens[:-1] | |||
break | |||
tokens = [t for t in tokens if t < len(self.vocab)] | |||
tokens = self.vocab.DecodeIds(tokens).split(' ') | |||
return tokens | |||
def tile(self, x, count, dim=0): | |||
""" | |||
Tiles x on dimension dim count times. | |||
""" | |||
perm = list(range(len(x.size()))) | |||
if dim != 0: | |||
perm[0], perm[dim] = perm[dim], perm[0] | |||
x = x.permute(perm).contiguous() | |||
out_size = list(x.size()) | |||
out_size[0] *= count | |||
batch = x.size(0) | |||
x = x.view(batch, -1) \ | |||
.transpose(0, 1) \ | |||
.repeat(count, 1) \ | |||
.transpose(0, 1) \ | |||
.contiguous() \ | |||
.view(*out_size) | |||
if dim != 0: | |||
x = x.permute(perm).contiguous() | |||
return x | |||
def translate_batch(self, encoder_inputs, fast=False): | |||
with torch.no_grad(): | |||
return self._fast_translate_batch( | |||
encoder_inputs, self.max_length, min_length=self.min_length) | |||
def _fast_translate_batch(self, encoder_inputs, max_length, min_length=0): | |||
assert not self.dump_beam | |||
beam_size = self.beam_size | |||
tokens, types, padding_mask = encoder_inputs | |||
batch_size = tokens.size(0) | |||
device = tokens.device | |||
tmp_alive_seq = torch.full([batch_size, 1], | |||
self.start_token, | |||
dtype=torch.long, | |||
device=device) | |||
prediction_scores, dec_feat_seq, sequence_output = self.model( | |||
tokens, | |||
types, | |||
padding_mask, | |||
tmp_alive_seq, | |||
None, | |||
None, | |||
checkpoint_activations=False, | |||
is_infer=True, | |||
parallel_output=False, | |||
sequence_output=None) | |||
src_features = sequence_output | |||
src_features = self.tile(src_features, beam_size, dim=0) | |||
attention_mask = self.tile(padding_mask, beam_size, dim=0) | |||
batch_offset = torch.arange( | |||
batch_size, dtype=torch.long, device=device) | |||
beam_offset = torch.arange( | |||
0, | |||
batch_size * beam_size, | |||
step=beam_size, | |||
dtype=torch.long, | |||
device=device) | |||
alive_seq = torch.full([batch_size * beam_size, 1], | |||
self.start_token, | |||
dtype=torch.long, | |||
device=device) | |||
# Give full probability to the first beam on the first step. | |||
topk_log_probs = ( | |||
torch.tensor( | |||
[0.0] + [float('-inf')] * (beam_size - 1), | |||
device=device).repeat(batch_size)) | |||
# Structure that holds finished hypotheses. | |||
hypotheses = [[] for _ in range(batch_size)] # noqa: F812 | |||
results = {} | |||
results['predictions'] = [[] for _ in range(batch_size)] # noqa: F812 | |||
results['scores'] = [[] for _ in range(batch_size)] # noqa: F812 | |||
results['gold_score'] = [0] * batch_size | |||
results['batch'] = [] | |||
dec_attn_mask = None | |||
dec_position_ids = None | |||
for step in range(max_length): | |||
prediction_scores, dec_feat_seq, _ = self.model( | |||
tokens, | |||
types, | |||
attention_mask, | |||
alive_seq, | |||
dec_position_ids, | |||
dec_attn_mask, | |||
checkpoint_activations=False, | |||
is_infer=True, | |||
parallel_output=False, | |||
sequence_output=src_features) | |||
dec_feat_seq = dec_feat_seq[:, -1, :] | |||
vocab_size = dec_feat_seq.size(-1) | |||
log_probs = torch.log( | |||
torch.softmax(dec_feat_seq.view(-1, vocab_size), dim=-1)) | |||
if step < min_length: | |||
log_probs[:, self.end_token] = -1e20 | |||
log_probs += topk_log_probs.view(-1).unsqueeze(1) | |||
alpha = self.alpha # global_scorer.alpha | |||
length_penalty = ((5.0 + (step + 1)) / 6.0)**alpha | |||
curr_scores = log_probs / length_penalty | |||
curr_scores = curr_scores.reshape(-1, beam_size * vocab_size) | |||
topk_scores, topk_ids = curr_scores.topk(beam_size, dim=-1) | |||
topk_log_probs = topk_scores * length_penalty | |||
# Resolve beam origin and true word ids. | |||
topk_beam_index = topk_ids.div(vocab_size, rounding_mode='trunc') | |||
topk_ids = topk_ids.fmod(vocab_size) | |||
# Map beam_index to batch_index in the flat representation. | |||
batch_index = ( | |||
topk_beam_index | |||
+ beam_offset[:topk_beam_index.size(0)].unsqueeze(1)) | |||
select_indices = batch_index.view(-1) | |||
# Append last prediction. | |||
alive_seq = torch.cat([ | |||
alive_seq.index_select(0, select_indices), | |||
topk_ids.view(-1, 1) | |||
], -1) | |||
is_finished = topk_ids.eq(self.end_token) | |||
if step + 1 == max_length: | |||
is_finished.fill_(1) # self.end_token) | |||
# End condition is top beam is finished. | |||
end_condition = is_finished[:, 0].eq(1) # self.end_token) | |||
# Save finished hypotheses. | |||
if is_finished.any(): | |||
predictions = alive_seq.view(-1, beam_size, alive_seq.size(-1)) | |||
for i in range(is_finished.size(0)): | |||
b = batch_offset[i] | |||
if end_condition[i]: | |||
is_finished[i].fill_(1) # self.end_token) | |||
finished_hyp = is_finished[i].nonzero().view(-1) | |||
# Store finished hypotheses for this batch. | |||
for j in finished_hyp: | |||
hypotheses[b].append( | |||
(topk_scores[i, j], predictions[i, j, 1:])) | |||
# If the batch reached the end, save the n_best hypotheses. | |||
if end_condition[i]: | |||
best_hyp = sorted( | |||
hypotheses[b], key=lambda x: x[0], reverse=True) | |||
score, pred = best_hyp[0] | |||
results['scores'][b].append(score) | |||
results['predictions'][b].append(pred) | |||
non_finished = end_condition.eq(0).nonzero().view(-1) | |||
# If all sentences are translated, no need to go further. | |||
if len(non_finished) == 0: | |||
break | |||
# Remove finished batches for the next step. | |||
topk_log_probs = topk_log_probs.index_select(0, non_finished) | |||
batch_index = batch_index.index_select(0, non_finished) | |||
batch_offset = batch_offset.index_select(0, non_finished) | |||
alive_seq = predictions.index_select(0, non_finished) \ | |||
.view(-1, alive_seq.size(-1)) | |||
# Reorder states. | |||
select_indices = batch_index.view(-1) | |||
src_features = src_features.index_select(0, select_indices) | |||
attention_mask = attention_mask.index_select(0, select_indices) | |||
return results |
@@ -122,6 +122,8 @@ class TextGenerationTransformersPreprocessor(TextGenerationPreprocessorBase): | |||
kwargs['return_token_type_ids'] = kwargs.get('return_token_type_ids', | |||
False) | |||
kwargs['max_length'] = sequence_length | |||
self.src_length = kwargs['max_length'] | |||
self.tgt_length = kwargs.pop('target_max_length', kwargs['max_length']) | |||
model_type = None | |||
if model_dir is not None: | |||
model_type = get_model_type(model_dir) | |||
@@ -154,10 +156,14 @@ class TextGenerationTransformersPreprocessor(TextGenerationPreprocessorBase): | |||
'return_tensors'] = 'pt' if self.mode == ModeKeys.INFERENCE else None | |||
output = self.nlp_tokenizer(sequence1, **kwargs) | |||
if self.mode != ModeKeys.INFERENCE: | |||
if sequence2 is not None: | |||
self.nlp_tokenizer.tokenize_kwargs[ | |||
'max_length'] = self.tgt_length | |||
labels = self.nlp_tokenizer(sequence2)['input_ids'] | |||
self.nlp_tokenizer.tokenize_kwargs[ | |||
'max_length'] = self.src_length | |||
src_input_ids = output['input_ids'] | |||
src_attention_mask = output['attention_mask'] | |||
else: | |||
@@ -25,7 +25,7 @@ else: | |||
'hook': ['Hook'], | |||
'iter_timer_hook': ['IterTimerHook'], | |||
'logger': ['TensorboardHook', 'TextLoggerHook'], | |||
'lr_scheduler_hook': ['LrSchedulerHook'], | |||
'lr_scheduler_hook': ['LrSchedulerHook', 'NoneLrSchedulerHook'], | |||
'optimizer_hook': [ | |||
'ApexAMPOptimizerHook', 'NoneOptimizerHook', 'OptimizerHook', | |||
'TorchAMPOptimizerHook' | |||
@@ -104,7 +104,8 @@ class CheckpointHook(Hook): | |||
return | |||
if self._should_save(trainer): | |||
if is_master(): | |||
if is_master() or trainer.cfg.model.get('model_parallel_size', | |||
1) != 1: | |||
self.logger.info( | |||
f'Saving checkpoint at {trainer.epoch + 1} epoch') | |||
self._save_checkpoint(trainer) | |||
@@ -260,7 +261,8 @@ class CheckpointHook(Hook): | |||
return | |||
if self._should_save(trainer): | |||
if is_master(): | |||
if is_master() or trainer.cfg.model.get('model_parallel_size', | |||
1) != 1: | |||
self.logger.info( | |||
f'Saving checkpoint at {trainer.iter + 1} iterations') | |||
self._save_checkpoint(trainer) | |||
@@ -0,0 +1,116 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
import os | |||
from types import MethodType | |||
import deepspeed | |||
from megatron import mpu | |||
from modelscope.metainfo import Hooks | |||
from modelscope.trainers.hooks import (BestCkptSaverHook, CheckpointHook, | |||
LrSchedulerHook, NoneLrSchedulerHook, | |||
NoneOptimizerHook, OptimizerHook) | |||
from modelscope.trainers.lrscheduler.builder import build_lr_scheduler | |||
from modelscope.utils.constant import LogKeys, ModelFile | |||
from modelscope.utils.torch_utils import is_master | |||
from .builder import HOOKS | |||
from .hook import Hook | |||
from .priority import Priority | |||
@HOOKS.register_module(module_name=Hooks.DeepspeedHook) | |||
class DeepspeedHook(Hook): | |||
PRIORITY = Priority.VERY_HIGH | |||
def __init__(self, | |||
deepspeed_activation_checkpointing=True, | |||
save_zero_checkpoint=False, | |||
loss_key='loss'): | |||
self.save_zero_checkpoint = save_zero_checkpoint | |||
self.loss_key = loss_key | |||
self.deepspeed_activation_checkpointing = deepspeed_activation_checkpointing | |||
def before_run(self, trainer): | |||
# deepspeed init | |||
args = trainer.cfg.train | |||
args.deepspeed_config = os.path.join(trainer.model_dir, | |||
args.deepspeed_config) | |||
trainer.model, _, _, _ = deepspeed.initialize( | |||
model=trainer.model, | |||
optimizer=trainer.optimizer, | |||
args=args, | |||
lr_scheduler=trainer.lr_scheduler, | |||
mpu=mpu, | |||
dist_init_required=False) | |||
trainer.model.save_zero_checkpoint = self.save_zero_checkpoint | |||
if self.deepspeed_activation_checkpointing: | |||
model = trainer.model | |||
while hasattr(model, 'module'): | |||
model = model.module | |||
deepspeed.checkpointing.configure( | |||
mpu, | |||
deepspeed_config=args.deepspeed_config, | |||
num_checkpoints=model.config.num_hidden_layers) | |||
mpu.checkpoint = deepspeed.checkpointing.checkpoint | |||
mpu.get_cuda_rng_tracker = deepspeed.checkpointing.get_cuda_rng_tracker | |||
mpu.model_parallel_cuda_manual_seed = deepspeed.checkpointing.model_parallel_cuda_manual_seed | |||
# modify hooks | |||
for i, hook in enumerate(trainer._hooks): | |||
# backward & step | |||
if isinstance(hook, OptimizerHook): | |||
trainer._hooks[i] = NoneOptimizerHook() | |||
if isinstance(hook, LrSchedulerHook): | |||
trainer._hooks[i] = NoneLrSchedulerHook() | |||
# save checkpoint | |||
if isinstance(hook, CheckpointHook): | |||
def _save_checkpoint(self, trainer): | |||
if self.by_epoch: | |||
cur_save_dir = os.path.join( | |||
self.save_dir, | |||
f'{LogKeys.EPOCH}_{trainer.epoch + 1}') | |||
else: | |||
cur_save_dir = os.path.join( | |||
self.save_dir, | |||
f'{LogKeys.ITER}_{trainer.iter + 1}') | |||
if (self.is_last_epoch(trainer) | |||
and self.by_epoch) or (self.is_last_iter(trainer) | |||
and not self.by_epoch): | |||
cur_save_dir = os.path.join(self.save_dir, | |||
ModelFile.TRAIN_OUTPUT_DIR) | |||
trainer.model.save_checkpoint(cur_save_dir) | |||
trainer._hooks[i]._save_checkpoint = MethodType( | |||
_save_checkpoint, trainer._hooks[i]) | |||
if isinstance(hook, BestCkptSaverHook): | |||
def _save_checkpoint(self, trainer): | |||
if self.by_epoch: | |||
cur_save_dir = os.path.join( | |||
self.save_dir, | |||
f'best_{LogKeys.EPOCH}{trainer.epoch + 1}_{self.metric_key}{self._best_metric}' | |||
) | |||
else: | |||
cur_save_dir = os.path.join( | |||
self.save_dir, | |||
f'best_{LogKeys.ITER}{trainer.iter + 1}_{self.metric_key}{self._best_metric}.pth' | |||
) | |||
trainer.model.save_checkpoint(cur_save_dir) | |||
self._best_ckpt_file = cur_save_dir | |||
trainer._hooks[i]._save_checkpoint = MethodType( | |||
_save_checkpoint, trainer._hooks[i]) | |||
def after_train_iter(self, trainer): | |||
# The `trainer.model` here is actually a deepspeed engine object. | |||
# backward step | |||
loss = trainer.train_outputs[self.loss_key] | |||
trainer.model.backward(loss) | |||
# update parameters | |||
trainer.model.step() |
@@ -80,7 +80,8 @@ class TextLoggerHook(LoggerHook): | |||
dtype=torch.int, | |||
device=device) | |||
_, world_size = get_dist_info() | |||
if world_size > 1: | |||
if world_size > 1 and getattr(trainer.cfg.model, 'model_parallel_size', | |||
1) < world_size: | |||
dist.reduce(mem_mb, 0, op=dist.ReduceOp.MAX) | |||
return mem_mb.item() | |||
@@ -0,0 +1,195 @@ | |||
import os | |||
from typing import Callable, Dict, List, Optional, Tuple, Union | |||
import torch | |||
from megatron import mpu | |||
from torch import nn | |||
from modelscope.metainfo import Trainers | |||
from modelscope.models.base import Model, TorchModel | |||
from modelscope.models.nlp.plug import DistributedPlug | |||
from modelscope.models.nlp.plug.backbone import BertLayerNorm | |||
from modelscope.models.nlp.plug.generator import TextGenerator | |||
from modelscope.utils.constant import ModeKeys | |||
from ..base import TRAINERS | |||
from ..nlp_trainer import NlpEpochBasedTrainer | |||
@TRAINERS.register_module(module_name=Trainers.nlp_plug_trainer) | |||
class PlugTrainer(NlpEpochBasedTrainer): | |||
def build_model(self) -> Union[nn.Module, TorchModel]: | |||
rank = int(os.environ.get('LOCAL_RANK', -1)) | |||
master_ip = os.environ.get('MASTER_ADDR', '127.0.0.1') | |||
master_port = os.environ.get('MASTER_PORT', '29500') | |||
model = DistributedPlug( | |||
self.model_dir, | |||
rank, | |||
master_ip=master_ip, | |||
master_port=master_port, | |||
**self.cfg.model) | |||
return model.model | |||
def to_parallel(self, model) -> Union[nn.Module, TorchModel]: | |||
from modelscope.utils.nlp.distributed import DistributedDataParallel as DDP | |||
return DDP(model) | |||
def _get_params_for_weight_decay_optimization(self, module): | |||
weight_decay_params = {'params': []} | |||
no_weight_decay_params = {'params': [], 'weight_decay': 0.0} | |||
for module_ in module.modules(): | |||
if isinstance(module_, (BertLayerNorm, torch.nn.LayerNorm)): | |||
no_weight_decay_params['params'].extend([ | |||
p for p in list(module_._parameters.values()) | |||
if p is not None | |||
]) | |||
else: | |||
weight_decay_params['params'].extend([ | |||
p for n, p in list(module_._parameters.items()) | |||
if p is not None and 'mask_score' not in n | |||
and 'mask' not in n and n != 'bias' | |||
]) | |||
no_weight_decay_params['params'].extend([ | |||
p for n, p in list(module_._parameters.items()) | |||
if p is not None and n == 'bias' | |||
]) | |||
return weight_decay_params, no_weight_decay_params | |||
def create_optimizer_and_scheduler(self): | |||
optimizer, lr_scheduler = self.optimizers | |||
optimizer_cfg = self.cfg.train.get('optimizer', None) | |||
# optim_options = {} | |||
if optimizer_cfg is not None: | |||
optim_options = optimizer_cfg.pop('options', {}) | |||
from deepspeed.ops.adam import DeepSpeedCPUAdam | |||
model = self.model | |||
embeddings = model.module.module.model.bert.embeddings | |||
layers = model.module.module.model.bert.encoder.layer | |||
dec_layers = model.module.module.model.decoder.decoder | |||
param_groups = [] | |||
param_groups += list( | |||
self._get_params_for_weight_decay_optimization(layers)) | |||
param_groups += list( | |||
self._get_params_for_weight_decay_optimization(embeddings)) | |||
param_groups += list( | |||
self._get_params_for_weight_decay_optimization(dec_layers)) | |||
for param_group in param_groups: | |||
for param in param_group['params']: | |||
if not hasattr(param, 'model_parallel'): | |||
param.model_parallel = False | |||
optimizer = DeepSpeedCPUAdam( | |||
param_groups, | |||
lr=optimizer_cfg.lr, | |||
weight_decay=optimizer_cfg.weight_decay) | |||
lr_scheduler_cfg = self.cfg.train.get('lr_scheduler', None) | |||
if lr_scheduler_cfg is not None: | |||
assert optimizer is not None | |||
lr_options = lr_scheduler_cfg.pop('options', {}) | |||
from modelscope.models.nlp.plug.AnnealingLR import AnnealingLR | |||
num_iters = self.max_iters | |||
lr_scheduler = AnnealingLR( | |||
optimizer, | |||
start_lr=optimizer_cfg.lr, | |||
warmup_iter=lr_scheduler_cfg.warmup * num_iters, | |||
num_iters=num_iters, | |||
decay_style=lr_scheduler_cfg.decay_style, | |||
last_iter=-1) | |||
self.optimizer = optimizer | |||
self.lr_scheduler = lr_scheduler | |||
return self.optimizer, self.lr_scheduler, optim_options, lr_options | |||
def _get_masks_and_position_ids(self, data, eod_token): | |||
# Extract batch size and sequence length. | |||
batch_size, seq_length = data.size() | |||
# Attention mask (lower triangular). | |||
att_mask_batch = 1 | |||
attention_mask = torch.tril( | |||
torch.ones((att_mask_batch, seq_length, seq_length), | |||
device=data.device)).view(att_mask_batch, 1, seq_length, | |||
seq_length) | |||
# Loss mask. | |||
loss_mask = torch.ones( | |||
data.size(), dtype=torch.float, device=data.device) | |||
loss_mask[data == eod_token] = 0.0 | |||
# Position ids. | |||
position_ids = torch.arange( | |||
seq_length, dtype=torch.long, device=data.device) | |||
position_ids = position_ids.unsqueeze(0).expand_as(data) | |||
return attention_mask, loss_mask, position_ids | |||
def train_step(self, model, inputs): | |||
self._mode = ModeKeys.TRAIN | |||
# format inputs | |||
checkpoint_activations = getattr(self.cfg.train, | |||
'checkpoint_activations', True) | |||
tgt_tokens = inputs['labels'][:, :-1].contiguous() | |||
tgt_labels = inputs['labels'][:, 1:].contiguous() | |||
tgt_attention_mask, dec_loss_mask, position_ids = self._get_masks_and_position_ids( | |||
tgt_tokens, 0) | |||
if getattr(self.cfg.train, 'fp16', None): | |||
tgt_attention_mask = tgt_attention_mask.half() | |||
# forward step | |||
_, output = model( | |||
inputs['input_ids'], | |||
None, | |||
inputs['attention_mask'], | |||
tgt_tokens, | |||
position_ids, | |||
tgt_attention_mask, | |||
checkpoint_activations=checkpoint_activations) | |||
losses = mpu.vocab_parallel_cross_entropy(output.contiguous().float(), | |||
tgt_labels) | |||
dec_loss_mask = dec_loss_mask.view(-1) | |||
loss = torch.sum(losses.view(-1) * dec_loss_mask) / dec_loss_mask.sum() | |||
# add model output info to log | |||
self.train_outputs = {'loss': loss} | |||
self.log_buffer.update(self.train_outputs) | |||
def evaluation_step(self, data): | |||
# wapper 1: DeepspeedEngine, wapper 2: DDP | |||
model = self.model.module.module | |||
model.eval() | |||
# model: fp16 wapper; model.module : distributedPlug | |||
vocab_size = model.module.config.original_vocab_size | |||
batch_size = data['input_ids'].shape[0] | |||
beam_generator = TextGenerator(model, | |||
self.eval_preprocessor.nlp_tokenizer, | |||
None) | |||
with torch.no_grad(): | |||
tokens = data['input_ids'].long() | |||
padding_mask = data['attention_mask'].byte() | |||
target_ids = data['labels'].long() | |||
target_labels = target_ids[:, 1:].contiguous() | |||
encoder_inputs = [tokens, None, padding_mask] | |||
result = beam_generator.translate_batch(encoder_inputs) | |||
pred_list = result['predictions'] | |||
target_list = target_labels.cpu().numpy().tolist() | |||
result['preds'] = [] | |||
data['tgts'] = [] | |||
for i in range(batch_size): | |||
pred_ids = pred_list[i][0] | |||
pred_ids[pred_ids > vocab_size - 1] = 100 | |||
pred_ids = pred_ids.cpu().numpy().tolist() | |||
gold_string = self.eval_preprocessor.decode( | |||
target_list[i], skip_special_tokens=True) | |||
pred_string = self.eval_preprocessor.decode( | |||
pred_ids, skip_special_tokens=True) | |||
result['preds'].append(pred_string) | |||
data['tgts'].append(gold_string) | |||
return result |
@@ -845,7 +845,10 @@ class EpochBasedTrainer(BaseTrainer): | |||
batch_size = batch_size_per_gpu | |||
num_workers = workers_per_gpu | |||
if dist and not isinstance(dataset, torch.utils.data.IterableDataset): | |||
if dist and not isinstance( | |||
dataset, | |||
torch.utils.data.IterableDataset) and self.cfg.model.get( | |||
'model_parallel_size', 1) == 1: | |||
sampler = DistributedSampler( | |||
dataset, num_replicas=world_size, rank=rank, shuffle=shuffle) | |||
else: | |||
@@ -935,7 +938,7 @@ class EpochBasedTrainer(BaseTrainer): | |||
""" Evaluation loop used by `EpochBasedTrainer.evaluate()`. | |||
""" | |||
if self._dist: | |||
if self._dist and self.cfg.model.get('model_parallel_size', 1) == 1: | |||
from modelscope.trainers.utils.inference import multi_gpu_test | |||
metric_values = multi_gpu_test( | |||
self, | |||
@@ -0,0 +1,53 @@ | |||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||
import argparse | |||
import os | |||
import shutil | |||
import tempfile | |||
import unittest | |||
from modelscope.hub.snapshot_download import snapshot_download | |||
from modelscope.metainfo import Trainers | |||
from modelscope.msdatasets import MsDataset | |||
from modelscope.trainers import build_trainer | |||
from modelscope.utils.constant import ModelFile | |||
from modelscope.utils.test_utils import test_level | |||
def test_trainer_with_model_and_args(): | |||
def concat_answer_context(dataset): | |||
dataset['src_txt'] = dataset['answers']['text'][0] + '[SEP]' + dataset[ | |||
'context'] | |||
return dataset | |||
from datasets import load_dataset | |||
dataset_dict = load_dataset('luozhouyang/dureader', 'robust') | |||
train_dataset = dataset_dict['train'].map(concat_answer_context) \ | |||
.rename_columns({'question': 'tgt_txt'}).remove_columns('context') \ | |||
.remove_columns('id').remove_columns('answers') | |||
eval_dataset = dataset_dict['validation'].map(concat_answer_context) \ | |||
.rename_columns({'question': 'tgt_txt'}).remove_columns('context') \ | |||
.remove_columns('id').remove_columns('answers') | |||
tmp_dir = tempfile.TemporaryDirectory().name | |||
if not os.path.exists(tmp_dir): | |||
os.makedirs(tmp_dir) | |||
model_id = 'damo/nlp_plug_text-generation_27B' | |||
kwargs = dict( | |||
model=model_id, | |||
train_dataset=train_dataset, | |||
eval_dataset=eval_dataset, | |||
work_dir=tmp_dir) | |||
trainer = build_trainer( | |||
name=Trainers.nlp_plug_trainer, default_args=kwargs) | |||
trainer.train() | |||
if __name__ == '__main__': | |||
parser = argparse.ArgumentParser() | |||
parser.add_argument('--local_rank') | |||
test_trainer_with_model_and_args() |