plug finetune :已在du reader- robust数据集上回归至最佳结果 Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/10916382master^2
@@ -338,6 +338,7 @@ class Trainers(object): | |||||
nlp_veco_trainer = 'nlp-veco-trainer' | nlp_veco_trainer = 'nlp-veco-trainer' | ||||
nlp_text_ranking_trainer = 'nlp-text-ranking-trainer' | nlp_text_ranking_trainer = 'nlp-text-ranking-trainer' | ||||
text_generation_trainer = 'text-generation-trainer' | text_generation_trainer = 'text-generation-trainer' | ||||
nlp_plug_trainer = 'nlp-plug-trainer' | |||||
# audio trainers | # audio trainers | ||||
speech_frcrn_ans_cirm_16k = 'speech_frcrn_ans_cirm_16k' | speech_frcrn_ans_cirm_16k = 'speech_frcrn_ans_cirm_16k' | ||||
@@ -500,6 +501,9 @@ class Hooks(object): | |||||
# CLIP logit_scale clamp | # CLIP logit_scale clamp | ||||
ClipClampLogitScaleHook = 'ClipClampLogitScaleHook' | ClipClampLogitScaleHook = 'ClipClampLogitScaleHook' | ||||
# train | |||||
DeepspeedHook = 'DeepspeedHook' | |||||
class LR_Schedulers(object): | class LR_Schedulers(object): | ||||
"""learning rate scheduler is defined here | """learning rate scheduler is defined here | ||||
@@ -0,0 +1,88 @@ | |||||
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. | |||||
# | |||||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||||
# you may not use this file except in compliance with the License. | |||||
# You may obtain a copy of the License at | |||||
# | |||||
# http://www.apache.org/licenses/LICENSE-2.0 | |||||
# | |||||
# Unless required by applicable law or agreed to in writing, software | |||||
# distributed under the License is distributed on an "AS IS" BASIS, | |||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
# See the License for the specific language governing permissions and | |||||
# limitations under the License. | |||||
"""PyTorch DataLoader for TFRecords""" | |||||
import math | |||||
import torch | |||||
from torch.optim.lr_scheduler import _LRScheduler | |||||
class AnnealingLR(_LRScheduler): | |||||
"""Anneals the learning rate from start to zero along a cosine curve.""" | |||||
DECAY_STYLES = ['linear', 'cosine', 'exponential', 'constant', 'None'] | |||||
def __init__(self, | |||||
optimizer, | |||||
start_lr, | |||||
warmup_iter, | |||||
num_iters, | |||||
decay_style=None, | |||||
last_iter=-1): | |||||
self.optimizer = optimizer | |||||
self.start_lr = start_lr | |||||
self.warmup_iter = warmup_iter | |||||
self._step_count = last_iter + 1 | |||||
self.end_iter = num_iters | |||||
self.decay_style = decay_style.lower() if isinstance(decay_style, | |||||
str) else None | |||||
self.step(self._step_count) | |||||
if torch.distributed.get_rank() == 0: | |||||
print('learning rate decaying', decay_style) | |||||
def get_lr(self): | |||||
# https://openreview.net/pdf?id=BJYwwY9ll pg. 4 | |||||
if self.warmup_iter > 0 and self._step_count <= self.warmup_iter: | |||||
return float(self.start_lr) * self._step_count / self.warmup_iter | |||||
else: | |||||
if self.decay_style == self.DECAY_STYLES[0]: | |||||
return self.start_lr * (( | |||||
self.end_iter - # noqa W504 | |||||
(self._step_count - self.warmup_iter)) / self.end_iter) | |||||
elif self.decay_style == self.DECAY_STYLES[1]: | |||||
return self.start_lr / 2.0 * ( | |||||
math.cos(math.pi * (self._step_count - self.warmup_iter) | |||||
/ self.end_iter) + 1) | |||||
elif self.decay_style == self.DECAY_STYLES[2]: | |||||
# TODO: implement exponential decay | |||||
return self.start_lr | |||||
else: | |||||
return self.start_lr | |||||
def step(self, step_num=None): | |||||
if step_num is None: | |||||
step_num = self._step_count + 1 | |||||
self._step_count = step_num | |||||
new_lr = self.get_lr() | |||||
for group in self.optimizer.param_groups: | |||||
group['lr'] = new_lr | |||||
def state_dict(self): | |||||
sd = { | |||||
'start_lr': self.start_lr, | |||||
'warmup_iter': self.warmup_iter, | |||||
'_step_count': self._step_count, | |||||
'decay_style': self.decay_style, | |||||
'end_iter': self.end_iter | |||||
} | |||||
return sd | |||||
def load_state_dict(self, sd): | |||||
self.start_lr = sd['start_lr'] | |||||
self.warmup_iter = sd['warmup_iter'] | |||||
self._step_count = sd['_step_count'] | |||||
self.end_iter = sd['end_iter'] | |||||
self.decay_style = sd['decay_style'] | |||||
self.step(self._step_count) |
@@ -1009,6 +1009,118 @@ class PlugModel(torch.nn.Module): | |||||
sequence_output=sequence_output, | sequence_output=sequence_output, | ||||
parallel_output=parallel_output) | parallel_output=parallel_output) | ||||
@staticmethod | |||||
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): | |||||
# This function has been mostly taken from huggingface conversational ai code at | |||||
# https://medium.com/huggingface/how-to-build-a-state-of-the-art- | |||||
# conversational-ai-with-transfer-learning-2d818ac26313 | |||||
if top_k > 0: | |||||
# Remove all tokens with a probability less than the last token of the top-k | |||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, | |||||
None] | |||||
logits[indices_to_remove] = filter_value | |||||
if top_p > 0.0: | |||||
# convert to 1D | |||||
logits = logits.view(logits.size()[1]).contiguous() | |||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |||||
cumulative_probs = torch.cumsum( | |||||
F.softmax(sorted_logits, dim=-1), dim=-1) | |||||
# Remove tokens with cumulative probability above the threshold | |||||
sorted_indices_to_remove = cumulative_probs > top_p | |||||
# Shift the indices to the right to keep also the first token above the threshold | |||||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ | |||||
..., :-1].clone() | |||||
sorted_indices_to_remove[..., 0] = 0 | |||||
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |||||
logits[indices_to_remove] = filter_value | |||||
# going back to 2D | |||||
logits = logits.view(1, -1).contiguous() | |||||
return logits | |||||
def generate(self, input, out_length=128, model_cfg=None, *kwargs): | |||||
device = torch.cuda.current_device() | |||||
batch_size = input['input_ids'].shape[0] | |||||
tokens = input['input_ids'].view(1, -1).contiguous().to(device) | |||||
dec_input_ids = input['dec_input_ids'].to(device) | |||||
attention_mask = input['attention_mask'].to(device) | |||||
self.model.eval() | |||||
with torch.no_grad(): | |||||
# Only supports batch_size=1 | |||||
all_generate_tokens = [] | |||||
generate_tokens = [] | |||||
counter = 0 | |||||
sequence_output = None | |||||
vocab_size = self.config.original_vocab_size | |||||
sep_token_idx = 102 # index of [SEP] token in BertTokenizer | |||||
while counter < out_length: | |||||
if counter % 128 == 0 and counter != 0: | |||||
# Sliding window | |||||
generate_tokens.append(sep_token_idx) | |||||
start = (tokens == sep_token_idx).nonzero( | |||||
as_tuple=True)[-1] | |||||
if start + len(generate_tokens) >= 512: | |||||
tokens = torch.cat([ | |||||
tokens[:start], | |||||
torch.cuda.LongTensor(generate_tokens) | |||||
], -1)[-512:] | |||||
else: | |||||
tokens[0][start:start + len(generate_tokens | |||||
)] = torch.cuda.LongTensor( | |||||
generate_tokens) | |||||
attention_mask = (tokens != 0) | |||||
dec_input_ids = input['dec_input_ids'].to(device) | |||||
generate_tokens = [] | |||||
sequence_output = None | |||||
position_ids = torch.full([batch_size, 1], | |||||
len(generate_tokens), | |||||
dtype=torch.long, | |||||
device=device) | |||||
_, logits, sequence_output = self.model( | |||||
tokens, | |||||
None, | |||||
attention_mask, | |||||
dec_input_ids, | |||||
attention_mask, | |||||
position_ids, | |||||
is_infer=True, | |||||
sequence_output=sequence_output, | |||||
parallel_output=False) | |||||
logits = logits[:, -1, :] | |||||
logits = logits / model_cfg['temperature'] | |||||
logits = self.top_k_logits( | |||||
logits, top_k=model_cfg['top_k'], top_p=model_cfg['top_p']) | |||||
log_probs = F.softmax(logits, dim=-1) | |||||
prev = torch.argmax(log_probs, 1).unsqueeze(1) | |||||
# prev = torch.multinomial(log_probs, num_samples=1) | |||||
prev_token = prev[0].item() | |||||
if prev_token >= vocab_size: | |||||
prev_token = 100 | |||||
prev[0] = 100 | |||||
if prev_token == 102 and len(all_generate_tokens) > int( | |||||
max(1, out_length) * 0.8): | |||||
break | |||||
if prev_token == 102: | |||||
counter += 1 | |||||
continue | |||||
dec_input_ids = torch.cat([dec_input_ids, prev], dim=1) | |||||
generate_tokens.append(prev_token) | |||||
all_generate_tokens.append(prev_token) | |||||
counter += 1 | |||||
generate_context = [] | |||||
for token in all_generate_tokens: | |||||
if generate_context and generate_context[ | |||||
-1] == 100 and token == 100: | |||||
continue | |||||
else: | |||||
generate_context.append(token) | |||||
return {'generate_context': generate_context} | |||||
def state_dict(self, destination=None, prefix='', keep_vars=False): | def state_dict(self, destination=None, prefix='', keep_vars=False): | ||||
return self.model.state_dict( | return self.model.state_dict( | ||||
destination=destination, prefix=prefix, keep_vars=keep_vars) | destination=destination, prefix=prefix, keep_vars=keep_vars) | ||||
@@ -225,7 +225,7 @@ class PlugNLGConfig(PlugNLUConfig): | |||||
fp32_layernorm=True, | fp32_layernorm=True, | ||||
fp32_embedding=False, | fp32_embedding=False, | ||||
fp32_tokentypes=False, | fp32_tokentypes=False, | ||||
layernorm_epsilon=1e-5, | |||||
layernorm_epsilon=1e-12, | |||||
attn_separate=False, | attn_separate=False, | ||||
**kwargs): | **kwargs): | ||||
super().__init__(layer_norm_eps=layernorm_epsilon, **kwargs) | super().__init__(layer_norm_eps=layernorm_epsilon, **kwargs) | ||||
@@ -75,7 +75,7 @@ class DistributedPlug(TorchModel): | |||||
seed = 42 if 'seed' not in kwargs else kwargs['seed'] | seed = 42 if 'seed' not in kwargs else kwargs['seed'] | ||||
set_random_seed_mpu(seed) | set_random_seed_mpu(seed) | ||||
self.iteration = 0 | self.iteration = 0 | ||||
self.dist_model = self.initialize_model(path_load_tag='model') | |||||
self.model = self.initialize_model(path_load_tag='model') | |||||
def initialize_model(self, path_load_tag='model'): | def initialize_model(self, path_load_tag='model'): | ||||
"""Build the model.""" | """Build the model.""" | ||||
@@ -120,115 +120,28 @@ class DistributedPlug(TorchModel): | |||||
model.module.model.load_state_dict(load_model, strict=False) | model.module.model.load_state_dict(load_model, strict=False) | ||||
return model | return model | ||||
@staticmethod | |||||
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): | |||||
# This function has been mostly taken from huggingface conversational ai code at | |||||
# https://medium.com/huggingface/how-to-build-a-state-of-the-art- | |||||
# conversational-ai-with-transfer-learning-2d818ac26313 | |||||
if top_k > 0: | |||||
# Remove all tokens with a probability less than the last token of the top-k | |||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, | |||||
None] | |||||
logits[indices_to_remove] = filter_value | |||||
if top_p > 0.0: | |||||
# convert to 1D | |||||
logits = logits.view(logits.size()[1]).contiguous() | |||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |||||
cumulative_probs = torch.cumsum( | |||||
F.softmax(sorted_logits, dim=-1), dim=-1) | |||||
# Remove tokens with cumulative probability above the threshold | |||||
sorted_indices_to_remove = cumulative_probs > top_p | |||||
# Shift the indices to the right to keep also the first token above the threshold | |||||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ | |||||
..., :-1].clone() | |||||
sorted_indices_to_remove[..., 0] = 0 | |||||
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |||||
logits[indices_to_remove] = filter_value | |||||
# going back to 2D | |||||
logits = logits.view(1, -1).contiguous() | |||||
return logits | |||||
def forward(self, | |||||
input_tokens, | |||||
token_type_ids=None, | |||||
attention_mask=None, | |||||
target_tokens=None, | |||||
position_ids=None, | |||||
decode_attention_mask=None, | |||||
checkpoint_activations=False, | |||||
is_infer=False, | |||||
sequence_output=None, | |||||
parallel_output=True): | |||||
return self.model( | |||||
input_tokens, | |||||
token_type_ids, | |||||
attention_mask, | |||||
target_tokens, | |||||
position_ids, | |||||
decode_attention_mask, | |||||
checkpoint_activations=checkpoint_activations, | |||||
is_infer=is_infer, | |||||
sequence_output=sequence_output, | |||||
parallel_output=parallel_output) | |||||
def generate(self, input: Dict[str, Tensor], out_length=128, *kwargs): | def generate(self, input: Dict[str, Tensor], out_length=128, *kwargs): | ||||
device = torch.cuda.current_device() | |||||
batch_size = input['input_ids'].shape[0] | |||||
tokens = input['input_ids'].view(1, -1).contiguous().to(device) | |||||
dec_input_ids = input['dec_input_ids'].to(device) | |||||
attention_mask = input['attention_mask'].to(device) | |||||
self.dist_model.eval() | |||||
with torch.no_grad(): | |||||
# Only supports batch_size=1 | |||||
all_generate_tokens = [] | |||||
generate_tokens = [] | |||||
counter = 0 | |||||
sequence_output = None | |||||
vocab_size = self.config.original_vocab_size | |||||
sep_token_idx = 102 # index of [SEP] token in BertTokenizer | |||||
while counter < out_length: | |||||
if counter % 128 == 0 and counter != 0: | |||||
# Sliding window | |||||
generate_tokens.append(sep_token_idx) | |||||
start = (tokens == sep_token_idx).nonzero( | |||||
as_tuple=True)[-1] | |||||
if start + len(generate_tokens) >= 512: | |||||
tokens = torch.cat([ | |||||
tokens[:start], | |||||
torch.cuda.LongTensor(generate_tokens) | |||||
], -1)[-512:] | |||||
else: | |||||
tokens[0][start:start + len(generate_tokens | |||||
)] = torch.cuda.LongTensor( | |||||
generate_tokens) | |||||
attention_mask = (tokens != 0) | |||||
dec_input_ids = input['dec_input_ids'].to(device) | |||||
generate_tokens = [] | |||||
sequence_output = None | |||||
position_ids = torch.full([batch_size, 1], | |||||
len(generate_tokens), | |||||
dtype=torch.long, | |||||
device=device) | |||||
_, logits, sequence_output = self.dist_model( | |||||
tokens, | |||||
None, | |||||
attention_mask, | |||||
dec_input_ids, | |||||
attention_mask, | |||||
position_ids, | |||||
is_infer=True, | |||||
sequence_output=sequence_output, | |||||
parallel_output=False) | |||||
logits = logits[:, -1, :] | |||||
logits = logits / self.model_cfg['temperature'] | |||||
logits = self.top_k_logits( | |||||
logits, | |||||
top_k=self.model_cfg['top_k'], | |||||
top_p=self.model_cfg['top_p']) | |||||
log_probs = F.softmax(logits, dim=-1) | |||||
prev = torch.multinomial(log_probs, num_samples=1) | |||||
prev_token = prev[0].item() | |||||
if prev_token >= vocab_size: | |||||
prev_token = 100 | |||||
prev[0] = 100 | |||||
if prev_token == 102 and len(all_generate_tokens) > int( | |||||
max(1, out_length) * 0.8): | |||||
break | |||||
if prev_token == 102: | |||||
counter += 1 | |||||
continue | |||||
dec_input_ids = torch.cat([dec_input_ids, prev], dim=1) | |||||
generate_tokens.append(prev_token) | |||||
all_generate_tokens.append(prev_token) | |||||
counter += 1 | |||||
generate_context = [] | |||||
for token in all_generate_tokens: | |||||
if generate_context and generate_context[ | |||||
-1] == 100 and token == 100: | |||||
continue | |||||
else: | |||||
generate_context.append(token) | |||||
return {'generate_context': generate_context} | |||||
return self.model.generate(input, out_length, self.model_cfg, *kwargs) |
@@ -0,0 +1,225 @@ | |||||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||||
import torch | |||||
class TextGenerator(object): | |||||
def __init__(self, | |||||
model, | |||||
vocab, | |||||
symbols, | |||||
global_scorer=None, | |||||
logger=None, | |||||
dump_beam=''): | |||||
self.alpha = 0.6 | |||||
self.logger = logger | |||||
self.cuda = (torch.cuda.device_count() > 0) | |||||
self.model = model | |||||
# TODO generator | |||||
self.vocab = vocab | |||||
self.symbols = symbols | |||||
self.start_token = 101 # ['[PAD]'] | |||||
self.end_token = 102 # '[PAD]'] | |||||
self.global_scorer = global_scorer | |||||
self.beam_size = 5 | |||||
self.min_length = 5 | |||||
self.max_length = 384 | |||||
self.dump_beam = dump_beam | |||||
# for debugging | |||||
self.beam_trace = self.dump_beam != '' | |||||
self.beam_accum = None | |||||
if self.beam_trace: | |||||
self.beam_accum = { | |||||
'predicted_ids': [], | |||||
'beam_parent_ids': [], | |||||
'scores': [], | |||||
'log_probs': [] | |||||
} | |||||
def _build_target_tokens(self, pred): | |||||
tokens = [] | |||||
for tok in pred: | |||||
tok = int(tok) | |||||
tokens.append(tok) | |||||
if tokens[-1] == self.end_token: | |||||
tokens = tokens[:-1] | |||||
break | |||||
tokens = [t for t in tokens if t < len(self.vocab)] | |||||
tokens = self.vocab.DecodeIds(tokens).split(' ') | |||||
return tokens | |||||
def tile(self, x, count, dim=0): | |||||
""" | |||||
Tiles x on dimension dim count times. | |||||
""" | |||||
perm = list(range(len(x.size()))) | |||||
if dim != 0: | |||||
perm[0], perm[dim] = perm[dim], perm[0] | |||||
x = x.permute(perm).contiguous() | |||||
out_size = list(x.size()) | |||||
out_size[0] *= count | |||||
batch = x.size(0) | |||||
x = x.view(batch, -1) \ | |||||
.transpose(0, 1) \ | |||||
.repeat(count, 1) \ | |||||
.transpose(0, 1) \ | |||||
.contiguous() \ | |||||
.view(*out_size) | |||||
if dim != 0: | |||||
x = x.permute(perm).contiguous() | |||||
return x | |||||
def translate_batch(self, encoder_inputs, fast=False): | |||||
with torch.no_grad(): | |||||
return self._fast_translate_batch( | |||||
encoder_inputs, self.max_length, min_length=self.min_length) | |||||
def _fast_translate_batch(self, encoder_inputs, max_length, min_length=0): | |||||
assert not self.dump_beam | |||||
beam_size = self.beam_size | |||||
tokens, types, padding_mask = encoder_inputs | |||||
batch_size = tokens.size(0) | |||||
device = tokens.device | |||||
tmp_alive_seq = torch.full([batch_size, 1], | |||||
self.start_token, | |||||
dtype=torch.long, | |||||
device=device) | |||||
prediction_scores, dec_feat_seq, sequence_output = self.model( | |||||
tokens, | |||||
types, | |||||
padding_mask, | |||||
tmp_alive_seq, | |||||
None, | |||||
None, | |||||
checkpoint_activations=False, | |||||
is_infer=True, | |||||
parallel_output=False, | |||||
sequence_output=None) | |||||
src_features = sequence_output | |||||
src_features = self.tile(src_features, beam_size, dim=0) | |||||
attention_mask = self.tile(padding_mask, beam_size, dim=0) | |||||
batch_offset = torch.arange( | |||||
batch_size, dtype=torch.long, device=device) | |||||
beam_offset = torch.arange( | |||||
0, | |||||
batch_size * beam_size, | |||||
step=beam_size, | |||||
dtype=torch.long, | |||||
device=device) | |||||
alive_seq = torch.full([batch_size * beam_size, 1], | |||||
self.start_token, | |||||
dtype=torch.long, | |||||
device=device) | |||||
# Give full probability to the first beam on the first step. | |||||
topk_log_probs = ( | |||||
torch.tensor( | |||||
[0.0] + [float('-inf')] * (beam_size - 1), | |||||
device=device).repeat(batch_size)) | |||||
# Structure that holds finished hypotheses. | |||||
hypotheses = [[] for _ in range(batch_size)] # noqa: F812 | |||||
results = {} | |||||
results['predictions'] = [[] for _ in range(batch_size)] # noqa: F812 | |||||
results['scores'] = [[] for _ in range(batch_size)] # noqa: F812 | |||||
results['gold_score'] = [0] * batch_size | |||||
results['batch'] = [] | |||||
dec_attn_mask = None | |||||
dec_position_ids = None | |||||
for step in range(max_length): | |||||
prediction_scores, dec_feat_seq, _ = self.model( | |||||
tokens, | |||||
types, | |||||
attention_mask, | |||||
alive_seq, | |||||
dec_position_ids, | |||||
dec_attn_mask, | |||||
checkpoint_activations=False, | |||||
is_infer=True, | |||||
parallel_output=False, | |||||
sequence_output=src_features) | |||||
dec_feat_seq = dec_feat_seq[:, -1, :] | |||||
vocab_size = dec_feat_seq.size(-1) | |||||
log_probs = torch.log( | |||||
torch.softmax(dec_feat_seq.view(-1, vocab_size), dim=-1)) | |||||
if step < min_length: | |||||
log_probs[:, self.end_token] = -1e20 | |||||
log_probs += topk_log_probs.view(-1).unsqueeze(1) | |||||
alpha = self.alpha # global_scorer.alpha | |||||
length_penalty = ((5.0 + (step + 1)) / 6.0)**alpha | |||||
curr_scores = log_probs / length_penalty | |||||
curr_scores = curr_scores.reshape(-1, beam_size * vocab_size) | |||||
topk_scores, topk_ids = curr_scores.topk(beam_size, dim=-1) | |||||
topk_log_probs = topk_scores * length_penalty | |||||
# Resolve beam origin and true word ids. | |||||
topk_beam_index = topk_ids.div(vocab_size, rounding_mode='trunc') | |||||
topk_ids = topk_ids.fmod(vocab_size) | |||||
# Map beam_index to batch_index in the flat representation. | |||||
batch_index = ( | |||||
topk_beam_index | |||||
+ beam_offset[:topk_beam_index.size(0)].unsqueeze(1)) | |||||
select_indices = batch_index.view(-1) | |||||
# Append last prediction. | |||||
alive_seq = torch.cat([ | |||||
alive_seq.index_select(0, select_indices), | |||||
topk_ids.view(-1, 1) | |||||
], -1) | |||||
is_finished = topk_ids.eq(self.end_token) | |||||
if step + 1 == max_length: | |||||
is_finished.fill_(1) # self.end_token) | |||||
# End condition is top beam is finished. | |||||
end_condition = is_finished[:, 0].eq(1) # self.end_token) | |||||
# Save finished hypotheses. | |||||
if is_finished.any(): | |||||
predictions = alive_seq.view(-1, beam_size, alive_seq.size(-1)) | |||||
for i in range(is_finished.size(0)): | |||||
b = batch_offset[i] | |||||
if end_condition[i]: | |||||
is_finished[i].fill_(1) # self.end_token) | |||||
finished_hyp = is_finished[i].nonzero().view(-1) | |||||
# Store finished hypotheses for this batch. | |||||
for j in finished_hyp: | |||||
hypotheses[b].append( | |||||
(topk_scores[i, j], predictions[i, j, 1:])) | |||||
# If the batch reached the end, save the n_best hypotheses. | |||||
if end_condition[i]: | |||||
best_hyp = sorted( | |||||
hypotheses[b], key=lambda x: x[0], reverse=True) | |||||
score, pred = best_hyp[0] | |||||
results['scores'][b].append(score) | |||||
results['predictions'][b].append(pred) | |||||
non_finished = end_condition.eq(0).nonzero().view(-1) | |||||
# If all sentences are translated, no need to go further. | |||||
if len(non_finished) == 0: | |||||
break | |||||
# Remove finished batches for the next step. | |||||
topk_log_probs = topk_log_probs.index_select(0, non_finished) | |||||
batch_index = batch_index.index_select(0, non_finished) | |||||
batch_offset = batch_offset.index_select(0, non_finished) | |||||
alive_seq = predictions.index_select(0, non_finished) \ | |||||
.view(-1, alive_seq.size(-1)) | |||||
# Reorder states. | |||||
select_indices = batch_index.view(-1) | |||||
src_features = src_features.index_select(0, select_indices) | |||||
attention_mask = attention_mask.index_select(0, select_indices) | |||||
return results |
@@ -122,6 +122,8 @@ class TextGenerationTransformersPreprocessor(TextGenerationPreprocessorBase): | |||||
kwargs['return_token_type_ids'] = kwargs.get('return_token_type_ids', | kwargs['return_token_type_ids'] = kwargs.get('return_token_type_ids', | ||||
False) | False) | ||||
kwargs['max_length'] = sequence_length | kwargs['max_length'] = sequence_length | ||||
self.src_length = kwargs['max_length'] | |||||
self.tgt_length = kwargs.pop('target_max_length', kwargs['max_length']) | |||||
model_type = None | model_type = None | ||||
if model_dir is not None: | if model_dir is not None: | ||||
model_type = get_model_type(model_dir) | model_type = get_model_type(model_dir) | ||||
@@ -154,10 +156,14 @@ class TextGenerationTransformersPreprocessor(TextGenerationPreprocessorBase): | |||||
'return_tensors'] = 'pt' if self.mode == ModeKeys.INFERENCE else None | 'return_tensors'] = 'pt' if self.mode == ModeKeys.INFERENCE else None | ||||
output = self.nlp_tokenizer(sequence1, **kwargs) | output = self.nlp_tokenizer(sequence1, **kwargs) | ||||
if self.mode != ModeKeys.INFERENCE: | if self.mode != ModeKeys.INFERENCE: | ||||
if sequence2 is not None: | if sequence2 is not None: | ||||
self.nlp_tokenizer.tokenize_kwargs[ | |||||
'max_length'] = self.tgt_length | |||||
labels = self.nlp_tokenizer(sequence2)['input_ids'] | labels = self.nlp_tokenizer(sequence2)['input_ids'] | ||||
self.nlp_tokenizer.tokenize_kwargs[ | |||||
'max_length'] = self.src_length | |||||
src_input_ids = output['input_ids'] | src_input_ids = output['input_ids'] | ||||
src_attention_mask = output['attention_mask'] | src_attention_mask = output['attention_mask'] | ||||
else: | else: | ||||
@@ -25,7 +25,7 @@ else: | |||||
'hook': ['Hook'], | 'hook': ['Hook'], | ||||
'iter_timer_hook': ['IterTimerHook'], | 'iter_timer_hook': ['IterTimerHook'], | ||||
'logger': ['TensorboardHook', 'TextLoggerHook'], | 'logger': ['TensorboardHook', 'TextLoggerHook'], | ||||
'lr_scheduler_hook': ['LrSchedulerHook'], | |||||
'lr_scheduler_hook': ['LrSchedulerHook', 'NoneLrSchedulerHook'], | |||||
'optimizer_hook': [ | 'optimizer_hook': [ | ||||
'ApexAMPOptimizerHook', 'NoneOptimizerHook', 'OptimizerHook', | 'ApexAMPOptimizerHook', 'NoneOptimizerHook', 'OptimizerHook', | ||||
'TorchAMPOptimizerHook' | 'TorchAMPOptimizerHook' | ||||
@@ -104,7 +104,8 @@ class CheckpointHook(Hook): | |||||
return | return | ||||
if self._should_save(trainer): | if self._should_save(trainer): | ||||
if is_master(): | |||||
if is_master() or trainer.cfg.model.get('model_parallel_size', | |||||
1) != 1: | |||||
self.logger.info( | self.logger.info( | ||||
f'Saving checkpoint at {trainer.epoch + 1} epoch') | f'Saving checkpoint at {trainer.epoch + 1} epoch') | ||||
self._save_checkpoint(trainer) | self._save_checkpoint(trainer) | ||||
@@ -260,7 +261,8 @@ class CheckpointHook(Hook): | |||||
return | return | ||||
if self._should_save(trainer): | if self._should_save(trainer): | ||||
if is_master(): | |||||
if is_master() or trainer.cfg.model.get('model_parallel_size', | |||||
1) != 1: | |||||
self.logger.info( | self.logger.info( | ||||
f'Saving checkpoint at {trainer.iter + 1} iterations') | f'Saving checkpoint at {trainer.iter + 1} iterations') | ||||
self._save_checkpoint(trainer) | self._save_checkpoint(trainer) | ||||
@@ -0,0 +1,116 @@ | |||||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||||
import os | |||||
from types import MethodType | |||||
import deepspeed | |||||
from megatron import mpu | |||||
from modelscope.metainfo import Hooks | |||||
from modelscope.trainers.hooks import (BestCkptSaverHook, CheckpointHook, | |||||
LrSchedulerHook, NoneLrSchedulerHook, | |||||
NoneOptimizerHook, OptimizerHook) | |||||
from modelscope.trainers.lrscheduler.builder import build_lr_scheduler | |||||
from modelscope.utils.constant import LogKeys, ModelFile | |||||
from modelscope.utils.torch_utils import is_master | |||||
from .builder import HOOKS | |||||
from .hook import Hook | |||||
from .priority import Priority | |||||
@HOOKS.register_module(module_name=Hooks.DeepspeedHook) | |||||
class DeepspeedHook(Hook): | |||||
PRIORITY = Priority.VERY_HIGH | |||||
def __init__(self, | |||||
deepspeed_activation_checkpointing=True, | |||||
save_zero_checkpoint=False, | |||||
loss_key='loss'): | |||||
self.save_zero_checkpoint = save_zero_checkpoint | |||||
self.loss_key = loss_key | |||||
self.deepspeed_activation_checkpointing = deepspeed_activation_checkpointing | |||||
def before_run(self, trainer): | |||||
# deepspeed init | |||||
args = trainer.cfg.train | |||||
args.deepspeed_config = os.path.join(trainer.model_dir, | |||||
args.deepspeed_config) | |||||
trainer.model, _, _, _ = deepspeed.initialize( | |||||
model=trainer.model, | |||||
optimizer=trainer.optimizer, | |||||
args=args, | |||||
lr_scheduler=trainer.lr_scheduler, | |||||
mpu=mpu, | |||||
dist_init_required=False) | |||||
trainer.model.save_zero_checkpoint = self.save_zero_checkpoint | |||||
if self.deepspeed_activation_checkpointing: | |||||
model = trainer.model | |||||
while hasattr(model, 'module'): | |||||
model = model.module | |||||
deepspeed.checkpointing.configure( | |||||
mpu, | |||||
deepspeed_config=args.deepspeed_config, | |||||
num_checkpoints=model.config.num_hidden_layers) | |||||
mpu.checkpoint = deepspeed.checkpointing.checkpoint | |||||
mpu.get_cuda_rng_tracker = deepspeed.checkpointing.get_cuda_rng_tracker | |||||
mpu.model_parallel_cuda_manual_seed = deepspeed.checkpointing.model_parallel_cuda_manual_seed | |||||
# modify hooks | |||||
for i, hook in enumerate(trainer._hooks): | |||||
# backward & step | |||||
if isinstance(hook, OptimizerHook): | |||||
trainer._hooks[i] = NoneOptimizerHook() | |||||
if isinstance(hook, LrSchedulerHook): | |||||
trainer._hooks[i] = NoneLrSchedulerHook() | |||||
# save checkpoint | |||||
if isinstance(hook, CheckpointHook): | |||||
def _save_checkpoint(self, trainer): | |||||
if self.by_epoch: | |||||
cur_save_dir = os.path.join( | |||||
self.save_dir, | |||||
f'{LogKeys.EPOCH}_{trainer.epoch + 1}') | |||||
else: | |||||
cur_save_dir = os.path.join( | |||||
self.save_dir, | |||||
f'{LogKeys.ITER}_{trainer.iter + 1}') | |||||
if (self.is_last_epoch(trainer) | |||||
and self.by_epoch) or (self.is_last_iter(trainer) | |||||
and not self.by_epoch): | |||||
cur_save_dir = os.path.join(self.save_dir, | |||||
ModelFile.TRAIN_OUTPUT_DIR) | |||||
trainer.model.save_checkpoint(cur_save_dir) | |||||
trainer._hooks[i]._save_checkpoint = MethodType( | |||||
_save_checkpoint, trainer._hooks[i]) | |||||
if isinstance(hook, BestCkptSaverHook): | |||||
def _save_checkpoint(self, trainer): | |||||
if self.by_epoch: | |||||
cur_save_dir = os.path.join( | |||||
self.save_dir, | |||||
f'best_{LogKeys.EPOCH}{trainer.epoch + 1}_{self.metric_key}{self._best_metric}' | |||||
) | |||||
else: | |||||
cur_save_dir = os.path.join( | |||||
self.save_dir, | |||||
f'best_{LogKeys.ITER}{trainer.iter + 1}_{self.metric_key}{self._best_metric}.pth' | |||||
) | |||||
trainer.model.save_checkpoint(cur_save_dir) | |||||
self._best_ckpt_file = cur_save_dir | |||||
trainer._hooks[i]._save_checkpoint = MethodType( | |||||
_save_checkpoint, trainer._hooks[i]) | |||||
def after_train_iter(self, trainer): | |||||
# The `trainer.model` here is actually a deepspeed engine object. | |||||
# backward step | |||||
loss = trainer.train_outputs[self.loss_key] | |||||
trainer.model.backward(loss) | |||||
# update parameters | |||||
trainer.model.step() |
@@ -80,7 +80,8 @@ class TextLoggerHook(LoggerHook): | |||||
dtype=torch.int, | dtype=torch.int, | ||||
device=device) | device=device) | ||||
_, world_size = get_dist_info() | _, world_size = get_dist_info() | ||||
if world_size > 1: | |||||
if world_size > 1 and getattr(trainer.cfg.model, 'model_parallel_size', | |||||
1) < world_size: | |||||
dist.reduce(mem_mb, 0, op=dist.ReduceOp.MAX) | dist.reduce(mem_mb, 0, op=dist.ReduceOp.MAX) | ||||
return mem_mb.item() | return mem_mb.item() | ||||
@@ -0,0 +1,195 @@ | |||||
import os | |||||
from typing import Callable, Dict, List, Optional, Tuple, Union | |||||
import torch | |||||
from megatron import mpu | |||||
from torch import nn | |||||
from modelscope.metainfo import Trainers | |||||
from modelscope.models.base import Model, TorchModel | |||||
from modelscope.models.nlp.plug import DistributedPlug | |||||
from modelscope.models.nlp.plug.backbone import BertLayerNorm | |||||
from modelscope.models.nlp.plug.generator import TextGenerator | |||||
from modelscope.utils.constant import ModeKeys | |||||
from ..base import TRAINERS | |||||
from ..nlp_trainer import NlpEpochBasedTrainer | |||||
@TRAINERS.register_module(module_name=Trainers.nlp_plug_trainer) | |||||
class PlugTrainer(NlpEpochBasedTrainer): | |||||
def build_model(self) -> Union[nn.Module, TorchModel]: | |||||
rank = int(os.environ.get('LOCAL_RANK', -1)) | |||||
master_ip = os.environ.get('MASTER_ADDR', '127.0.0.1') | |||||
master_port = os.environ.get('MASTER_PORT', '29500') | |||||
model = DistributedPlug( | |||||
self.model_dir, | |||||
rank, | |||||
master_ip=master_ip, | |||||
master_port=master_port, | |||||
**self.cfg.model) | |||||
return model.model | |||||
def to_parallel(self, model) -> Union[nn.Module, TorchModel]: | |||||
from modelscope.utils.nlp.distributed import DistributedDataParallel as DDP | |||||
return DDP(model) | |||||
def _get_params_for_weight_decay_optimization(self, module): | |||||
weight_decay_params = {'params': []} | |||||
no_weight_decay_params = {'params': [], 'weight_decay': 0.0} | |||||
for module_ in module.modules(): | |||||
if isinstance(module_, (BertLayerNorm, torch.nn.LayerNorm)): | |||||
no_weight_decay_params['params'].extend([ | |||||
p for p in list(module_._parameters.values()) | |||||
if p is not None | |||||
]) | |||||
else: | |||||
weight_decay_params['params'].extend([ | |||||
p for n, p in list(module_._parameters.items()) | |||||
if p is not None and 'mask_score' not in n | |||||
and 'mask' not in n and n != 'bias' | |||||
]) | |||||
no_weight_decay_params['params'].extend([ | |||||
p for n, p in list(module_._parameters.items()) | |||||
if p is not None and n == 'bias' | |||||
]) | |||||
return weight_decay_params, no_weight_decay_params | |||||
def create_optimizer_and_scheduler(self): | |||||
optimizer, lr_scheduler = self.optimizers | |||||
optimizer_cfg = self.cfg.train.get('optimizer', None) | |||||
# optim_options = {} | |||||
if optimizer_cfg is not None: | |||||
optim_options = optimizer_cfg.pop('options', {}) | |||||
from deepspeed.ops.adam import DeepSpeedCPUAdam | |||||
model = self.model | |||||
embeddings = model.module.module.model.bert.embeddings | |||||
layers = model.module.module.model.bert.encoder.layer | |||||
dec_layers = model.module.module.model.decoder.decoder | |||||
param_groups = [] | |||||
param_groups += list( | |||||
self._get_params_for_weight_decay_optimization(layers)) | |||||
param_groups += list( | |||||
self._get_params_for_weight_decay_optimization(embeddings)) | |||||
param_groups += list( | |||||
self._get_params_for_weight_decay_optimization(dec_layers)) | |||||
for param_group in param_groups: | |||||
for param in param_group['params']: | |||||
if not hasattr(param, 'model_parallel'): | |||||
param.model_parallel = False | |||||
optimizer = DeepSpeedCPUAdam( | |||||
param_groups, | |||||
lr=optimizer_cfg.lr, | |||||
weight_decay=optimizer_cfg.weight_decay) | |||||
lr_scheduler_cfg = self.cfg.train.get('lr_scheduler', None) | |||||
if lr_scheduler_cfg is not None: | |||||
assert optimizer is not None | |||||
lr_options = lr_scheduler_cfg.pop('options', {}) | |||||
from modelscope.models.nlp.plug.AnnealingLR import AnnealingLR | |||||
num_iters = self.max_iters | |||||
lr_scheduler = AnnealingLR( | |||||
optimizer, | |||||
start_lr=optimizer_cfg.lr, | |||||
warmup_iter=lr_scheduler_cfg.warmup * num_iters, | |||||
num_iters=num_iters, | |||||
decay_style=lr_scheduler_cfg.decay_style, | |||||
last_iter=-1) | |||||
self.optimizer = optimizer | |||||
self.lr_scheduler = lr_scheduler | |||||
return self.optimizer, self.lr_scheduler, optim_options, lr_options | |||||
def _get_masks_and_position_ids(self, data, eod_token): | |||||
# Extract batch size and sequence length. | |||||
batch_size, seq_length = data.size() | |||||
# Attention mask (lower triangular). | |||||
att_mask_batch = 1 | |||||
attention_mask = torch.tril( | |||||
torch.ones((att_mask_batch, seq_length, seq_length), | |||||
device=data.device)).view(att_mask_batch, 1, seq_length, | |||||
seq_length) | |||||
# Loss mask. | |||||
loss_mask = torch.ones( | |||||
data.size(), dtype=torch.float, device=data.device) | |||||
loss_mask[data == eod_token] = 0.0 | |||||
# Position ids. | |||||
position_ids = torch.arange( | |||||
seq_length, dtype=torch.long, device=data.device) | |||||
position_ids = position_ids.unsqueeze(0).expand_as(data) | |||||
return attention_mask, loss_mask, position_ids | |||||
def train_step(self, model, inputs): | |||||
self._mode = ModeKeys.TRAIN | |||||
# format inputs | |||||
checkpoint_activations = getattr(self.cfg.train, | |||||
'checkpoint_activations', True) | |||||
tgt_tokens = inputs['labels'][:, :-1].contiguous() | |||||
tgt_labels = inputs['labels'][:, 1:].contiguous() | |||||
tgt_attention_mask, dec_loss_mask, position_ids = self._get_masks_and_position_ids( | |||||
tgt_tokens, 0) | |||||
if getattr(self.cfg.train, 'fp16', None): | |||||
tgt_attention_mask = tgt_attention_mask.half() | |||||
# forward step | |||||
_, output = model( | |||||
inputs['input_ids'], | |||||
None, | |||||
inputs['attention_mask'], | |||||
tgt_tokens, | |||||
position_ids, | |||||
tgt_attention_mask, | |||||
checkpoint_activations=checkpoint_activations) | |||||
losses = mpu.vocab_parallel_cross_entropy(output.contiguous().float(), | |||||
tgt_labels) | |||||
dec_loss_mask = dec_loss_mask.view(-1) | |||||
loss = torch.sum(losses.view(-1) * dec_loss_mask) / dec_loss_mask.sum() | |||||
# add model output info to log | |||||
self.train_outputs = {'loss': loss} | |||||
self.log_buffer.update(self.train_outputs) | |||||
def evaluation_step(self, data): | |||||
# wapper 1: DeepspeedEngine, wapper 2: DDP | |||||
model = self.model.module.module | |||||
model.eval() | |||||
# model: fp16 wapper; model.module : distributedPlug | |||||
vocab_size = model.module.config.original_vocab_size | |||||
batch_size = data['input_ids'].shape[0] | |||||
beam_generator = TextGenerator(model, | |||||
self.eval_preprocessor.nlp_tokenizer, | |||||
None) | |||||
with torch.no_grad(): | |||||
tokens = data['input_ids'].long() | |||||
padding_mask = data['attention_mask'].byte() | |||||
target_ids = data['labels'].long() | |||||
target_labels = target_ids[:, 1:].contiguous() | |||||
encoder_inputs = [tokens, None, padding_mask] | |||||
result = beam_generator.translate_batch(encoder_inputs) | |||||
pred_list = result['predictions'] | |||||
target_list = target_labels.cpu().numpy().tolist() | |||||
result['preds'] = [] | |||||
data['tgts'] = [] | |||||
for i in range(batch_size): | |||||
pred_ids = pred_list[i][0] | |||||
pred_ids[pred_ids > vocab_size - 1] = 100 | |||||
pred_ids = pred_ids.cpu().numpy().tolist() | |||||
gold_string = self.eval_preprocessor.decode( | |||||
target_list[i], skip_special_tokens=True) | |||||
pred_string = self.eval_preprocessor.decode( | |||||
pred_ids, skip_special_tokens=True) | |||||
result['preds'].append(pred_string) | |||||
data['tgts'].append(gold_string) | |||||
return result |
@@ -845,7 +845,10 @@ class EpochBasedTrainer(BaseTrainer): | |||||
batch_size = batch_size_per_gpu | batch_size = batch_size_per_gpu | ||||
num_workers = workers_per_gpu | num_workers = workers_per_gpu | ||||
if dist and not isinstance(dataset, torch.utils.data.IterableDataset): | |||||
if dist and not isinstance( | |||||
dataset, | |||||
torch.utils.data.IterableDataset) and self.cfg.model.get( | |||||
'model_parallel_size', 1) == 1: | |||||
sampler = DistributedSampler( | sampler = DistributedSampler( | ||||
dataset, num_replicas=world_size, rank=rank, shuffle=shuffle) | dataset, num_replicas=world_size, rank=rank, shuffle=shuffle) | ||||
else: | else: | ||||
@@ -935,7 +938,7 @@ class EpochBasedTrainer(BaseTrainer): | |||||
""" Evaluation loop used by `EpochBasedTrainer.evaluate()`. | """ Evaluation loop used by `EpochBasedTrainer.evaluate()`. | ||||
""" | """ | ||||
if self._dist: | |||||
if self._dist and self.cfg.model.get('model_parallel_size', 1) == 1: | |||||
from modelscope.trainers.utils.inference import multi_gpu_test | from modelscope.trainers.utils.inference import multi_gpu_test | ||||
metric_values = multi_gpu_test( | metric_values = multi_gpu_test( | ||||
self, | self, | ||||
@@ -0,0 +1,53 @@ | |||||
# Copyright (c) Alibaba, Inc. and its affiliates. | |||||
import argparse | |||||
import os | |||||
import shutil | |||||
import tempfile | |||||
import unittest | |||||
from modelscope.hub.snapshot_download import snapshot_download | |||||
from modelscope.metainfo import Trainers | |||||
from modelscope.msdatasets import MsDataset | |||||
from modelscope.trainers import build_trainer | |||||
from modelscope.utils.constant import ModelFile | |||||
from modelscope.utils.test_utils import test_level | |||||
def test_trainer_with_model_and_args(): | |||||
def concat_answer_context(dataset): | |||||
dataset['src_txt'] = dataset['answers']['text'][0] + '[SEP]' + dataset[ | |||||
'context'] | |||||
return dataset | |||||
from datasets import load_dataset | |||||
dataset_dict = load_dataset('luozhouyang/dureader', 'robust') | |||||
train_dataset = dataset_dict['train'].map(concat_answer_context) \ | |||||
.rename_columns({'question': 'tgt_txt'}).remove_columns('context') \ | |||||
.remove_columns('id').remove_columns('answers') | |||||
eval_dataset = dataset_dict['validation'].map(concat_answer_context) \ | |||||
.rename_columns({'question': 'tgt_txt'}).remove_columns('context') \ | |||||
.remove_columns('id').remove_columns('answers') | |||||
tmp_dir = tempfile.TemporaryDirectory().name | |||||
if not os.path.exists(tmp_dir): | |||||
os.makedirs(tmp_dir) | |||||
model_id = 'damo/nlp_plug_text-generation_27B' | |||||
kwargs = dict( | |||||
model=model_id, | |||||
train_dataset=train_dataset, | |||||
eval_dataset=eval_dataset, | |||||
work_dir=tmp_dir) | |||||
trainer = build_trainer( | |||||
name=Trainers.nlp_plug_trainer, default_args=kwargs) | |||||
trainer.train() | |||||
if __name__ == '__main__': | |||||
parser = argparse.ArgumentParser() | |||||
parser.add_argument('--local_rank') | |||||
test_trainer_with_model_and_args() |