You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_sentence_similarity.py 2.9 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667
  1. # Copyright (c) Alibaba, Inc. and its affiliates.
  2. import shutil
  3. import unittest
  4. from maas_hub.snapshot_download import snapshot_download
  5. from modelscope.models import Model
  6. from modelscope.models.nlp import SbertForSentenceSimilarity
  7. from modelscope.pipelines import SentenceSimilarityPipeline, pipeline
  8. from modelscope.preprocessors import SequenceClassificationPreprocessor
  9. from modelscope.utils.constant import Tasks
  10. from modelscope.utils.hub import get_model_cache_dir
  11. from modelscope.utils.test_utils import test_level
  12. class SentenceSimilarityTest(unittest.TestCase):
  13. model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base'
  14. sentence1 = '今天气温比昨天高么?'
  15. sentence2 = '今天湿度比昨天高么?'
  16. def setUp(self) -> None:
  17. # switch to False if downloading everytime is not desired
  18. purge_cache = True
  19. if purge_cache:
  20. shutil.rmtree(
  21. get_model_cache_dir(self.model_id), ignore_errors=True)
  22. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  23. def test_run(self):
  24. cache_path = snapshot_download(self.model_id)
  25. tokenizer = SequenceClassificationPreprocessor(cache_path)
  26. model = SbertForSentenceSimilarity(cache_path, tokenizer=tokenizer)
  27. pipeline1 = SentenceSimilarityPipeline(model, preprocessor=tokenizer)
  28. pipeline2 = pipeline(
  29. Tasks.sentence_similarity, model=model, preprocessor=tokenizer)
  30. print('test1')
  31. print(f'sentence1: {self.sentence1}\nsentence2: {self.sentence2}\n'
  32. f'pipeline1:{pipeline1(input=(self.sentence1, self.sentence2))}')
  33. print()
  34. print(
  35. f'sentence1: {self.sentence1}\nsentence2: {self.sentence2}\n'
  36. f'pipeline1: {pipeline2(input=(self.sentence1, self.sentence2))}')
  37. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  38. def test_run_with_model_from_modelhub(self):
  39. model = Model.from_pretrained(self.model_id)
  40. tokenizer = SequenceClassificationPreprocessor(model.model_dir)
  41. pipeline_ins = pipeline(
  42. task=Tasks.sentence_similarity,
  43. model=model,
  44. preprocessor=tokenizer)
  45. print(pipeline_ins(input=(self.sentence1, self.sentence2)))
  46. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  47. def test_run_with_model_name(self):
  48. pipeline_ins = pipeline(
  49. task=Tasks.sentence_similarity, model=self.model_id)
  50. print(pipeline_ins(input=(self.sentence1, self.sentence2)))
  51. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  52. def test_run_with_default_model(self):
  53. pipeline_ins = pipeline(task=Tasks.sentence_similarity)
  54. print(pipeline_ins(input=(self.sentence1, self.sentence2)))
  55. if __name__ == '__main__':
  56. unittest.main()