You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_checkpoint_hook.py 6.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220
  1. # Copyright (c) Alibaba, Inc. and its affiliates.
  2. import os
  3. import shutil
  4. import tempfile
  5. import unittest
  6. import json
  7. import numpy as np
  8. import torch
  9. from torch import nn
  10. from modelscope.metainfo import Trainers
  11. from modelscope.metrics.builder import METRICS, MetricKeys
  12. from modelscope.models.base import Model
  13. from modelscope.trainers import build_trainer
  14. from modelscope.utils.constant import LogKeys, ModelFile
  15. from modelscope.utils.registry import default_group
  16. from modelscope.utils.test_utils import create_dummy_test_dataset
  17. SRC_DIR = os.path.dirname(__file__)
  18. def create_dummy_metric():
  19. _global_iter = 0
  20. @METRICS.register_module(
  21. group_key=default_group, module_name='DummyMetric', force=True)
  22. class DummyMetric:
  23. _fake_acc_by_epoch = {1: 0.1, 2: 0.5, 3: 0.2}
  24. def add(*args, **kwargs):
  25. pass
  26. def evaluate(self):
  27. global _global_iter
  28. _global_iter += 1
  29. return {MetricKeys.ACCURACY: self._fake_acc_by_epoch[_global_iter]}
  30. dummy_dataset = create_dummy_test_dataset(
  31. np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20)
  32. class DummyModel(nn.Module, Model):
  33. def __init__(self):
  34. super().__init__()
  35. self.linear = nn.Linear(5, 4)
  36. self.bn = nn.BatchNorm1d(4)
  37. self.model_dir = SRC_DIR
  38. def forward(self, feat, labels):
  39. x = self.linear(feat)
  40. x = self.bn(x)
  41. loss = torch.sum(x)
  42. return dict(logits=x, loss=loss)
  43. class CheckpointHookTest(unittest.TestCase):
  44. def setUp(self):
  45. print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
  46. self.tmp_dir = tempfile.TemporaryDirectory().name
  47. if not os.path.exists(self.tmp_dir):
  48. os.makedirs(self.tmp_dir)
  49. create_dummy_metric()
  50. def tearDown(self):
  51. super().tearDown()
  52. shutil.rmtree(self.tmp_dir)
  53. def test_checkpoint_hook(self):
  54. global _global_iter
  55. _global_iter = 0
  56. json_cfg = {
  57. 'task': 'image_classification',
  58. 'train': {
  59. 'work_dir': self.tmp_dir,
  60. 'dataloader': {
  61. 'batch_size_per_gpu': 2,
  62. 'workers_per_gpu': 1
  63. },
  64. 'optimizer': {
  65. 'type': 'SGD',
  66. 'lr': 0.01,
  67. 'options': {
  68. 'grad_clip': {
  69. 'max_norm': 2.0
  70. }
  71. }
  72. },
  73. 'lr_scheduler': {
  74. 'type': 'StepLR',
  75. 'step_size': 2,
  76. 'options': {
  77. 'warmup': {
  78. 'type': 'LinearWarmup',
  79. 'warmup_iters': 2
  80. }
  81. }
  82. },
  83. 'hooks': [{
  84. 'type': 'CheckpointHook',
  85. 'interval': 1
  86. }]
  87. }
  88. }
  89. config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
  90. with open(config_path, 'w') as f:
  91. json.dump(json_cfg, f)
  92. trainer_name = Trainers.default
  93. kwargs = dict(
  94. cfg_file=config_path,
  95. model=DummyModel(),
  96. data_collator=None,
  97. train_dataset=dummy_dataset,
  98. max_epochs=2)
  99. trainer = build_trainer(trainer_name, kwargs)
  100. trainer.train()
  101. results_files = os.listdir(self.tmp_dir)
  102. self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
  103. self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
  104. output_files = os.listdir(
  105. os.path.join(self.tmp_dir, ModelFile.TRAIN_OUTPUT_DIR))
  106. self.assertIn(ModelFile.CONFIGURATION, output_files)
  107. self.assertIn(ModelFile.TORCH_MODEL_BIN_FILE, output_files)
  108. copy_src_files = os.listdir(SRC_DIR)
  109. self.assertIn(copy_src_files[0], output_files)
  110. self.assertIn(copy_src_files[-1], output_files)
  111. class BestCkptSaverHookTest(unittest.TestCase):
  112. def setUp(self):
  113. print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
  114. self.tmp_dir = tempfile.TemporaryDirectory().name
  115. if not os.path.exists(self.tmp_dir):
  116. os.makedirs(self.tmp_dir)
  117. create_dummy_metric()
  118. def tearDown(self):
  119. super().tearDown()
  120. shutil.rmtree(self.tmp_dir)
  121. def test_best_checkpoint_hook(self):
  122. global _global_iter
  123. _global_iter = 0
  124. json_cfg = {
  125. 'task': 'image_classification',
  126. 'train': {
  127. 'work_dir':
  128. self.tmp_dir,
  129. 'dataloader': {
  130. 'batch_size_per_gpu': 2,
  131. 'workers_per_gpu': 1
  132. },
  133. 'optimizer': {
  134. 'type': 'SGD',
  135. 'lr': 0.01
  136. },
  137. 'lr_scheduler': {
  138. 'type': 'StepLR',
  139. 'step_size': 2
  140. },
  141. 'hooks': [{
  142. 'type': 'BestCkptSaverHook',
  143. 'metric_key': MetricKeys.ACCURACY,
  144. 'rule': 'min'
  145. }, {
  146. 'type': 'EvaluationHook',
  147. 'interval': 1,
  148. }]
  149. },
  150. 'evaluation': {
  151. 'dataloader': {
  152. 'batch_size_per_gpu': 2,
  153. 'workers_per_gpu': 1,
  154. 'shuffle': False
  155. },
  156. 'metrics': ['DummyMetric']
  157. }
  158. }
  159. config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
  160. with open(config_path, 'w') as f:
  161. json.dump(json_cfg, f)
  162. trainer_name = Trainers.default
  163. kwargs = dict(
  164. cfg_file=config_path,
  165. model=DummyModel(),
  166. data_collator=None,
  167. train_dataset=dummy_dataset,
  168. eval_dataset=dummy_dataset,
  169. max_epochs=3)
  170. trainer = build_trainer(trainer_name, kwargs)
  171. trainer.train()
  172. results_files = os.listdir(self.tmp_dir)
  173. self.assertIn(f'best_{LogKeys.EPOCH}1_{MetricKeys.ACCURACY}0.1.pth',
  174. results_files)
  175. output_files = os.listdir(
  176. os.path.join(self.tmp_dir, ModelFile.TRAIN_OUTPUT_DIR))
  177. self.assertIn(ModelFile.CONFIGURATION, output_files)
  178. self.assertIn(ModelFile.TORCH_MODEL_BIN_FILE, output_files)
  179. copy_src_files = os.listdir(SRC_DIR)
  180. self.assertIn(copy_src_files[0], output_files)
  181. self.assertIn(copy_src_files[-1], output_files)
  182. if __name__ == '__main__':
  183. unittest.main()