# Copyright (c) Alibaba, Inc. and its affiliates. import os import shutil import tempfile import unittest import json import numpy as np import torch from torch import nn from modelscope.metainfo import Trainers from modelscope.metrics.builder import METRICS, MetricKeys from modelscope.models.base import Model from modelscope.trainers import build_trainer from modelscope.utils.constant import LogKeys, ModelFile from modelscope.utils.registry import default_group from modelscope.utils.test_utils import create_dummy_test_dataset SRC_DIR = os.path.dirname(__file__) def create_dummy_metric(): _global_iter = 0 @METRICS.register_module( group_key=default_group, module_name='DummyMetric', force=True) class DummyMetric: _fake_acc_by_epoch = {1: 0.1, 2: 0.5, 3: 0.2} def add(*args, **kwargs): pass def evaluate(self): global _global_iter _global_iter += 1 return {MetricKeys.ACCURACY: self._fake_acc_by_epoch[_global_iter]} dummy_dataset = create_dummy_test_dataset( np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20) class DummyModel(nn.Module, Model): def __init__(self): super().__init__() self.linear = nn.Linear(5, 4) self.bn = nn.BatchNorm1d(4) self.model_dir = SRC_DIR def forward(self, feat, labels): x = self.linear(feat) x = self.bn(x) loss = torch.sum(x) return dict(logits=x, loss=loss) class CheckpointHookTest(unittest.TestCase): def setUp(self): print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) self.tmp_dir = tempfile.TemporaryDirectory().name if not os.path.exists(self.tmp_dir): os.makedirs(self.tmp_dir) create_dummy_metric() def tearDown(self): super().tearDown() shutil.rmtree(self.tmp_dir) def test_checkpoint_hook(self): global _global_iter _global_iter = 0 json_cfg = { 'task': 'image_classification', 'train': { 'work_dir': self.tmp_dir, 'dataloader': { 'batch_size_per_gpu': 2, 'workers_per_gpu': 1 }, 'optimizer': { 'type': 'SGD', 'lr': 0.01, 'options': { 'grad_clip': { 'max_norm': 2.0 } } }, 'lr_scheduler': { 'type': 'StepLR', 'step_size': 2, 'options': { 'warmup': { 'type': 'LinearWarmup', 'warmup_iters': 2 } } }, 'hooks': [{ 'type': 'CheckpointHook', 'interval': 1 }] } } config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION) with open(config_path, 'w') as f: json.dump(json_cfg, f) trainer_name = Trainers.default kwargs = dict( cfg_file=config_path, model=DummyModel(), data_collator=None, train_dataset=dummy_dataset, max_epochs=2) trainer = build_trainer(trainer_name, kwargs) trainer.train() results_files = os.listdir(self.tmp_dir) self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files) self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files) output_files = os.listdir( os.path.join(self.tmp_dir, ModelFile.TRAIN_OUTPUT_DIR)) self.assertIn(ModelFile.CONFIGURATION, output_files) self.assertIn(ModelFile.TORCH_MODEL_BIN_FILE, output_files) copy_src_files = os.listdir(SRC_DIR) self.assertIn(copy_src_files[0], output_files) self.assertIn(copy_src_files[-1], output_files) class BestCkptSaverHookTest(unittest.TestCase): def setUp(self): print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) self.tmp_dir = tempfile.TemporaryDirectory().name if not os.path.exists(self.tmp_dir): os.makedirs(self.tmp_dir) create_dummy_metric() def tearDown(self): super().tearDown() shutil.rmtree(self.tmp_dir) def test_best_checkpoint_hook(self): global _global_iter _global_iter = 0 json_cfg = { 'task': 'image_classification', 'train': { 'work_dir': self.tmp_dir, 'dataloader': { 'batch_size_per_gpu': 2, 'workers_per_gpu': 1 }, 'optimizer': { 'type': 'SGD', 'lr': 0.01 }, 'lr_scheduler': { 'type': 'StepLR', 'step_size': 2 }, 'hooks': [{ 'type': 'BestCkptSaverHook', 'metric_key': MetricKeys.ACCURACY, 'rule': 'min' }, { 'type': 'EvaluationHook', 'interval': 1, }] }, 'evaluation': { 'dataloader': { 'batch_size_per_gpu': 2, 'workers_per_gpu': 1, 'shuffle': False }, 'metrics': ['DummyMetric'] } } config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION) with open(config_path, 'w') as f: json.dump(json_cfg, f) trainer_name = Trainers.default kwargs = dict( cfg_file=config_path, model=DummyModel(), data_collator=None, train_dataset=dummy_dataset, eval_dataset=dummy_dataset, max_epochs=3) trainer = build_trainer(trainer_name, kwargs) trainer.train() results_files = os.listdir(self.tmp_dir) self.assertIn(f'best_{LogKeys.EPOCH}1_{MetricKeys.ACCURACY}0.1.pth', results_files) output_files = os.listdir( os.path.join(self.tmp_dir, ModelFile.TRAIN_OUTPUT_DIR)) self.assertIn(ModelFile.CONFIGURATION, output_files) self.assertIn(ModelFile.TORCH_MODEL_BIN_FILE, output_files) copy_src_files = os.listdir(SRC_DIR) self.assertIn(copy_src_files[0], output_files) self.assertIn(copy_src_files[-1], output_files) if __name__ == '__main__': unittest.main()