You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_tensorboard_hook.py 3.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106
  1. # Copyright (c) Alibaba, Inc. and its affiliates.
  2. import glob
  3. import os
  4. import shutil
  5. import tempfile
  6. import unittest
  7. import json
  8. import numpy as np
  9. import torch
  10. from torch import nn
  11. from modelscope.trainers import build_trainer
  12. from modelscope.utils.constant import LogKeys, ModelFile
  13. from modelscope.utils.test_utils import create_dummy_test_dataset
  14. dummy_dataset = create_dummy_test_dataset(
  15. np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20)
  16. class DummyModel(nn.Module):
  17. def __init__(self):
  18. super().__init__()
  19. self.linear = nn.Linear(5, 4)
  20. self.bn = nn.BatchNorm1d(4)
  21. def forward(self, feat, labels):
  22. x = self.linear(feat)
  23. x = self.bn(x)
  24. loss = torch.sum(x)
  25. return dict(logits=x, loss=loss)
  26. class TensorboardHookTest(unittest.TestCase):
  27. def setUp(self):
  28. print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
  29. self.tmp_dir = tempfile.TemporaryDirectory().name
  30. if not os.path.exists(self.tmp_dir):
  31. os.makedirs(self.tmp_dir)
  32. def tearDown(self):
  33. super().tearDown()
  34. shutil.rmtree(self.tmp_dir)
  35. def test_tensorboard_hook(self):
  36. json_cfg = {
  37. 'task': 'image_classification',
  38. 'train': {
  39. 'work_dir': self.tmp_dir,
  40. 'dataloader': {
  41. 'batch_size_per_gpu': 2,
  42. 'workers_per_gpu': 1
  43. },
  44. 'optimizer': {
  45. 'type': 'SGD',
  46. 'lr': 0.01
  47. },
  48. 'lr_scheduler': {
  49. 'type': 'StepLR',
  50. 'step_size': 2,
  51. },
  52. 'hooks': [{
  53. 'type': 'TensorboardHook',
  54. 'interval': 2
  55. }]
  56. }
  57. }
  58. config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
  59. with open(config_path, 'w') as f:
  60. json.dump(json_cfg, f)
  61. trainer_name = 'EpochBasedTrainer'
  62. kwargs = dict(
  63. cfg_file=config_path,
  64. model=DummyModel(),
  65. data_collator=None,
  66. train_dataset=dummy_dataset,
  67. max_epochs=2)
  68. trainer = build_trainer(trainer_name, kwargs)
  69. trainer.train()
  70. tb_out_dir = os.path.join(self.tmp_dir, 'tensorboard_output')
  71. events_files = glob.glob(
  72. os.path.join(tb_out_dir, 'events.out.tfevents.*'))
  73. self.assertEqual(len(events_files), 1)
  74. from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
  75. ea = EventAccumulator(events_files[0])
  76. ea.Reload()
  77. self.assertEqual(len(ea.Scalars(LogKeys.LOSS)), 10)
  78. self.assertEqual(len(ea.Scalars(LogKeys.LR)), 10)
  79. for i in range(5):
  80. self.assertAlmostEqual(
  81. ea.Scalars(LogKeys.LR)[i].value, 0.01, delta=0.001)
  82. for i in range(5, 10):
  83. self.assertAlmostEqual(
  84. ea.Scalars(LogKeys.LR)[i].value, 0.01, delta=0.0001)
  85. if __name__ == '__main__':
  86. unittest.main()