# Copyright (c) Alibaba, Inc. and its affiliates. import glob import os import shutil import tempfile import unittest import json import numpy as np import torch from torch import nn from modelscope.trainers import build_trainer from modelscope.utils.constant import LogKeys, ModelFile from modelscope.utils.test_utils import create_dummy_test_dataset dummy_dataset = create_dummy_test_dataset( np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20) class DummyModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(5, 4) self.bn = nn.BatchNorm1d(4) def forward(self, feat, labels): x = self.linear(feat) x = self.bn(x) loss = torch.sum(x) return dict(logits=x, loss=loss) class TensorboardHookTest(unittest.TestCase): def setUp(self): print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) self.tmp_dir = tempfile.TemporaryDirectory().name if not os.path.exists(self.tmp_dir): os.makedirs(self.tmp_dir) def tearDown(self): super().tearDown() shutil.rmtree(self.tmp_dir) def test_tensorboard_hook(self): json_cfg = { 'task': 'image_classification', 'train': { 'work_dir': self.tmp_dir, 'dataloader': { 'batch_size_per_gpu': 2, 'workers_per_gpu': 1 }, 'optimizer': { 'type': 'SGD', 'lr': 0.01 }, 'lr_scheduler': { 'type': 'StepLR', 'step_size': 2, }, 'hooks': [{ 'type': 'TensorboardHook', 'interval': 2 }] } } config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION) with open(config_path, 'w') as f: json.dump(json_cfg, f) trainer_name = 'EpochBasedTrainer' kwargs = dict( cfg_file=config_path, model=DummyModel(), data_collator=None, train_dataset=dummy_dataset, max_epochs=2) trainer = build_trainer(trainer_name, kwargs) trainer.train() tb_out_dir = os.path.join(self.tmp_dir, 'tensorboard_output') events_files = glob.glob( os.path.join(tb_out_dir, 'events.out.tfevents.*')) self.assertEqual(len(events_files), 1) from tensorboard.backend.event_processing.event_accumulator import EventAccumulator ea = EventAccumulator(events_files[0]) ea.Reload() self.assertEqual(len(ea.Scalars(LogKeys.LOSS)), 10) self.assertEqual(len(ea.Scalars(LogKeys.LR)), 10) for i in range(5): self.assertAlmostEqual( ea.Scalars(LogKeys.LR)[i].value, 0.01, delta=0.001) for i in range(5, 10): self.assertAlmostEqual( ea.Scalars(LogKeys.LR)[i].value, 0.01, delta=0.0001) if __name__ == '__main__': unittest.main()