You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_image_instance_segmentation_trainer.py 4.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124
  1. # Copyright (c) Alibaba, Inc. and its affiliates.
  2. import os
  3. import shutil
  4. import tempfile
  5. import unittest
  6. import zipfile
  7. from functools import partial
  8. from modelscope.hub.snapshot_download import snapshot_download
  9. from modelscope.metainfo import Trainers
  10. from modelscope.models.cv.image_instance_segmentation import \
  11. CascadeMaskRCNNSwinModel
  12. from modelscope.msdatasets import MsDataset
  13. from modelscope.msdatasets.task_datasets import \
  14. ImageInstanceSegmentationCocoDataset
  15. from modelscope.trainers import build_trainer
  16. from modelscope.utils.config import Config, ConfigDict
  17. from modelscope.utils.constant import DownloadMode, ModelFile
  18. from modelscope.utils.test_utils import test_level
  19. class TestImageInstanceSegmentationTrainer(unittest.TestCase):
  20. model_id = 'damo/cv_swin-b_image-instance-segmentation_coco'
  21. def setUp(self):
  22. print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
  23. cache_path = snapshot_download(self.model_id)
  24. config_path = os.path.join(cache_path, ModelFile.CONFIGURATION)
  25. cfg = Config.from_file(config_path)
  26. max_epochs = cfg.train.max_epochs
  27. samples_per_gpu = cfg.train.dataloader.batch_size_per_gpu
  28. try:
  29. train_data_cfg = cfg.dataset.train
  30. val_data_cfg = cfg.dataset.val
  31. except Exception:
  32. train_data_cfg = None
  33. val_data_cfg = None
  34. if train_data_cfg is None:
  35. # use default toy data
  36. train_data_cfg = ConfigDict(
  37. name='pets_small', split='train', test_mode=False)
  38. if val_data_cfg is None:
  39. val_data_cfg = ConfigDict(
  40. name='pets_small', split='validation', test_mode=True)
  41. self.train_dataset = MsDataset.load(
  42. dataset_name=train_data_cfg.name,
  43. split=train_data_cfg.split,
  44. test_mode=train_data_cfg.test_mode,
  45. download_mode=DownloadMode.FORCE_REDOWNLOAD)
  46. assert self.train_dataset.config_kwargs['classes']
  47. assert next(
  48. iter(self.train_dataset.config_kwargs['split_config'].values()))
  49. self.eval_dataset = MsDataset.load(
  50. dataset_name=val_data_cfg.name,
  51. split=val_data_cfg.split,
  52. test_mode=val_data_cfg.test_mode,
  53. download_mode=DownloadMode.FORCE_REDOWNLOAD)
  54. assert self.eval_dataset.config_kwargs['classes']
  55. assert next(
  56. iter(self.eval_dataset.config_kwargs['split_config'].values()))
  57. from mmcv.parallel import collate
  58. self.collate_fn = partial(collate, samples_per_gpu=samples_per_gpu)
  59. self.max_epochs = max_epochs
  60. self.tmp_dir = tempfile.TemporaryDirectory().name
  61. if not os.path.exists(self.tmp_dir):
  62. os.makedirs(self.tmp_dir)
  63. def tearDown(self):
  64. shutil.rmtree(self.tmp_dir)
  65. super().tearDown()
  66. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  67. def test_trainer(self):
  68. kwargs = dict(
  69. model=self.model_id,
  70. data_collator=self.collate_fn,
  71. train_dataset=self.train_dataset,
  72. eval_dataset=self.eval_dataset,
  73. work_dir=self.tmp_dir)
  74. trainer = build_trainer(
  75. name=Trainers.image_instance_segmentation, default_args=kwargs)
  76. trainer.train()
  77. results_files = os.listdir(self.tmp_dir)
  78. self.assertIn(f'{trainer.timestamp}.log.json', results_files)
  79. for i in range(self.max_epochs):
  80. self.assertIn(f'epoch_{i+1}.pth', results_files)
  81. @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
  82. def test_trainer_with_model_and_args(self):
  83. tmp_dir = tempfile.TemporaryDirectory().name
  84. if not os.path.exists(tmp_dir):
  85. os.makedirs(tmp_dir)
  86. cache_path = snapshot_download(self.model_id)
  87. model = CascadeMaskRCNNSwinModel.from_pretrained(cache_path)
  88. kwargs = dict(
  89. cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
  90. model=model,
  91. data_collator=self.collate_fn,
  92. train_dataset=self.train_dataset,
  93. eval_dataset=self.eval_dataset,
  94. work_dir=self.tmp_dir)
  95. trainer = build_trainer(
  96. name=Trainers.image_instance_segmentation, default_args=kwargs)
  97. trainer.train()
  98. results_files = os.listdir(self.tmp_dir)
  99. self.assertIn(f'{trainer.timestamp}.log.json', results_files)
  100. for i in range(self.max_epochs):
  101. self.assertIn(f'epoch_{i+1}.pth', results_files)
  102. if __name__ == '__main__':
  103. unittest.main()