# Copyright (c) Alibaba, Inc. and its affiliates. import os import shutil import tempfile import unittest import zipfile from functools import partial from modelscope.hub.snapshot_download import snapshot_download from modelscope.metainfo import Trainers from modelscope.models.cv.image_instance_segmentation import \ CascadeMaskRCNNSwinModel from modelscope.msdatasets import MsDataset from modelscope.msdatasets.task_datasets import \ ImageInstanceSegmentationCocoDataset from modelscope.trainers import build_trainer from modelscope.utils.config import Config, ConfigDict from modelscope.utils.constant import DownloadMode, ModelFile from modelscope.utils.test_utils import test_level class TestImageInstanceSegmentationTrainer(unittest.TestCase): model_id = 'damo/cv_swin-b_image-instance-segmentation_coco' def setUp(self): print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) cache_path = snapshot_download(self.model_id) config_path = os.path.join(cache_path, ModelFile.CONFIGURATION) cfg = Config.from_file(config_path) max_epochs = cfg.train.max_epochs samples_per_gpu = cfg.train.dataloader.batch_size_per_gpu try: train_data_cfg = cfg.dataset.train val_data_cfg = cfg.dataset.val except Exception: train_data_cfg = None val_data_cfg = None if train_data_cfg is None: # use default toy data train_data_cfg = ConfigDict( name='pets_small', split='train', test_mode=False) if val_data_cfg is None: val_data_cfg = ConfigDict( name='pets_small', split='validation', test_mode=True) self.train_dataset = MsDataset.load( dataset_name=train_data_cfg.name, split=train_data_cfg.split, test_mode=train_data_cfg.test_mode, download_mode=DownloadMode.FORCE_REDOWNLOAD) assert self.train_dataset.config_kwargs['classes'] assert next( iter(self.train_dataset.config_kwargs['split_config'].values())) self.eval_dataset = MsDataset.load( dataset_name=val_data_cfg.name, split=val_data_cfg.split, test_mode=val_data_cfg.test_mode, download_mode=DownloadMode.FORCE_REDOWNLOAD) assert self.eval_dataset.config_kwargs['classes'] assert next( iter(self.eval_dataset.config_kwargs['split_config'].values())) from mmcv.parallel import collate self.collate_fn = partial(collate, samples_per_gpu=samples_per_gpu) self.max_epochs = max_epochs self.tmp_dir = tempfile.TemporaryDirectory().name if not os.path.exists(self.tmp_dir): os.makedirs(self.tmp_dir) def tearDown(self): shutil.rmtree(self.tmp_dir) super().tearDown() @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_trainer(self): kwargs = dict( model=self.model_id, data_collator=self.collate_fn, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, work_dir=self.tmp_dir) trainer = build_trainer( name=Trainers.image_instance_segmentation, default_args=kwargs) trainer.train() results_files = os.listdir(self.tmp_dir) self.assertIn(f'{trainer.timestamp}.log.json', results_files) for i in range(self.max_epochs): self.assertIn(f'epoch_{i+1}.pth', results_files) @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_trainer_with_model_and_args(self): tmp_dir = tempfile.TemporaryDirectory().name if not os.path.exists(tmp_dir): os.makedirs(tmp_dir) cache_path = snapshot_download(self.model_id) model = CascadeMaskRCNNSwinModel.from_pretrained(cache_path) kwargs = dict( cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION), model=model, data_collator=self.collate_fn, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, work_dir=self.tmp_dir) trainer = build_trainer( name=Trainers.image_instance_segmentation, default_args=kwargs) trainer.train() results_files = os.listdir(self.tmp_dir) self.assertIn(f'{trainer.timestamp}.log.json', results_files) for i in range(self.max_epochs): self.assertIn(f'epoch_{i+1}.pth', results_files) if __name__ == '__main__': unittest.main()