You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_finetune_mplug.py 5.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144
  1. # Copyright (c) Alibaba, Inc. and its affiliates.
  2. import os
  3. import shutil
  4. import tempfile
  5. import unittest
  6. from modelscope.hub.snapshot_download import snapshot_download
  7. from modelscope.metainfo import Trainers
  8. from modelscope.models.multi_modal import MPlugForAllTasks
  9. from modelscope.msdatasets import MsDataset
  10. from modelscope.trainers import EpochBasedTrainer, build_trainer
  11. from modelscope.utils.constant import ModelFile
  12. from modelscope.utils.test_utils import test_level
  13. class TestFinetuneMPlug(unittest.TestCase):
  14. def setUp(self):
  15. print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
  16. self.tmp_dir = tempfile.TemporaryDirectory().name
  17. if not os.path.exists(self.tmp_dir):
  18. os.makedirs(self.tmp_dir)
  19. datadict = MsDataset.load('coco_captions_small_slice')
  20. self.train_dataset = MsDataset(
  21. datadict['train'].remap_columns({
  22. 'image:FILE': 'image',
  23. 'answer:Value': 'answer'
  24. }).map(lambda _: {'question': 'what the picture describes?'}))
  25. self.test_dataset = MsDataset(
  26. datadict['test'].remap_columns({
  27. 'image:FILE': 'image',
  28. 'answer:Value': 'answer'
  29. }).map(lambda _: {'question': 'what the picture describes?'}))
  30. self.max_epochs = 2
  31. def tearDown(self):
  32. shutil.rmtree(self.tmp_dir)
  33. super().tearDown()
  34. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  35. def test_trainer_with_caption(self):
  36. kwargs = dict(
  37. model='damo/mplug_image-captioning_coco_base_en',
  38. train_dataset=self.train_dataset,
  39. eval_dataset=self.test_dataset,
  40. max_epochs=self.max_epochs,
  41. work_dir=self.tmp_dir)
  42. trainer: EpochBasedTrainer = build_trainer(
  43. name=Trainers.mplug, default_args=kwargs)
  44. trainer.train()
  45. @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
  46. def test_trainer_with_caption_with_model_and_args(self):
  47. cache_path = snapshot_download(
  48. 'damo/mplug_image-captioning_coco_base_en')
  49. model = MPlugForAllTasks.from_pretrained(cache_path)
  50. kwargs = dict(
  51. cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
  52. model=model,
  53. train_dataset=self.train_dataset,
  54. eval_dataset=self.test_dataset,
  55. max_epochs=self.max_epochs,
  56. work_dir=self.tmp_dir)
  57. trainer: EpochBasedTrainer = build_trainer(
  58. name=Trainers.mplug, default_args=kwargs)
  59. trainer.train()
  60. results_files = os.listdir(self.tmp_dir)
  61. self.assertIn(f'{trainer.timestamp}.log.json', results_files)
  62. for i in range(self.max_epochs):
  63. self.assertIn(f'epoch_{i+1}.pth', results_files)
  64. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  65. def test_trainer_with_vqa(self):
  66. kwargs = dict(
  67. model='damo/mplug_visual-question-answering_coco_large_en',
  68. train_dataset=self.train_dataset,
  69. eval_dataset=self.test_dataset,
  70. max_epochs=self.max_epochs,
  71. work_dir=self.tmp_dir)
  72. trainer: EpochBasedTrainer = build_trainer(
  73. name=Trainers.mplug, default_args=kwargs)
  74. trainer.train()
  75. @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
  76. def test_trainer_with_vqa_with_model_and_args(self):
  77. cache_path = snapshot_download(
  78. 'damo/mplug_visual-question-answering_coco_large_en')
  79. model = MPlugForAllTasks.from_pretrained(cache_path)
  80. kwargs = dict(
  81. cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
  82. model=model,
  83. train_dataset=self.train_dataset,
  84. eval_dataset=self.test_dataset,
  85. max_epochs=self.max_epochs,
  86. work_dir=self.tmp_dir)
  87. trainer: EpochBasedTrainer = build_trainer(
  88. name=Trainers.mplug, default_args=kwargs)
  89. trainer.train()
  90. results_files = os.listdir(self.tmp_dir)
  91. self.assertIn(f'{trainer.timestamp}.log.json', results_files)
  92. for i in range(self.max_epochs):
  93. self.assertIn(f'epoch_{i+1}.pth', results_files)
  94. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  95. def test_trainer_with_retrieval(self):
  96. kwargs = dict(
  97. model='damo/mplug_image-text-retrieval_flickr30k_large_en',
  98. train_dataset=self.train_dataset,
  99. eval_dataset=self.test_dataset,
  100. max_epochs=self.max_epochs,
  101. work_dir=self.tmp_dir)
  102. trainer: EpochBasedTrainer = build_trainer(
  103. name=Trainers.mplug, default_args=kwargs)
  104. trainer.train()
  105. @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
  106. def test_trainer_with_retrieval_with_model_and_args(self):
  107. cache_path = snapshot_download(
  108. 'damo/mplug_image-text-retrieval_flickr30k_large_en')
  109. model = MPlugForAllTasks.from_pretrained(cache_path)
  110. kwargs = dict(
  111. cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
  112. model=model,
  113. train_dataset=self.train_dataset,
  114. eval_dataset=self.test_dataset,
  115. max_epochs=self.max_epochs,
  116. work_dir=self.tmp_dir)
  117. trainer: EpochBasedTrainer = build_trainer(
  118. name=Trainers.mplug, default_args=kwargs)
  119. trainer.train()
  120. results_files = os.listdir(self.tmp_dir)
  121. self.assertIn(f'{trainer.timestamp}.log.json', results_files)
  122. for i in range(self.max_epochs):
  123. self.assertIn(f'epoch_{i+1}.pth', results_files)
  124. if __name__ == '__main__':
  125. unittest.main()