# Copyright (c) Alibaba, Inc. and its affiliates. import os import shutil import tempfile import unittest from modelscope.hub.snapshot_download import snapshot_download from modelscope.metainfo import Trainers from modelscope.models.multi_modal import MPlugForAllTasks from modelscope.msdatasets import MsDataset from modelscope.trainers import EpochBasedTrainer, build_trainer from modelscope.utils.constant import ModelFile from modelscope.utils.test_utils import test_level class TestFinetuneMPlug(unittest.TestCase): def setUp(self): print(('Testing %s.%s' % (type(self).__name__, self._testMethodName))) self.tmp_dir = tempfile.TemporaryDirectory().name if not os.path.exists(self.tmp_dir): os.makedirs(self.tmp_dir) datadict = MsDataset.load('coco_captions_small_slice') self.train_dataset = MsDataset( datadict['train'].remap_columns({ 'image:FILE': 'image', 'answer:Value': 'answer' }).map(lambda _: {'question': 'what the picture describes?'})) self.test_dataset = MsDataset( datadict['test'].remap_columns({ 'image:FILE': 'image', 'answer:Value': 'answer' }).map(lambda _: {'question': 'what the picture describes?'})) self.max_epochs = 2 def tearDown(self): shutil.rmtree(self.tmp_dir) super().tearDown() @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_trainer_with_caption(self): kwargs = dict( model='damo/mplug_image-captioning_coco_base_en', train_dataset=self.train_dataset, eval_dataset=self.test_dataset, max_epochs=self.max_epochs, work_dir=self.tmp_dir) trainer: EpochBasedTrainer = build_trainer( name=Trainers.mplug, default_args=kwargs) trainer.train() @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_trainer_with_caption_with_model_and_args(self): cache_path = snapshot_download( 'damo/mplug_image-captioning_coco_base_en') model = MPlugForAllTasks.from_pretrained(cache_path) kwargs = dict( cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION), model=model, train_dataset=self.train_dataset, eval_dataset=self.test_dataset, max_epochs=self.max_epochs, work_dir=self.tmp_dir) trainer: EpochBasedTrainer = build_trainer( name=Trainers.mplug, default_args=kwargs) trainer.train() results_files = os.listdir(self.tmp_dir) self.assertIn(f'{trainer.timestamp}.log.json', results_files) for i in range(self.max_epochs): self.assertIn(f'epoch_{i+1}.pth', results_files) @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_trainer_with_vqa(self): kwargs = dict( model='damo/mplug_visual-question-answering_coco_large_en', train_dataset=self.train_dataset, eval_dataset=self.test_dataset, max_epochs=self.max_epochs, work_dir=self.tmp_dir) trainer: EpochBasedTrainer = build_trainer( name=Trainers.mplug, default_args=kwargs) trainer.train() @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_trainer_with_vqa_with_model_and_args(self): cache_path = snapshot_download( 'damo/mplug_visual-question-answering_coco_large_en') model = MPlugForAllTasks.from_pretrained(cache_path) kwargs = dict( cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION), model=model, train_dataset=self.train_dataset, eval_dataset=self.test_dataset, max_epochs=self.max_epochs, work_dir=self.tmp_dir) trainer: EpochBasedTrainer = build_trainer( name=Trainers.mplug, default_args=kwargs) trainer.train() results_files = os.listdir(self.tmp_dir) self.assertIn(f'{trainer.timestamp}.log.json', results_files) for i in range(self.max_epochs): self.assertIn(f'epoch_{i+1}.pth', results_files) @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_trainer_with_retrieval(self): kwargs = dict( model='damo/mplug_image-text-retrieval_flickr30k_large_en', train_dataset=self.train_dataset, eval_dataset=self.test_dataset, max_epochs=self.max_epochs, work_dir=self.tmp_dir) trainer: EpochBasedTrainer = build_trainer( name=Trainers.mplug, default_args=kwargs) trainer.train() @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_trainer_with_retrieval_with_model_and_args(self): cache_path = snapshot_download( 'damo/mplug_image-text-retrieval_flickr30k_large_en') model = MPlugForAllTasks.from_pretrained(cache_path) kwargs = dict( cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION), model=model, train_dataset=self.train_dataset, eval_dataset=self.test_dataset, max_epochs=self.max_epochs, work_dir=self.tmp_dir) trainer: EpochBasedTrainer = build_trainer( name=Trainers.mplug, default_args=kwargs) trainer.train() results_files = os.listdir(self.tmp_dir) self.assertIn(f'{trainer.timestamp}.log.json', results_files) for i in range(self.max_epochs): self.assertIn(f'epoch_{i+1}.pth', results_files) if __name__ == '__main__': unittest.main()