|
|
@@ -0,0 +1,77 @@ |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
import mindspore.numpy as mnp |
|
|
|
|
|
import mindspore |
|
|
|
|
|
from mindspore import Tensor, Parameter |
|
|
|
|
|
|
|
|
|
|
|
def adjust_learning_rate(optimizer, epoch, args): |
|
|
|
|
|
if args.lradj == 'type1': |
|
|
|
|
|
lr_adjust = {epoch: args.learning_rate * (0.5 ** ((epoch-1) // 1))} |
|
|
|
|
|
elif args.lradj == 'type2': |
|
|
|
|
|
lr_adjust = { |
|
|
|
|
|
2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6, |
|
|
|
|
|
10: 5e-7, 15: 1e-7, 20: 5e-8 |
|
|
|
|
|
} |
|
|
|
|
|
if epoch in lr_adjust.keys(): |
|
|
|
|
|
lr = lr_adjust[epoch] |
|
|
|
|
|
for param_group in optimizer.parameters(): |
|
|
|
|
|
param_group.set_lr(lr) |
|
|
|
|
|
print('Updating learning rate to {}'.format(lr)) |
|
|
|
|
|
|
|
|
|
|
|
class EarlyStopping: |
|
|
|
|
|
def __init__(self, patience=7, verbose=False, delta=0): |
|
|
|
|
|
self.patience = patience |
|
|
|
|
|
self.verbose = verbose |
|
|
|
|
|
self.counter = 0 |
|
|
|
|
|
self.best_score = None |
|
|
|
|
|
self.early_stop = False |
|
|
|
|
|
self.val_loss_min = np.Inf |
|
|
|
|
|
self.delta = delta |
|
|
|
|
|
|
|
|
|
|
|
def __call__(self, val_loss, model, path): |
|
|
|
|
|
score = -val_loss |
|
|
|
|
|
if self.best_score is None: |
|
|
|
|
|
self.best_score = score |
|
|
|
|
|
self.save_checkpoint(val_loss, model, path) |
|
|
|
|
|
elif score < self.best_score + self.delta: |
|
|
|
|
|
self.counter += 1 |
|
|
|
|
|
print(f'EarlyStopping counter: {self.counter} out of {self.patience}') |
|
|
|
|
|
if self.counter >= self.patience: |
|
|
|
|
|
self.early_stop = True |
|
|
|
|
|
else: |
|
|
|
|
|
self.best_score = score |
|
|
|
|
|
self.save_checkpoint(val_loss, model, path) |
|
|
|
|
|
self.counter = 0 |
|
|
|
|
|
|
|
|
|
|
|
def save_checkpoint(self, val_loss, model, path): |
|
|
|
|
|
if self.verbose: |
|
|
|
|
|
print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') |
|
|
|
|
|
model.save_checkpoint(path + '/' + 'checkpoint.ckpt') |
|
|
|
|
|
self.val_loss_min = val_loss |
|
|
|
|
|
|
|
|
|
|
|
class dotdict(dict): |
|
|
|
|
|
"""dot.notation access to dictionary attributes""" |
|
|
|
|
|
__getattr__ = dict.get |
|
|
|
|
|
__setattr__ = dict.__setitem__ |
|
|
|
|
|
__delattr__ = dict.__delitem__ |
|
|
|
|
|
|
|
|
|
|
|
class StandardScaler(): |
|
|
|
|
|
def __init__(self): |
|
|
|
|
|
self.mean = 0. |
|
|
|
|
|
self.std = 1. |
|
|
|
|
|
|
|
|
|
|
|
def fit(self, data): |
|
|
|
|
|
self.mean = mnp.mean(data, 0) |
|
|
|
|
|
self.std = mnp.std(data, 0) |
|
|
|
|
|
|
|
|
|
|
|
def transform(self, data): |
|
|
|
|
|
mean = Tensor(self.mean, mindspore.float32) |
|
|
|
|
|
std = Tensor(self.std, mindspore.float32) |
|
|
|
|
|
return (data - mean) / std |
|
|
|
|
|
|
|
|
|
|
|
def inverse_transform(self, data): |
|
|
|
|
|
mean = Tensor(self.mean, mindspore.float32) |
|
|
|
|
|
std = Tensor(self.std, mindspore.float32) |
|
|
|
|
|
if data.shape[-1] != mean.shape[-1]: |
|
|
|
|
|
mean = mean[-1:] |
|
|
|
|
|
std = std[-1:] |
|
|
|
|
|
return (data * std) + mean |