| @@ -1,77 +0,0 @@ | |||
| import numpy as np | |||
| import mindspore.numpy as mnp | |||
| import mindspore | |||
| from mindspore import Tensor, Parameter | |||
| def adjust_learning_rate(optimizer, epoch, args): | |||
| if args.lradj == 'type1': | |||
| lr_adjust = {epoch: args.learning_rate * (0.5 ** ((epoch-1) // 1))} | |||
| elif args.lradj == 'type2': | |||
| lr_adjust = { | |||
| 2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6, | |||
| 10: 5e-7, 15: 1e-7, 20: 5e-8 | |||
| } | |||
| if epoch in lr_adjust.keys(): | |||
| lr = lr_adjust[epoch] | |||
| for param_group in optimizer.parameters(): | |||
| param_group.set_lr(lr) | |||
| print('Updating learning rate to {}'.format(lr)) | |||
| class EarlyStopping: | |||
| def __init__(self, patience=7, verbose=False, delta=0): | |||
| self.patience = patience | |||
| self.verbose = verbose | |||
| self.counter = 0 | |||
| self.best_score = None | |||
| self.early_stop = False | |||
| self.val_loss_min = np.Inf | |||
| self.delta = delta | |||
| def __call__(self, val_loss, model, path): | |||
| score = -val_loss | |||
| if self.best_score is None: | |||
| self.best_score = score | |||
| self.save_checkpoint(val_loss, model, path) | |||
| elif score < self.best_score + self.delta: | |||
| self.counter += 1 | |||
| print(f'EarlyStopping counter: {self.counter} out of {self.patience}') | |||
| if self.counter >= self.patience: | |||
| self.early_stop = True | |||
| else: | |||
| self.best_score = score | |||
| self.save_checkpoint(val_loss, model, path) | |||
| self.counter = 0 | |||
| def save_checkpoint(self, val_loss, model, path): | |||
| if self.verbose: | |||
| print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') | |||
| model.save_checkpoint(path + '/' + 'checkpoint.ckpt') | |||
| self.val_loss_min = val_loss | |||
| class dotdict(dict): | |||
| """dot.notation access to dictionary attributes""" | |||
| __getattr__ = dict.get | |||
| __setattr__ = dict.__setitem__ | |||
| __delattr__ = dict.__delitem__ | |||
| class StandardScaler(): | |||
| def __init__(self): | |||
| self.mean = 0. | |||
| self.std = 1. | |||
| def fit(self, data): | |||
| self.mean = mnp.mean(data, 0) | |||
| self.std = mnp.std(data, 0) | |||
| def transform(self, data): | |||
| mean = Tensor(self.mean, mindspore.float32) | |||
| std = Tensor(self.std, mindspore.float32) | |||
| return (data - mean) / std | |||
| def inverse_transform(self, data): | |||
| mean = Tensor(self.mean, mindspore.float32) | |||
| std = Tensor(self.std, mindspore.float32) | |||
| if data.shape[-1] != mean.shape[-1]: | |||
| mean = mean[-1:] | |||
| std = std[-1:] | |||
| return (data * std) + mean | |||