@@ -1,292 +0,0 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
import os | |||
import re | |||
import numpy as np | |||
import matplotlib.image as mp | |||
import dlib | |||
import face_recognition as fr | |||
import face_recognition_models as frm | |||
from PIL import Image, ImageDraw | |||
import mindspore | |||
from mindspore.dataset.vision.py_transforms import ToPIL as ToPILImage | |||
from mindspore import Parameter, ops, nn, Tensor | |||
from mindspore.dataset.vision.py_transforms import ToTensor | |||
import mindspore.dataset.vision.py_transforms as P | |||
from loss_design import TrainOneStepCell,MyWithLossCell, FaceLossTargeTattack,FaceLossNoTargetAttack | |||
from FaceRecognition.eval import get_net | |||
class Attack(object): | |||
""" | |||
Class used to create adversarial facial recognition attacks | |||
""" | |||
def __init__(self, input_img, target_img, seed=None): | |||
""" | |||
Initialization for Attack class. | |||
Args: | |||
input_img : Image to train on. | |||
target_img : Image to target the adversarial attack against. | |||
seed : optional Sets custom seed for reproducability. Default is generated randomly. | |||
""" | |||
if (seed is not None): np.random.seed(seed) | |||
self.MEAN = Tensor([0.485, 0.456, 0.406]) | |||
self.STD = Tensor([0.229, 0.224, 0.225]) | |||
self.LOSS = Tensor(0) | |||
self.expand_dims = mindspore.ops.ExpandDims() | |||
self.imageize = ToPILImage() | |||
self.tensorize = ToTensor() | |||
self.normalize = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |||
self.resnet = get_net() | |||
self.input_tensor = Tensor(self.normalize(self.tensorize(input_img))) | |||
self.target_tensor = Tensor(self.normalize(self.tensorize(target_img))) | |||
mp.imsave('./outputs/input图像.jpg', np.transpose(self._reverse_norm(self.input_tensor).asnumpy(), (1, 2, 0))) | |||
mp.imsave('./outputs/target图像.jpg', | |||
np.transpose(self._reverse_norm(self.target_tensor).asnumpy(), (1, 2, 0))) | |||
self.input_emb = self.resnet(self.expand_dims(self.input_tensor, 0)) | |||
self.target_emb = self.resnet(self.expand_dims(self.target_tensor, 0)) | |||
self.adversarial_emb = None | |||
self.mask_tensor = self._create_mask(input_img) | |||
self.ref = self.mask_tensor | |||
self.pm = Parameter(self.mask_tensor) | |||
self.opt = nn.Adam([self.pm], learning_rate=0.01, weight_decay=0.0001) | |||
def train(self, attack_method): | |||
""" | |||
Optimized adversarial image. | |||
""" | |||
if attack_method == "non-target attack": | |||
LOSS = FaceLossNoTargetAttack(self.target_emb) | |||
if attack_method == "target_attack": | |||
LOSS = FaceLossTargeTattack(self.target_emb) | |||
net_with_criterion = MyWithLossCell(self.resnet, LOSS, self.input_tensor) | |||
train_net = TrainOneStepCell(net_with_criterion, self.opt) | |||
for i in range(2000): | |||
self.mask_tensor = Tensor(self.pm) | |||
grads, loss = train_net(self.mask_tensor) | |||
print("epoch %d ,loss: %f \n " % (i, loss.asnumpy().item())) | |||
self.mask_tensor = ops.clip_by_value( | |||
self.mask_tensor, Tensor(0, mindspore.float32), Tensor(1, mindspore.float32)) | |||
adversarial_tensor = self._apply( | |||
self.input_tensor, | |||
(self.mask_tensor - self.MEAN[:, None, None]) / self.STD[:, None, None], | |||
self.ref) | |||
adversarial_tensor = self._reverse_norm(adversarial_tensor) | |||
return adversarial_tensor, self.mask_tensor | |||
def test(self): | |||
""" | |||
Test the recognition of adversarial images by the model. | |||
""" | |||
adversarial_tensor = self._apply( | |||
self.input_tensor, | |||
(self.mask_tensor - self.MEAN[:, None, None] )/ self.STD[:, None, None], | |||
self.ref) | |||
self.adversarial_emb = self.resnet(self.expand_dims(adversarial_tensor, 0)) | |||
self.input_emb = self.resnet(self.expand_dims(self.input_tensor, 0)) | |||
self.target_emb = self.resnet(self.expand_dims(self.target_tensor, 0)) | |||
adversarial = np.argmax(self.adversarial_emb.asnumpy()) | |||
target = np.argmax(self.target_emb.asnumpy()) | |||
input = np.argmax(self.input_emb.asnumpy()) | |||
print("input:", input) | |||
print("input_confidence:", self.input_emb.asnumpy()[0][input]) | |||
print("================================") | |||
print("adversarial:", adversarial) | |||
print("adversarial_confidence:", self.adversarial_emb.asnumpy()[0][adversarial]) | |||
print("Confidence changes for target:", self.adversarial_emb.asnumpy()[0][target]) | |||
print("Confidence changes for input:", self.adversarial_emb.asnumpy()[0][input]) | |||
print("================================") | |||
print("target:", target) | |||
print("target_confidence:", self.target_emb.asnumpy()[0][target]) | |||
print("input: %d, target: %d, adversarial: %d" % (input, target, adversarial)) | |||
def test1(self, adversarial_tensor): | |||
self.adversarial_emb = self.resnet( | |||
self.expand_dims((adversarial_tensor - self.MEAN[:, None, None]) / self.STD[:, None, None], 0)) | |||
self.input_emb = self.resnet(self.expand_dims(self.input_tensor, 0)) | |||
self.target_emb = self.resnet(self.expand_dims(self.target_tensor, 0)) | |||
adversarial = np.argmax(self.adversarial_emb.asnumpy()) | |||
target = np.argmax(self.target_emb.asnumpy()) | |||
input = np.argmax(self.input_emb.asnumpy()) | |||
print("input:", input) | |||
print("input_confidence:", self.input_emb.asnumpy()[0][input]) | |||
print("================================") | |||
print("adversarial:", adversarial) | |||
print("adversarial_confidence:", self.adversarial_emb.asnumpy()[0][adversarial]) | |||
print("Confidence changes for input:", self.adversarial_emb.asnumpy()[0][input]) | |||
print("================================") | |||
print("target:", target) | |||
print("target_confidence:", self.target_emb.asnumpy()[0][target]) | |||
print("input:%d, target:%d, adversarial:%d" % (input, target, adversarial)) | |||
def _reverse_norm(self, image_tensor): | |||
""" | |||
Reverses normalization for a given image_tensor | |||
Args: | |||
image_tensor : Tensor | |||
Returns: | |||
Tensor | |||
""" | |||
tensor = image_tensor * self.STD[:, None, None] + self.MEAN[:, None, None] | |||
return tensor | |||
def _apply(self, | |||
image_tensor, | |||
mask_tensor, | |||
reference_tensor | |||
): | |||
""" | |||
Apply a mask over an image. | |||
Args: | |||
image_tensor : Canvas to be used to apply mask on. | |||
mask_tensor : Mask to apply over the image. | |||
reference_tensor : Used to reference mask boundaries | |||
Returns: | |||
Tensor | |||
""" | |||
tensor = mindspore.numpy.where((reference_tensor == 0), image_tensor, mask_tensor) | |||
return tensor | |||
def _create_mask(self, face_image): | |||
""" | |||
Create mask image. | |||
Args: | |||
face_image : image of a detected face. | |||
Returns: | |||
mask_tensor : A mask image. | |||
""" | |||
mask = Image.new('RGB', face_image.size, color=(0, 0, 0)) | |||
d = ImageDraw.Draw(mask) | |||
landmarks = fr.face_landmarks(np.array(face_image)) | |||
area = [landmark | |||
for landmark in landmarks[0]['chin'] | |||
if landmark[1] > max(landmarks[0]['nose_tip'])[1]] | |||
area.append(landmarks[0]['nose_bridge'][1]) | |||
d.polygon(area, fill=(255, 255, 255)) | |||
mask_array = np.array(mask) | |||
mask_array = mask_array.astype(np.float32) | |||
for i in range(mask_array.shape[0]): | |||
for j in range(mask_array.shape[1]): | |||
for k in range(mask_array.shape[2]): | |||
if mask_array[i][j][k] == 255.: | |||
mask_array[i][j][k] = 0.5 | |||
else: | |||
mask_array[i][j][k] = 0 | |||
mask_tensor = Tensor(mask_array) | |||
mask_tensor = mask_tensor.swapaxes(0, 2).swapaxes(1, 2) | |||
mask_tensor.requires_grad = True | |||
return mask_tensor | |||
def _reverse_norm(self, image_tensor): | |||
""" | |||
Reverses normalization for a given image_tensor. | |||
Args: | |||
image_tensor : Tensor. | |||
Returns: | |||
Tensor. | |||
""" | |||
tensor = image_tensor * self.STD[:, None, None] + self.MEAN[:, None, None] | |||
return tensor | |||
def detect_face(image_loc): | |||
""" | |||
Helper function to run the facial detection and alignment process using | |||
dlib. Detects a given face and aligns it using dlib's 5 point landmark | |||
detector. | |||
Args: | |||
image_loc : image file location. | |||
Returns: | |||
face_image : Resized face image. | |||
""" | |||
detector = dlib.get_frontal_face_detector() | |||
shape_predictor = dlib.shape_predictor(frm.pose_predictor_model_location()) | |||
image = dlib.load_rgb_image(image_loc) | |||
dets = detector(image, 1) | |||
faces = dlib.full_object_detections() | |||
for detection in dets: | |||
faces.append(shape_predictor(image, detection)) | |||
face_image = Image.fromarray(dlib.get_face_chip(image, faces[0], size=112)) | |||
return face_image | |||
def load_data(path_to_data): | |||
""" | |||
Helper function for loading image data. Allows user to load the input, target, | |||
and test images. | |||
Args: | |||
path_to_data : Path to the given data. | |||
Returns: | |||
list : List of resized face images. | |||
""" | |||
img_files = [f for f in os.listdir(path_to_data) if re.search(r'.*\.(jpe?g|png)', f)] | |||
img_files_locs = [os.path.join(path_to_data, f) for f in img_files] | |||
image_list = [] | |||
for loc in img_files_locs: | |||
image_list.append(detect_face(loc)) | |||
return image_list | |||
@@ -1,86 +0,0 @@ | |||
# 人脸识别物理对抗攻击 | |||
##描述 | |||
本项目是对人脸识别模型的物理对抗攻击,通过生成对抗口罩,使人脸佩戴后实现目标攻击和非目标攻击,并应用于mindspore平台。 | |||
##模型结构 | |||
采用华为mindspore官方训练的FaceRecognition模型 | |||
https://www.mindspore.cn/resources/hub/details?MindSpore/1.7/facerecognition_ms1mv2 | |||
##环境要求 | |||
mindspore=1.7,硬件平台为GPU。 | |||
##脚本说明 | |||
├── readme.md | |||
├── opencv_photo | |||
│ ├── adv_input //对抗图像 | |||
│ ├── input //输入图像 | |||
│ └── target //目标图像 | |||
├── outputs //训练后的图像 | |||
├── FaceRecognition //模型设置 | |||
├── AFR.py //训练脚本 | |||
├── camera.py //opencv图像采集 | |||
│── example_non-target_attack.py //无目标攻击训练 | |||
│── example_target_attack.py //目标攻击训练 | |||
│── loss_design.py //训练优化设置 | |||
└── test.py //评估攻击效果 | |||
##模型调用 | |||
方法一: | |||
#基于mindspore_hub库调用FaceRecognition模型 | |||
import mindspore_hub as mshub | |||
from mindspore import context | |||
def get_net(): | |||
context.set_context(mode=context.GRAPH_MODE, | |||
device_target="GPU", | |||
device_id=0) | |||
model = "mindspore/1.7/facerecognition_ms1mv2" | |||
network = mshub.load(model) | |||
network.set_train(False) | |||
return network | |||
方法二: | |||
利用 MindSpore代码仓中的https://gitee.com/mindspore/models/blob/master/research/cv/FaceRecognition/eval.py的get_model函数加载模型 | |||
##训练过程 | |||
目标攻击: | |||
$ cd face_adversarial_attack/example/ | |||
$ python example_target_attack.py | |||
非目标攻击: | |||
$ cd face_adversarial_attack/example/ | |||
$ python example_non-target_attack.py | |||
##默认训练参数 | |||
optimizer=adam, learning rate=0.01, weight_decay=0.0001, epoch=2000 | |||
##评估过程 | |||
评估方法一: | |||
AFR.Attack.test() | |||
评估方法二: | |||
$ cd face_adversarial_attack/example/ | |||
$ python test.py |
@@ -1,34 +0,0 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
import cv2 | |||
capture = cv2.VideoCapture(0) | |||
for i in range(2): | |||
while(True): | |||
ret, frame = capture.read() | |||
width, height = capture.get(3), capture.get(4) | |||
cv2.imwrite('./opencv_photo/input/input'+str(i)+'.png', frame) | |||
cv2.imshow('frame', frame) | |||
if cv2.waitKey(1) == ord('q'): | |||
break | |||
print(width, height) | |||
capture.release() | |||
cv2.destroyAllWindows() |
@@ -1,40 +0,0 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
import numpy as np | |||
import matplotlib.image as mp | |||
from mindspore import context | |||
import AFR | |||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
if __name__ == '__main__': | |||
inputs = AFR.load_data('opencv_photo/input/') | |||
targets = AFR.load_data('opencv_photo/target/') | |||
adversarial = AFR.Attack(inputs[0], targets[0]) | |||
attack_method = "non-target attack" | |||
adversarial_tensor, mask_tensor = adversarial.train(attack_method) | |||
mp.imsave('./outputs/对抗图像.jpg', np.transpose(adversarial_tensor.asnumpy(), (1, 2, 0))) | |||
mp.imsave('./outputs/口罩.jpg', np.transpose(mask_tensor.asnumpy(), (1, 2, 0))) | |||
adversarial.test() |
@@ -1,41 +0,0 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
import numpy as np | |||
import matplotlib.image as mp | |||
from mindspore import context | |||
import AFR | |||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
if __name__ == '__main__': | |||
inputs = AFR.load_data('opencv_photo/input/') | |||
targets = AFR.load_data('opencv_photo/target/') | |||
adversarial = AFR.Attack(inputs[0], targets[0]) | |||
attack_method = "target_attack" | |||
adversarial_tensor, mask_tensor = adversarial.train(attack_method) | |||
mp.imsave('./outputs/对抗图像.jpg', np.transpose(adversarial_tensor.asnumpy(), (1, 2, 0))) | |||
mp.imsave('./outputs/口罩.jpg', np.transpose(mask_tensor.asnumpy(), (1, 2, 0))) | |||
adversarial.test() |
@@ -1,163 +0,0 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
import mindspore | |||
from mindspore import ops, nn, Tensor | |||
from mindspore.dataset.vision.py_transforms import ToTensor | |||
import mindspore.dataset.vision.py_transforms as P | |||
class TrainOneStepCell(nn.Cell): | |||
""" | |||
Encapsulation class of network training. | |||
Append an optimizer to the training network after that the construct | |||
function can be called to create the backward graph. | |||
Args: | |||
network (Cell): The training network. Note that loss function should have been added. | |||
optimizer (Optimizer): Optimizer for updating the weights. | |||
sens (Number): The adjust parameter. Default: 1.0. | |||
""" | |||
def __init__(self, network, optimizer, sens=1.0): | |||
super(TrainOneStepCell, self).__init__(auto_prefix=False) | |||
self.network = network | |||
self.network.set_grad() | |||
self.optimizer = optimizer | |||
self.weights = self.optimizer.parameters | |||
self.grad = ops.composite.GradOperation(get_all=True, sens_param=False) | |||
def construct(self, *inputs): | |||
"""Defines the computation performed.""" | |||
loss = self.network(*inputs) | |||
grads = self.grad(self.network)(*inputs) | |||
self.optimizer(grads) | |||
return grads, loss | |||
class MyWithLossCell(nn.Cell): | |||
def __init__(self, net, loss_fn, input_tensor): | |||
super(MyWithLossCell, self).__init__(auto_prefix=False) | |||
self.net = net | |||
self._loss_fn = loss_fn | |||
self.STD = Tensor([0.229, 0.224, 0.225]) | |||
self.MEAN = Tensor([0.485, 0.456, 0.406]) | |||
self.expand_dims = mindspore.ops.ExpandDims() | |||
self.normalize = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |||
self.tensorize = ToTensor() | |||
self.input_tensor = input_tensor | |||
self.input_emb = self.net(self.expand_dims(self.input_tensor, 0)) | |||
def construct(self, mask_tensor): | |||
ref = mask_tensor | |||
adversarial_tensor = mindspore.numpy.where( | |||
(ref == 0), | |||
self.input_tensor, | |||
(mask_tensor - self.MEAN[:, None, None] )/ self.STD[:, None, None]) | |||
adversarial_emb = self.net(self.expand_dims(adversarial_tensor, 0)) | |||
loss = self._loss_fn( adversarial_emb, self.input_emb, mask_tensor) | |||
return loss | |||
@property | |||
def backbone_network(self): | |||
return self.net | |||
class FaceLossTargeTattack(nn.Cell): | |||
"""The loss function of the target attack""" | |||
def __init__(self, target_emb): | |||
super(FaceLossTargeTattack, self).__init__() | |||
self.uniformreal = ops.UniformReal(seed=2) | |||
self.sum = ops.ReduceSum(keep_dims=False) | |||
self.norm = nn.Norm(keep_dims=True) | |||
self.zeroslike = ops.ZerosLike() | |||
self.concat_op1 = ops.Concat(1) | |||
self.concat_op2 = ops.Concat(2) | |||
self.pow = ops.Pow() | |||
self.reduce_sum = ops.operations.ReduceSum() | |||
self.target_emb = target_emb | |||
self.abs = ops.Abs() | |||
self.reduce_mean = ops.ReduceMean() | |||
def construct(self, adversarial_emb, input_emb, mask_tensor): | |||
#像素平滑 | |||
# vert_diff = mask_tensor[:, 1:] - mask_tensor[:, :-1] | |||
# hor_diff = mask_tensor[:, :, 1:] - mask_tensor[:, :, :-1] | |||
# vert_diff_sq = self.pow(vert_diff, 2) | |||
# hor_diff_sq = self.pow(hor_diff, 2) | |||
# A = self.zeroslike(Tensor(self.uniformreal((3, 1, 112)))) | |||
# B = self.zeroslike(Tensor(self.uniformreal((3, 112, 1)))) | |||
# vert_pad = self.concat_op1((vert_diff_sq, A)) | |||
# hor_pad = self.concat_op2((hor_diff_sq, B)) | |||
# tv_sum = vert_pad + hor_pad | |||
# tv = ops.functional.sqrt(tv_sum + 1e-5) | |||
# tv_final_sum = self.sum(tv) | |||
# tv_loss = (1e-4) * tv_final_sum | |||
# print("tv_loss:",tv_loss) | |||
prod_sum = self.reduce_sum(adversarial_emb * self.target_emb, (1,)) | |||
square1 = self.reduce_sum(ops.functional.square(adversarial_emb), (1,)) | |||
square2 = self.reduce_sum(ops.functional.square(self.target_emb), (1,)) | |||
denom = ops.functional.sqrt(square1) * ops.functional.sqrt(square2) | |||
loss = -(prod_sum / denom) | |||
print("dis_loss:", loss) | |||
return loss | |||
class FaceLossNoTargetAttack(nn.Cell): | |||
"""The loss function of the non-target attack""" | |||
def __init__(self, target_emb): | |||
"""初始化""" | |||
super(FaceLossNoTargetAttack, self).__init__() | |||
self.uniformreal = ops.UniformReal(seed=2) | |||
self.sum = ops.ReduceSum(keep_dims=False) | |||
self.norm = nn.Norm(keep_dims=True) | |||
self.zeroslike = ops.ZerosLike() | |||
self.concat_op1 = ops.Concat(1) | |||
self.concat_op2 = ops.Concat(2) | |||
self.pow = ops.Pow() | |||
self.reduce_sum = ops.operations.ReduceSum() | |||
self.target_emb = target_emb | |||
self.abs = ops.Abs() | |||
self.reduce_mean = ops.ReduceMean() | |||
def construct(self, adversarial_emb, input_emb, mask_tensor): | |||
# 像素平滑 | |||
# vert_diff = mask_tensor[:, 1:] - mask_tensor[:, :-1] # | |||
# hor_diff = mask_tensor[:, :, 1:] - mask_tensor[:, :, :-1] | |||
# vert_diff_sq = self.pow(vert_diff, 2) | |||
# hor_diff_sq = self.pow(hor_diff, 2) | |||
# A = self.zeroslike(Tensor(self.uniformreal((3, 1, 112)))) # | |||
# B = self.zeroslike(Tensor(self.uniformreal((3, 112, 1)))) | |||
# vert_pad = self.concat_op1((vert_diff_sq, A)) | |||
# hor_pad = self.concat_op2((hor_diff_sq, B)) | |||
# tv_sum = vert_pad + hor_pad | |||
# tv = ops.functional.sqrt(tv_sum + 1e-5) | |||
# tv_final_sum = self.sum(tv) | |||
# tv_loss = (1e-4) * tv_final_sum | |||
# print("tv_loss:",tv_loss) | |||
prod_sum = self.reduce_sum(adversarial_emb * input_emb, (1,)) | |||
square1 = self.reduce_sum(ops.functional.square(adversarial_emb), (1,)) | |||
square2 = self.reduce_sum(ops.functional.square(input_emb), (1,)) | |||
denom = ops.functional.sqrt(square1) * ops.functional.sqrt(square2) | |||
loss = prod_sum / denom | |||
print("cosine_loss:", loss) | |||
return loss | |||
@@ -1,70 +0,0 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
import numpy as np | |||
import matplotlib.image as mp | |||
from mindspore import context, Tensor | |||
import mindspore | |||
from mindspore.dataset.vision.py_transforms import ToTensor | |||
import mindspore.dataset.vision.py_transforms as P | |||
from mindspore.dataset.vision.py_transforms import ToPIL as ToPILImage | |||
from FaceRecognition.eval import get_net | |||
import AFR | |||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
imageize = ToPILImage() | |||
if __name__ == '__main__': | |||
""" | |||
The input image, target image and adversarial image are tested using the FaceRecognition model. | |||
""" | |||
image = AFR.load_data('opencv_photo/adv_input') | |||
inputs = AFR.load_data('opencv_photo/input/') | |||
targets = AFR.load_data('opencv_photo/target/') | |||
tensorize = ToTensor() | |||
normalize = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |||
expand_dims = mindspore.ops.ExpandDims() | |||
MEAN = Tensor([0.485, 0.456, 0.406]) | |||
STD = Tensor([0.229, 0.224, 0.225]) | |||
resnet = get_net() | |||
image = mp.imread("./对抗图像.jpg") | |||
adv = Tensor(normalize(tensorize(image))) | |||
input_tensor = Tensor(normalize(tensorize(inputs[0]))) | |||
target_tensor = Tensor(normalize(tensorize(targets[0]))) | |||
adversarial_emb = resnet(expand_dims(adv, 0)) | |||
input_emb = resnet(expand_dims(input_tensor, 0)) | |||
target_emb = resnet(expand_dims(target_tensor, 0)) | |||
adversarial = np.argmax(adversarial_emb.asnumpy()) | |||
target = np.argmax(target_emb.asnumpy()) | |||
input = np.argmax(input_emb.asnumpy()) | |||
print("input:", input) | |||
print("input_confidence:", input_emb.asnumpy()[0][input]) | |||
print("================================") | |||
print("adversarial:", adversarial) | |||
print("adversarial_confidence:", adversarial_emb.asnumpy()[0][adversarial]) | |||
print("Confidence changes for input:", adversarial_emb.asnumpy()[0][input]) | |||
print("================================") | |||
print("input:%d, target:%d, adversarial:%d" % (input, target, adversarial)) |