Browse Source

update

pull/416/head
lmj 3 years ago
parent
commit
e31359b621
3 changed files with 37 additions and 31 deletions
  1. +20
    -17
      examples/face_adversarial_attack/example/AFR.py
  2. +16
    -13
      examples/face_adversarial_attack/example/loss_design.py
  3. +1
    -1
      examples/face_adversarial_attack/example/test.py

+ 20
- 17
examples/face_adversarial_attack/example/AFR.py View File

@@ -22,10 +22,10 @@ import face_recognition_models as frm
from PIL import Image, ImageDraw
import mindspore
from mindspore.dataset.vision.py_transforms import ToPIL as ToPILImage
from mindspore import Parameter,ops, nn,Tensor
from mindspore import Parameter, ops, nn, Tensor
from mindspore.dataset.vision.py_transforms import ToTensor
import mindspore.dataset.vision.py_transforms as P
from loss_design import TrainOneStepCell,MyWithLossCell,FaceLoss_no_target_attack,FaceLoss_target_attack
from loss_design import TrainOneStepCell,MyWithLossCell, FaceLossTargeTattack,FaceLossNoTargetAttack
from FaceRecognition.eval import get_net

class Attack(object):
@@ -33,7 +33,7 @@ class Attack(object):
Class used to create adversarial facial recognition attacks
"""

def __init__(self,input_img,target_img,seed=None):
def __init__(self, input_img, target_img, seed=None):
"""
Initialization for Attack class.

@@ -44,7 +44,7 @@ class Attack(object):

"""

if (seed != None): np.random.seed(seed)
if (seed is not None): np.random.seed(seed)
self.MEAN = Tensor([0.485, 0.456, 0.406])
self.STD = Tensor([0.229, 0.224, 0.225])
self.LOSS = Tensor(0)
@@ -56,11 +56,12 @@ class Attack(object):
self.input_tensor = Tensor(self.normalize(self.tensorize(input_img)))
self.target_tensor = Tensor(self.normalize(self.tensorize(target_img)))
mp.imsave('./outputs/input图像.jpg', np.transpose(self._reverse_norm(self.input_tensor).asnumpy(), (1, 2, 0)))
mp.imsave('./outputs/target图像.jpg', np.transpose(self._reverse_norm(self.target_tensor).asnumpy(), (1, 2, 0)))
mp.imsave('./outputs/target图像.jpg',
np.transpose(self._reverse_norm(self.target_tensor).asnumpy(), (1, 2, 0)))


self.input_emb = self.resnet(self.expand_dims(self.input_tensor,0))
self.target_emb = self.resnet(self.expand_dims(self.target_tensor,0))
self.input_emb = self.resnet(self.expand_dims(self.input_tensor, 0))
self.target_emb = self.resnet(self.expand_dims(self.target_tensor, 0))
self.adversarial_emb = None
self.mask_tensor = self._create_mask(input_img)
self.ref = self.mask_tensor
@@ -69,28 +70,29 @@ class Attack(object):



def train(self,attack_method):
def train(self, attack_method):
"""
Optimized adversarial image.
"""

if attack_method == "non-target attack":
LOSS = FaceLoss_no_target_attack(self.target_emb)
LOSS = FaceLossNoTargetAttack(self.target_emb)
if attack_method == "target_attack":
LOSS = FaceLoss_target_attack(self.target_emb)
LOSS = FaceLossTargeTattack(self.target_emb)

net_with_criterion = MyWithLossCell(self.resnet, LOSS,self.input_tensor)
net_with_criterion = MyWithLossCell(self.resnet, LOSS, self.input_tensor)
train_net = TrainOneStepCell(net_with_criterion, self.opt)

for i in range(2000):

self.mask_tensor = Tensor(self.pm)

grads,loss = train_net(self.mask_tensor)
grads, loss = train_net(self.mask_tensor)

print("epoch %d ,loss: %f \n " % (i, loss.asnumpy().item()))

self.mask_tensor = ops.clip_by_value(self.mask_tensor, Tensor(0, mindspore.float32), Tensor(1, mindspore.float32))
self.mask_tensor = ops.clip_by_value(
self.mask_tensor, Tensor(0, mindspore.float32), Tensor(1, mindspore.float32))

adversarial_tensor = self._apply(
self.input_tensor,
@@ -124,15 +126,16 @@ class Attack(object):
print("================================")
print("adversarial:", adversarial)
print("adversarial_confidence:", self.adversarial_emb.asnumpy()[0][adversarial])
print("Confidence changes for target::", self.adversarial_emb.asnumpy()[0][target])
print("Confidence changes for target:", self.adversarial_emb.asnumpy()[0][target])
print("Confidence changes for input:", self.adversarial_emb.asnumpy()[0][input])
print("================================")
print("target:", target)
print("target_confidence:", self.target_emb.asnumpy()[0][target])
print("input:%d, target:%d, adversarial:%d" % (input,target, adversarial))
print("input: %d, target: %d, adversarial: %d" % (input, target, adversarial))

def test1(self,adversarial_tensor):
self.adversarial_emb = self.resnet(self.expand_dims((adversarial_tensor - self.MEAN[:, None, None]) / self.STD[:, None, None], 0))
def test1(self, adversarial_tensor):
self.adversarial_emb = self.resnet(
self.expand_dims((adversarial_tensor - self.MEAN[:, None, None]) / self.STD[:, None, None], 0))
self.input_emb = self.resnet(self.expand_dims(self.input_tensor, 0))
self.target_emb = self.resnet(self.expand_dims(self.target_tensor, 0))



+ 16
- 13
examples/face_adversarial_attack/example/loss_design.py View File

@@ -13,7 +13,7 @@
# limitations under the License.
# ============================================================================
import mindspore
from mindspore import ops, nn,Tensor
from mindspore import ops, nn, Tensor
from mindspore.dataset.vision.py_transforms import ToTensor
import mindspore.dataset.vision.py_transforms as P

@@ -41,17 +41,17 @@ class TrainOneStepCell(nn.Cell):
self.weights = self.optimizer.parameters
self.grad = ops.composite.GradOperation(get_all=True, sens_param=False)

def construct(self,*inputs):
def construct(self, *inputs):
"""Defines the computation performed."""
loss = self.network(*inputs)
grads = self.grad(self.network)(*inputs)
self.optimizer(grads)
return grads,loss
return grads, loss



class MyWithLossCell(nn.Cell):
def __init__(self,net,loss_fn,input_tensor):
def __init__(self, net, loss_fn, input_tensor):
super(MyWithLossCell, self).__init__(auto_prefix=False)
self.net = net
self._loss_fn = loss_fn
@@ -63,11 +63,14 @@ class MyWithLossCell(nn.Cell):
self.input_tensor = input_tensor
self.input_emb = self.net(self.expand_dims(self.input_tensor, 0))

def construct(self,mask_tensor):
def construct(self, mask_tensor):
ref = mask_tensor
adversarial_tensor = mindspore.numpy.where((ref == 0), self.input_tensor, (mask_tensor - self.MEAN[:, None, None] )/ self.STD[:, None, None])
adversarial_tensor = mindspore.numpy.where(
(ref == 0),
self.input_tensor,
(mask_tensor - self.MEAN[:, None, None] )/ self.STD[:, None, None])
adversarial_emb = self.net(self.expand_dims(adversarial_tensor, 0))
loss = self._loss_fn( adversarial_emb,self.input_emb,mask_tensor)
loss = self._loss_fn( adversarial_emb, self.input_emb, mask_tensor)
return loss

@property
@@ -75,11 +78,11 @@ class MyWithLossCell(nn.Cell):
return self.net


class FaceLoss_target_attack(nn.Cell):
class FaceLossTargeTattack(nn.Cell):
"""The loss function of the target attack"""

def __init__(self,target_emb):
super(FaceLoss_target_attack, self).__init__()
def __init__(self, target_emb):
super(FaceLossTargeTattack, self).__init__()
self.uniformreal = ops.UniformReal(seed=2)
self.sum = ops.ReduceSum(keep_dims=False)
self.norm = nn.Norm(keep_dims=True)
@@ -92,7 +95,7 @@ class FaceLoss_target_attack(nn.Cell):
self.abs = ops.Abs()
self.reduce_mean = ops.ReduceMean()

def construct(self, adversarial_emb,input_emb,mask_tensor):
def construct(self, adversarial_emb, input_emb, mask_tensor):
#像素平滑
# vert_diff = mask_tensor[:, 1:] - mask_tensor[:, :-1]
# hor_diff = mask_tensor[:, :, 1:] - mask_tensor[:, :, :-1]
@@ -116,11 +119,11 @@ class FaceLoss_target_attack(nn.Cell):
return loss


class FaceLoss_no_target_attack(nn.Cell):
class FaceLossNoTargetAttack(nn.Cell):
"""The loss function of the non-target attack"""
def __init__(self, target_emb):
"""初始化"""
super(FaceLoss_no_target_attack, self).__init__()
super(FaceLossNoTargetAttack, self).__init__()
self.uniformreal = ops.UniformReal(seed=2)
self.sum = ops.ReduceSum(keep_dims=False)
self.norm = nn.Norm(keep_dims=True)


+ 1
- 1
examples/face_adversarial_attack/example/test.py View File

@@ -15,7 +15,7 @@

import numpy as np
import matplotlib.image as mp
from mindspore import context,Tensor
from mindspore import context, Tensor
import mindspore
from mindspore.dataset.vision.py_transforms import ToTensor
import mindspore.dataset.vision.py_transforms as P


Loading…
Cancel
Save