@@ -22,7 +22,7 @@ mnist_cfg = edict({ | |||
'num_classes': 10, # the number of classes of model's output | |||
'lr': 0.01, # the learning rate of model's optimizer | |||
'momentum': 0.9, # the momentum value of model's optimizer | |||
'epoch_size': 10, # training epochs | |||
'epoch_size': 5, # training epochs | |||
'batch_size': 256, # batch size for training | |||
'image_height': 32, # the height of training samples | |||
'image_width': 32, # the width of training samples | |||
@@ -31,9 +31,9 @@ mnist_cfg = edict({ | |||
'device_target': 'Ascend', # device used | |||
'data_path': './MNIST_unzip', # the path of training and testing data set | |||
'dataset_sink_mode': False, # whether deliver all training data to device one time | |||
'micro_batches': 16, # the number of small batches split from an original batch | |||
'micro_batches': 32, # the number of small batches split from an original batch | |||
'norm_bound': 1.0, # the clip bound of the gradients of model's training parameters | |||
'initial_noise_multiplier': 1.0, # the initial multiplication coefficient of the noise added to training | |||
'initial_noise_multiplier': 0.05, # the initial multiplication coefficient of the noise added to training | |||
# parameters' gradients | |||
'noise_mechanisms': 'AdaGaussian', # the method of adding noise in gradients while training | |||
'optimizer': 'Momentum' # the base optimizer used for Differential privacy training | |||
@@ -22,7 +22,7 @@ mnist_cfg = edict({ | |||
'num_classes': 10, # the number of classes of model's output | |||
'lr': 0.01, # the learning rate of model's optimizer | |||
'momentum': 0.9, # the momentum value of model's optimizer | |||
'epoch_size': 10, # training epochs | |||
'epoch_size': 5, # training epochs | |||
'batch_size': 256, # batch size for training | |||
'image_height': 32, # the height of training samples | |||
'image_width': 32, # the width of training samples | |||
@@ -31,9 +31,9 @@ mnist_cfg = edict({ | |||
'device_target': 'Ascend', # device used | |||
'data_path': './MNIST_unzip', # the path of training and testing data set | |||
'dataset_sink_mode': False, # whether deliver all training data to device one time | |||
'micro_batches': 16, # the number of small batches split from an original batch | |||
'micro_batches': 32, # the number of small batches split from an original batch | |||
'norm_bound': 1.0, # the clip bound of the gradients of model's training parameters | |||
'initial_noise_multiplier': 1.0, # the initial multiplication coefficient of the noise added to training | |||
'initial_noise_multiplier': 0.05, # the initial multiplication coefficient of the noise added to training | |||
# parameters' gradients | |||
'noise_mechanisms': 'Gaussian', # the method of adding noise in gradients while training | |||
'clip_mechanisms': 'Gaussian', # the method of adaptive clipping gradients while training | |||
@@ -155,7 +155,7 @@ if __name__ == "__main__": | |||
dataset_sink_mode=cfg.dataset_sink_mode) | |||
LOGGER.info(TAG, "============== Starting Testing ==============") | |||
ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-10_234.ckpt' | |||
ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-5_234.ckpt' | |||
param_dict = load_checkpoint(ckpt_file_name) | |||
load_param_into_net(network, param_dict) | |||
ds_eval = generate_mnist_dataset(os.path.join(cfg.data_path, 'test'), | |||
@@ -141,7 +141,7 @@ if __name__ == "__main__": | |||
dataset_sink_mode=cfg.dataset_sink_mode) | |||
LOGGER.info(TAG, "============== Starting Testing ==============") | |||
ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-10_234.ckpt' | |||
ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-5_234.ckpt' | |||
param_dict = load_checkpoint(ckpt_file_name) | |||
load_param_into_net(network, param_dict) | |||
ds_eval = generate_mnist_dataset(os.path.join(cfg.data_path, 'test'), | |||
@@ -111,7 +111,7 @@ if __name__ == "__main__": | |||
dp_opt.set_mechanisms(cfg.noise_mechanisms, | |||
norm_bound=cfg.norm_bound, | |||
initial_noise_multiplier=cfg.initial_noise_multiplier, | |||
decay_policy='Exp') | |||
decay_policy=None) | |||
# Create a factory class of clip mechanisms, this method is to adaptive clip | |||
# gradients while training, decay_policy support 'Linear' and 'Geometric', | |||
# learning_rate is the learning rate to update clip_norm, | |||
@@ -147,7 +147,7 @@ if __name__ == "__main__": | |||
dataset_sink_mode=cfg.dataset_sink_mode) | |||
LOGGER.info(TAG, "============== Starting Testing ==============") | |||
ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-10_234.ckpt' | |||
ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-5_234.ckpt' | |||
param_dict = load_checkpoint(ckpt_file_name) | |||
load_param_into_net(network, param_dict) | |||
ds_eval = generate_mnist_dataset(os.path.join(cfg.data_path, 'test'), batch_size=cfg.batch_size) | |||
@@ -656,14 +656,16 @@ class _TrainOneStepCell(Cell): | |||
record_grad = self.grad(self.network, weights)(record_datas[0], | |||
record_labels[0], sens) | |||
beta = self._zero | |||
square_sum = self._zero | |||
for grad in record_grad: | |||
square_sum = self._add(square_sum, | |||
self._reduce_sum(self._square_all(grad))) | |||
norm_grad = self._sqrt(square_sum) | |||
beta = self._add(beta, | |||
self._cast(self._less(norm_grad, self._norm_bound), | |||
mstype.float32)) | |||
# calcu beta | |||
if self._clip_mech is not None: | |||
square_sum = self._zero | |||
for grad in record_grad: | |||
square_sum = self._add(square_sum, | |||
self._reduce_sum(self._square_all(grad))) | |||
norm_grad = self._sqrt(square_sum) | |||
beta = self._add(beta, | |||
self._cast(self._less(norm_grad, self._norm_bound), | |||
mstype.float32)) | |||
record_grad = self._clip_by_global_norm(record_grad, GRADIENT_CLIP_TYPE, | |||
self._norm_bound) | |||
@@ -675,14 +677,16 @@ class _TrainOneStepCell(Cell): | |||
record_grad = self.grad(self.network, weights)(record_datas[i], | |||
record_labels[i], | |||
sens) | |||
square_sum = self._zero | |||
for grad in record_grad: | |||
square_sum = self._add(square_sum, | |||
self._reduce_sum(self._square_all(grad))) | |||
norm_grad = self._sqrt(square_sum) | |||
beta = self._add(beta, | |||
self._cast(self._less(norm_grad, self._norm_bound), | |||
mstype.float32)) | |||
# calcu beta | |||
if self._clip_mech is not None: | |||
square_sum = self._zero | |||
for grad in record_grad: | |||
square_sum = self._add(square_sum, | |||
self._reduce_sum(self._square_all(grad))) | |||
norm_grad = self._sqrt(square_sum) | |||
beta = self._add(beta, | |||
self._cast(self._less(norm_grad, self._norm_bound), | |||
mstype.float32)) | |||
record_grad = self._clip_by_global_norm(record_grad, | |||
GRADIENT_CLIP_TYPE, | |||
@@ -690,7 +694,6 @@ class _TrainOneStepCell(Cell): | |||
grads = self._tuple_add(grads, record_grad) | |||
total_loss = P.TensorAdd()(total_loss, loss) | |||
loss = self._div(total_loss, self._micro_float) | |||
beta = self._div(beta, self._micro_batches) | |||
if self._noise_mech is not None: | |||
grad_noise_tuple = () | |||
@@ -710,8 +713,9 @@ class _TrainOneStepCell(Cell): | |||
grads = self.grad_reducer(grads) | |||
if self._clip_mech is not None: | |||
beta = self._div(beta, self._micro_batches) | |||
next_norm_bound = self._clip_mech(beta, self._norm_bound) | |||
self._norm_bound = self._assign(self._norm_bound, next_norm_bound) | |||
loss = F.depend(loss, next_norm_bound) | |||
loss = F.depend(loss, self._norm_bound) | |||
return F.depend(loss, self.optimizer(grads)) |