@@ -22,7 +22,7 @@ mnist_cfg = edict({ | |||||
'num_classes': 10, # the number of classes of model's output | 'num_classes': 10, # the number of classes of model's output | ||||
'lr': 0.01, # the learning rate of model's optimizer | 'lr': 0.01, # the learning rate of model's optimizer | ||||
'momentum': 0.9, # the momentum value of model's optimizer | 'momentum': 0.9, # the momentum value of model's optimizer | ||||
'epoch_size': 10, # training epochs | |||||
'epoch_size': 5, # training epochs | |||||
'batch_size': 256, # batch size for training | 'batch_size': 256, # batch size for training | ||||
'image_height': 32, # the height of training samples | 'image_height': 32, # the height of training samples | ||||
'image_width': 32, # the width of training samples | 'image_width': 32, # the width of training samples | ||||
@@ -31,9 +31,9 @@ mnist_cfg = edict({ | |||||
'device_target': 'Ascend', # device used | 'device_target': 'Ascend', # device used | ||||
'data_path': './MNIST_unzip', # the path of training and testing data set | 'data_path': './MNIST_unzip', # the path of training and testing data set | ||||
'dataset_sink_mode': False, # whether deliver all training data to device one time | 'dataset_sink_mode': False, # whether deliver all training data to device one time | ||||
'micro_batches': 16, # the number of small batches split from an original batch | |||||
'micro_batches': 32, # the number of small batches split from an original batch | |||||
'norm_bound': 1.0, # the clip bound of the gradients of model's training parameters | 'norm_bound': 1.0, # the clip bound of the gradients of model's training parameters | ||||
'initial_noise_multiplier': 1.0, # the initial multiplication coefficient of the noise added to training | |||||
'initial_noise_multiplier': 0.05, # the initial multiplication coefficient of the noise added to training | |||||
# parameters' gradients | # parameters' gradients | ||||
'noise_mechanisms': 'AdaGaussian', # the method of adding noise in gradients while training | 'noise_mechanisms': 'AdaGaussian', # the method of adding noise in gradients while training | ||||
'optimizer': 'Momentum' # the base optimizer used for Differential privacy training | 'optimizer': 'Momentum' # the base optimizer used for Differential privacy training | ||||
@@ -22,7 +22,7 @@ mnist_cfg = edict({ | |||||
'num_classes': 10, # the number of classes of model's output | 'num_classes': 10, # the number of classes of model's output | ||||
'lr': 0.01, # the learning rate of model's optimizer | 'lr': 0.01, # the learning rate of model's optimizer | ||||
'momentum': 0.9, # the momentum value of model's optimizer | 'momentum': 0.9, # the momentum value of model's optimizer | ||||
'epoch_size': 10, # training epochs | |||||
'epoch_size': 5, # training epochs | |||||
'batch_size': 256, # batch size for training | 'batch_size': 256, # batch size for training | ||||
'image_height': 32, # the height of training samples | 'image_height': 32, # the height of training samples | ||||
'image_width': 32, # the width of training samples | 'image_width': 32, # the width of training samples | ||||
@@ -31,9 +31,9 @@ mnist_cfg = edict({ | |||||
'device_target': 'Ascend', # device used | 'device_target': 'Ascend', # device used | ||||
'data_path': './MNIST_unzip', # the path of training and testing data set | 'data_path': './MNIST_unzip', # the path of training and testing data set | ||||
'dataset_sink_mode': False, # whether deliver all training data to device one time | 'dataset_sink_mode': False, # whether deliver all training data to device one time | ||||
'micro_batches': 16, # the number of small batches split from an original batch | |||||
'micro_batches': 32, # the number of small batches split from an original batch | |||||
'norm_bound': 1.0, # the clip bound of the gradients of model's training parameters | 'norm_bound': 1.0, # the clip bound of the gradients of model's training parameters | ||||
'initial_noise_multiplier': 1.0, # the initial multiplication coefficient of the noise added to training | |||||
'initial_noise_multiplier': 0.05, # the initial multiplication coefficient of the noise added to training | |||||
# parameters' gradients | # parameters' gradients | ||||
'noise_mechanisms': 'Gaussian', # the method of adding noise in gradients while training | 'noise_mechanisms': 'Gaussian', # the method of adding noise in gradients while training | ||||
'clip_mechanisms': 'Gaussian', # the method of adaptive clipping gradients while training | 'clip_mechanisms': 'Gaussian', # the method of adaptive clipping gradients while training | ||||
@@ -155,7 +155,7 @@ if __name__ == "__main__": | |||||
dataset_sink_mode=cfg.dataset_sink_mode) | dataset_sink_mode=cfg.dataset_sink_mode) | ||||
LOGGER.info(TAG, "============== Starting Testing ==============") | LOGGER.info(TAG, "============== Starting Testing ==============") | ||||
ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-10_234.ckpt' | |||||
ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-5_234.ckpt' | |||||
param_dict = load_checkpoint(ckpt_file_name) | param_dict = load_checkpoint(ckpt_file_name) | ||||
load_param_into_net(network, param_dict) | load_param_into_net(network, param_dict) | ||||
ds_eval = generate_mnist_dataset(os.path.join(cfg.data_path, 'test'), | ds_eval = generate_mnist_dataset(os.path.join(cfg.data_path, 'test'), | ||||
@@ -141,7 +141,7 @@ if __name__ == "__main__": | |||||
dataset_sink_mode=cfg.dataset_sink_mode) | dataset_sink_mode=cfg.dataset_sink_mode) | ||||
LOGGER.info(TAG, "============== Starting Testing ==============") | LOGGER.info(TAG, "============== Starting Testing ==============") | ||||
ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-10_234.ckpt' | |||||
ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-5_234.ckpt' | |||||
param_dict = load_checkpoint(ckpt_file_name) | param_dict = load_checkpoint(ckpt_file_name) | ||||
load_param_into_net(network, param_dict) | load_param_into_net(network, param_dict) | ||||
ds_eval = generate_mnist_dataset(os.path.join(cfg.data_path, 'test'), | ds_eval = generate_mnist_dataset(os.path.join(cfg.data_path, 'test'), | ||||
@@ -111,7 +111,7 @@ if __name__ == "__main__": | |||||
dp_opt.set_mechanisms(cfg.noise_mechanisms, | dp_opt.set_mechanisms(cfg.noise_mechanisms, | ||||
norm_bound=cfg.norm_bound, | norm_bound=cfg.norm_bound, | ||||
initial_noise_multiplier=cfg.initial_noise_multiplier, | initial_noise_multiplier=cfg.initial_noise_multiplier, | ||||
decay_policy='Exp') | |||||
decay_policy=None) | |||||
# Create a factory class of clip mechanisms, this method is to adaptive clip | # Create a factory class of clip mechanisms, this method is to adaptive clip | ||||
# gradients while training, decay_policy support 'Linear' and 'Geometric', | # gradients while training, decay_policy support 'Linear' and 'Geometric', | ||||
# learning_rate is the learning rate to update clip_norm, | # learning_rate is the learning rate to update clip_norm, | ||||
@@ -147,7 +147,7 @@ if __name__ == "__main__": | |||||
dataset_sink_mode=cfg.dataset_sink_mode) | dataset_sink_mode=cfg.dataset_sink_mode) | ||||
LOGGER.info(TAG, "============== Starting Testing ==============") | LOGGER.info(TAG, "============== Starting Testing ==============") | ||||
ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-10_234.ckpt' | |||||
ckpt_file_name = 'trained_ckpt_file/checkpoint_lenet-5_234.ckpt' | |||||
param_dict = load_checkpoint(ckpt_file_name) | param_dict = load_checkpoint(ckpt_file_name) | ||||
load_param_into_net(network, param_dict) | load_param_into_net(network, param_dict) | ||||
ds_eval = generate_mnist_dataset(os.path.join(cfg.data_path, 'test'), batch_size=cfg.batch_size) | ds_eval = generate_mnist_dataset(os.path.join(cfg.data_path, 'test'), batch_size=cfg.batch_size) | ||||
@@ -656,14 +656,16 @@ class _TrainOneStepCell(Cell): | |||||
record_grad = self.grad(self.network, weights)(record_datas[0], | record_grad = self.grad(self.network, weights)(record_datas[0], | ||||
record_labels[0], sens) | record_labels[0], sens) | ||||
beta = self._zero | beta = self._zero | ||||
square_sum = self._zero | |||||
for grad in record_grad: | |||||
square_sum = self._add(square_sum, | |||||
self._reduce_sum(self._square_all(grad))) | |||||
norm_grad = self._sqrt(square_sum) | |||||
beta = self._add(beta, | |||||
self._cast(self._less(norm_grad, self._norm_bound), | |||||
mstype.float32)) | |||||
# calcu beta | |||||
if self._clip_mech is not None: | |||||
square_sum = self._zero | |||||
for grad in record_grad: | |||||
square_sum = self._add(square_sum, | |||||
self._reduce_sum(self._square_all(grad))) | |||||
norm_grad = self._sqrt(square_sum) | |||||
beta = self._add(beta, | |||||
self._cast(self._less(norm_grad, self._norm_bound), | |||||
mstype.float32)) | |||||
record_grad = self._clip_by_global_norm(record_grad, GRADIENT_CLIP_TYPE, | record_grad = self._clip_by_global_norm(record_grad, GRADIENT_CLIP_TYPE, | ||||
self._norm_bound) | self._norm_bound) | ||||
@@ -675,14 +677,16 @@ class _TrainOneStepCell(Cell): | |||||
record_grad = self.grad(self.network, weights)(record_datas[i], | record_grad = self.grad(self.network, weights)(record_datas[i], | ||||
record_labels[i], | record_labels[i], | ||||
sens) | sens) | ||||
square_sum = self._zero | |||||
for grad in record_grad: | |||||
square_sum = self._add(square_sum, | |||||
self._reduce_sum(self._square_all(grad))) | |||||
norm_grad = self._sqrt(square_sum) | |||||
beta = self._add(beta, | |||||
self._cast(self._less(norm_grad, self._norm_bound), | |||||
mstype.float32)) | |||||
# calcu beta | |||||
if self._clip_mech is not None: | |||||
square_sum = self._zero | |||||
for grad in record_grad: | |||||
square_sum = self._add(square_sum, | |||||
self._reduce_sum(self._square_all(grad))) | |||||
norm_grad = self._sqrt(square_sum) | |||||
beta = self._add(beta, | |||||
self._cast(self._less(norm_grad, self._norm_bound), | |||||
mstype.float32)) | |||||
record_grad = self._clip_by_global_norm(record_grad, | record_grad = self._clip_by_global_norm(record_grad, | ||||
GRADIENT_CLIP_TYPE, | GRADIENT_CLIP_TYPE, | ||||
@@ -690,7 +694,6 @@ class _TrainOneStepCell(Cell): | |||||
grads = self._tuple_add(grads, record_grad) | grads = self._tuple_add(grads, record_grad) | ||||
total_loss = P.TensorAdd()(total_loss, loss) | total_loss = P.TensorAdd()(total_loss, loss) | ||||
loss = self._div(total_loss, self._micro_float) | loss = self._div(total_loss, self._micro_float) | ||||
beta = self._div(beta, self._micro_batches) | |||||
if self._noise_mech is not None: | if self._noise_mech is not None: | ||||
grad_noise_tuple = () | grad_noise_tuple = () | ||||
@@ -710,8 +713,9 @@ class _TrainOneStepCell(Cell): | |||||
grads = self.grad_reducer(grads) | grads = self.grad_reducer(grads) | ||||
if self._clip_mech is not None: | if self._clip_mech is not None: | ||||
beta = self._div(beta, self._micro_batches) | |||||
next_norm_bound = self._clip_mech(beta, self._norm_bound) | next_norm_bound = self._clip_mech(beta, self._norm_bound) | ||||
self._norm_bound = self._assign(self._norm_bound, next_norm_bound) | self._norm_bound = self._assign(self._norm_bound, next_norm_bound) | ||||
loss = F.depend(loss, next_norm_bound) | |||||
loss = F.depend(loss, self._norm_bound) | |||||
return F.depend(loss, self.optimizer(grads)) | return F.depend(loss, self.optimizer(grads)) |