@@ -19,7 +19,7 @@ from mindspore import context | |||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
from lenet5_net import LeNet5 | from lenet5_net import LeNet5 | ||||
from mindarmour.fuzzing.fuzzing import Fuzzing | |||||
from mindarmour.fuzzing.fuzzing import Fuzzer | |||||
from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics | from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics | ||||
from mindarmour.utils.logger import LogUtil | from mindarmour.utils.logger import LogUtil | ||||
@@ -38,11 +38,20 @@ def test_lenet_mnist_fuzzing(): | |||||
load_dict = load_checkpoint(ckpt_name) | load_dict = load_checkpoint(ckpt_name) | ||||
load_param_into_net(net, load_dict) | load_param_into_net(net, load_dict) | ||||
model = Model(net) | model = Model(net) | ||||
mutate_config = [{'method': 'Blur', | |||||
'params': {'auto_param': True}}, | |||||
{'method': 'Contrast', | |||||
'params': {'factor': 2}}, | |||||
{'method': 'Translate', | |||||
'params': {'x_bias': 0.1, 'y_bias': 0.2}}, | |||||
{'method': 'FGSM', | |||||
'params': {'eps': 0.1, 'alpha': 0.1}} | |||||
] | |||||
# get training data | # get training data | ||||
data_list = "./MNIST_unzip/train" | data_list = "./MNIST_unzip/train" | ||||
batch_size = 32 | batch_size = 32 | ||||
ds = generate_mnist_dataset(data_list, batch_size, sparse=True) | |||||
ds = generate_mnist_dataset(data_list, batch_size, sparse=False) | |||||
train_images = [] | train_images = [] | ||||
for data in ds.create_tuple_iterator(): | for data in ds.create_tuple_iterator(): | ||||
images = data[0].astype(np.float32) | images = data[0].astype(np.float32) | ||||
@@ -56,7 +65,7 @@ def test_lenet_mnist_fuzzing(): | |||||
# get test data | # get test data | ||||
data_list = "./MNIST_unzip/test" | data_list = "./MNIST_unzip/test" | ||||
batch_size = 32 | batch_size = 32 | ||||
ds = generate_mnist_dataset(data_list, batch_size, sparse=True) | |||||
ds = generate_mnist_dataset(data_list, batch_size, sparse=False) | |||||
test_images = [] | test_images = [] | ||||
test_labels = [] | test_labels = [] | ||||
for data in ds.create_tuple_iterator(): | for data in ds.create_tuple_iterator(): | ||||
@@ -70,19 +79,20 @@ def test_lenet_mnist_fuzzing(): | |||||
# make initial seeds | # make initial seeds | ||||
for img, label in zip(test_images, test_labels): | for img, label in zip(test_images, test_labels): | ||||
initial_seeds.append([img, label]) | |||||
initial_seeds.append([img, label, 0]) | |||||
initial_seeds = initial_seeds[:100] | initial_seeds = initial_seeds[:100] | ||||
model_coverage_test.test_adequacy_coverage_calculate(np.array(test_images[:100]).astype(np.float32)) | |||||
LOGGER.info(TAG, 'KMNC of this test is : %s', model_coverage_test.get_kmnc()) | |||||
model_coverage_test.calculate_coverage( | |||||
np.array(test_images[:100]).astype(np.float32)) | |||||
LOGGER.info(TAG, 'KMNC of this test is : %s', | |||||
model_coverage_test.get_kmnc()) | |||||
model_fuzz_test = Fuzzing(initial_seeds, model, train_images, 20) | |||||
failed_tests = model_fuzz_test.fuzzing() | |||||
if failed_tests: | |||||
model_coverage_test.test_adequacy_coverage_calculate(np.array(failed_tests).astype(np.float32)) | |||||
LOGGER.info(TAG, 'KMNC of this test is : %s', model_coverage_test.get_kmnc()) | |||||
else: | |||||
LOGGER.info(TAG, 'Fuzzing test identifies none failed test') | |||||
model_fuzz_test = Fuzzer(model, train_images, 1000, 10) | |||||
_, _, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, initial_seeds, | |||||
eval_metric=True) | |||||
if metrics: | |||||
for key in metrics: | |||||
LOGGER.info(TAG, key + ': %s', metrics[key]) | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
@@ -227,8 +227,8 @@ class BasicIterativeMethod(IterativeGradientMethod): | |||||
clip_min, clip_max = self._bounds | clip_min, clip_max = self._bounds | ||||
clip_diff = clip_max - clip_min | clip_diff = clip_max - clip_min | ||||
for _ in range(self._nb_iter): | for _ in range(self._nb_iter): | ||||
if 'self.prob' in globals(): | |||||
d_inputs = _transform_inputs(inputs, self.prob) | |||||
if 'self._prob' in globals(): | |||||
d_inputs = _transform_inputs(inputs, self._prob) | |||||
else: | else: | ||||
d_inputs = inputs | d_inputs = inputs | ||||
adv_x = self._attack.generate(d_inputs, labels) | adv_x = self._attack.generate(d_inputs, labels) | ||||
@@ -238,8 +238,8 @@ class BasicIterativeMethod(IterativeGradientMethod): | |||||
inputs = adv_x | inputs = adv_x | ||||
else: | else: | ||||
for _ in range(self._nb_iter): | for _ in range(self._nb_iter): | ||||
if 'self.prob' in globals(): | |||||
d_inputs = _transform_inputs(inputs, self.prob) | |||||
if 'self._prob' in globals(): | |||||
d_inputs = _transform_inputs(inputs, self._prob) | |||||
else: | else: | ||||
d_inputs = inputs | d_inputs = inputs | ||||
adv_x = self._attack.generate(d_inputs, labels) | adv_x = self._attack.generate(d_inputs, labels) | ||||
@@ -311,8 +311,8 @@ class MomentumIterativeMethod(IterativeGradientMethod): | |||||
clip_min, clip_max = self._bounds | clip_min, clip_max = self._bounds | ||||
clip_diff = clip_max - clip_min | clip_diff = clip_max - clip_min | ||||
for _ in range(self._nb_iter): | for _ in range(self._nb_iter): | ||||
if 'self.prob' in globals(): | |||||
d_inputs = _transform_inputs(inputs, self.prob) | |||||
if 'self._prob' in globals(): | |||||
d_inputs = _transform_inputs(inputs, self._prob) | |||||
else: | else: | ||||
d_inputs = inputs | d_inputs = inputs | ||||
gradient = self._gradient(d_inputs, labels) | gradient = self._gradient(d_inputs, labels) | ||||
@@ -325,8 +325,8 @@ class MomentumIterativeMethod(IterativeGradientMethod): | |||||
inputs = adv_x | inputs = adv_x | ||||
else: | else: | ||||
for _ in range(self._nb_iter): | for _ in range(self._nb_iter): | ||||
if 'self.prob' in globals(): | |||||
d_inputs = _transform_inputs(inputs, self.prob) | |||||
if 'self._prob' in globals(): | |||||
d_inputs = _transform_inputs(inputs, self._prob) | |||||
else: | else: | ||||
d_inputs = inputs | d_inputs = inputs | ||||
gradient = self._gradient(d_inputs, labels) | gradient = self._gradient(d_inputs, labels) | ||||
@@ -476,7 +476,7 @@ class DiverseInputIterativeMethod(BasicIterativeMethod): | |||||
is_targeted=is_targeted, | is_targeted=is_targeted, | ||||
nb_iter=nb_iter, | nb_iter=nb_iter, | ||||
loss_fn=loss_fn) | loss_fn=loss_fn) | ||||
self.prob = check_param_type('prob', prob, float) | |||||
self._prob = check_param_type('prob', prob, float) | |||||
class MomentumDiverseInputIterativeMethod(MomentumIterativeMethod): | class MomentumDiverseInputIterativeMethod(MomentumIterativeMethod): | ||||
@@ -511,7 +511,7 @@ class MomentumDiverseInputIterativeMethod(MomentumIterativeMethod): | |||||
is_targeted=is_targeted, | is_targeted=is_targeted, | ||||
norm_level=norm_level, | norm_level=norm_level, | ||||
loss_fn=loss_fn) | loss_fn=loss_fn) | ||||
self.prob = check_param_type('prob', prob, float) | |||||
self._prob = check_param_type('prob', prob, float) | |||||
def _transform_inputs(inputs, prob, low=29, high=33, full_aug=False): | def _transform_inputs(inputs, prob, low=29, high=33, full_aug=False): | ||||
@@ -22,9 +22,11 @@ from mindspore import Tensor | |||||
from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics | from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics | ||||
from mindarmour.utils._check_param import check_model, check_numpy_param, \ | from mindarmour.utils._check_param import check_model, check_numpy_param, \ | ||||
check_int_positive | |||||
from mindarmour.fuzzing.image_transform import Contrast, Brightness, Blur, Noise, \ | |||||
Translate, Scale, Shear, Rotate | |||||
check_param_multi_types, check_norm_level, check_param_in_range | |||||
from mindarmour.fuzzing.image_transform import Contrast, Brightness, Blur, \ | |||||
Noise, Translate, Scale, Shear, Rotate | |||||
from mindarmour.attacks import FastGradientSignMethod, \ | |||||
MomentumDiverseInputIterativeMethod, ProjectedGradientDescent | |||||
class Fuzzer: | class Fuzzer: | ||||
@@ -35,129 +37,280 @@ class Fuzzer: | |||||
Neural Networks <https://dl.acm.org/doi/10.1145/3293882.3330579>`_ | Neural Networks <https://dl.acm.org/doi/10.1145/3293882.3330579>`_ | ||||
Args: | Args: | ||||
initial_seeds (list): Initial fuzzing seed, format: [[image, label], | |||||
[image, label], ...]. | |||||
target_model (Model): Target fuzz model. | target_model (Model): Target fuzz model. | ||||
train_dataset (numpy.ndarray): Training dataset used for determining | train_dataset (numpy.ndarray): Training dataset used for determining | ||||
the neurons' output boundaries. | the neurons' output boundaries. | ||||
const_k (int): The number of mutate tests for a seed. | |||||
mode (str): Image mode used in image transform, 'L' means grey graph. | |||||
Default: 'L'. | |||||
max_seed_num (int): The initial seeds max value. Default: 1000 | |||||
segmented_num (int): The number of segmented sections of neurons' | |||||
output intervals. | |||||
neuron_num (int): The number of testing neurons. | |||||
""" | """ | ||||
def __init__(self, initial_seeds, target_model, train_dataset, const_K, | |||||
mode='L', max_seed_num=1000): | |||||
self.initial_seeds = initial_seeds | |||||
def __init__(self, target_model, train_dataset, segmented_num, neuron_num): | |||||
self.target_model = check_model('model', target_model, Model) | self.target_model = check_model('model', target_model, Model) | ||||
self.train_dataset = check_numpy_param('train_dataset', train_dataset) | self.train_dataset = check_numpy_param('train_dataset', train_dataset) | ||||
self.const_k = check_int_positive('const_k', const_K) | |||||
self.mode = mode | |||||
self.max_seed_num = check_int_positive('max_seed_num', max_seed_num) | |||||
self.coverage_metrics = ModelCoverageMetrics(target_model, 1000, 10, | |||||
train_dataset) | |||||
def _image_value_expand(self, image): | |||||
return image*255 | |||||
def _image_value_compress(self, image): | |||||
return image / 255 | |||||
def _metamorphic_mutate(self, seed, try_num=50): | |||||
if self.mode == 'L': | |||||
seed = seed[0] | |||||
info = [seed, seed] | |||||
mutate_tests = [] | |||||
pixel_value_trans = ['Contrast', 'Brightness', 'Blur', 'Noise'] | |||||
affine_trans = ['Translate', 'Scale', 'Shear', 'Rotate'] | |||||
strages = {'Contrast': Contrast, 'Brightness': Brightness, 'Blur': Blur, | |||||
'Noise': Noise, | |||||
'Translate': Translate, 'Scale': Scale, 'Shear': Shear, | |||||
'Rotate': Rotate} | |||||
for _ in range(self.const_k): | |||||
for _ in range(try_num): | |||||
if (info[0] == info[1]).all(): | |||||
trans_strage = self._random_pick_mutate(affine_trans, | |||||
pixel_value_trans) | |||||
else: | |||||
trans_strage = self._random_pick_mutate(pixel_value_trans, | |||||
[]) | |||||
transform = strages[trans_strage]( | |||||
self._image_value_expand(seed), self.mode) | |||||
transform.set_params(auto_param=True) | |||||
mutate_test = transform.transform() | |||||
mutate_test = np.expand_dims( | |||||
self._image_value_compress(mutate_test), 0) | |||||
if self._is_trans_valid(seed, mutate_test): | |||||
if trans_strage in affine_trans: | |||||
info[1] = mutate_test | |||||
mutate_tests.append(mutate_test) | |||||
if not mutate_tests: | |||||
mutate_tests.append(seed) | |||||
return np.array(mutate_tests) | |||||
def fuzzing(self, coverage_metric='KMNC'): | |||||
self.coverage_metrics = ModelCoverageMetrics(target_model, | |||||
segmented_num, | |||||
neuron_num, train_dataset) | |||||
# Allowed mutate strategies so far. | |||||
self.strategies = {'Contrast': Contrast, 'Brightness': Brightness, | |||||
'Blur': Blur, 'Noise': Noise, 'Translate': Translate, | |||||
'Scale': Scale, 'Shear': Shear, 'Rotate': Rotate, | |||||
'FGSM': FastGradientSignMethod, | |||||
'PGD': ProjectedGradientDescent, | |||||
'MDIIM': MomentumDiverseInputIterativeMethod} | |||||
self.affine_trans_list = ['Translate', 'Scale', 'Shear', 'Rotate'] | |||||
self.pixel_value_trans_list = ['Contrast', 'Brightness', 'Blur', | |||||
'Noise'] | |||||
self.attacks_list = ['FGSM', 'PGD', 'MDIIM'] | |||||
self.attack_param_checklists = { | |||||
'FGSM': {'params': {'eps': {'dtype': [float, int], 'range': [0, 1]}, | |||||
'alpha': {'dtype': [float, int], | |||||
'range': [0, 1]}, | |||||
'bounds': {'dtype': [list, tuple], | |||||
'range': None}, | |||||
}}, | |||||
'PGD': {'params': {'eps': {'dtype': [float, int], 'range': [0, 1]}, | |||||
'eps_iter': {'dtype': [float, int], | |||||
'range': [0, 1e5]}, | |||||
'nb_iter': {'dtype': [float, int], | |||||
'range': [0, 1e5]}, | |||||
'bounds': {'dtype': [list, tuple], | |||||
'range': None}, | |||||
}}, | |||||
'MDIIM': { | |||||
'params': {'eps': {'dtype': [float, int], 'range': [0, 1]}, | |||||
'norm_level': {'dtype': [str], 'range': None}, | |||||
'prob': {'dtype': [float, int], 'range': [0, 1]}, | |||||
'bounds': {'dtype': [list, tuple], 'range': None}, | |||||
}}} | |||||
def _check_attack_params(self, method, params): | |||||
"""Check input parameters of attack methods.""" | |||||
allow_params = self.attack_param_checklists[method]['params'].keys() | |||||
for p in params: | |||||
if p not in allow_params: | |||||
msg = "parameters of {} must in {}".format(method, allow_params) | |||||
raise ValueError(msg) | |||||
if p == 'bounds': | |||||
bounds = check_param_multi_types('bounds', params[p], | |||||
[list, tuple]) | |||||
for b in bounds: | |||||
_ = check_param_multi_types('bound', b, [int, float]) | |||||
elif p == 'norm_level': | |||||
_ = check_norm_level(params[p]) | |||||
else: | |||||
allow_type = self.attack_param_checklists[method]['params'][p][ | |||||
'dtype'] | |||||
allow_range = self.attack_param_checklists[method]['params'][p][ | |||||
'range'] | |||||
_ = check_param_multi_types(str(p), params[p], allow_type) | |||||
_ = check_param_in_range(str(p), params[p], allow_range[0], | |||||
allow_range[1]) | |||||
def _metamorphic_mutate(self, seed, mutates, mutate_config, | |||||
mutate_num_per_seed): | |||||
"""Mutate a seed using strategies random selected from mutate_config.""" | |||||
mutate_samples = [] | |||||
mutate_strategies = [] | |||||
only_pixel_trans = seed[2] | |||||
for _ in range(mutate_num_per_seed): | |||||
strage = choice(mutate_config) | |||||
# Choose a pixel value based transform method | |||||
if only_pixel_trans: | |||||
while strage['method'] not in self.pixel_value_trans_list: | |||||
strage = choice(mutate_config) | |||||
transform = mutates[strage['method']] | |||||
params = strage['params'] | |||||
method = strage['method'] | |||||
if method in list(self.pixel_value_trans_list + self.affine_trans_list): | |||||
transform.set_params(**params) | |||||
mutate_sample = transform.transform(seed[0]) | |||||
else: | |||||
for p in params: | |||||
transform.__setattr__('_'+str(p), params[p]) | |||||
mutate_sample = transform.generate([seed[0].astype(np.float32)], | |||||
[seed[1]])[0] | |||||
if method not in self.pixel_value_trans_list: | |||||
only_pixel_trans = 1 | |||||
mutate_sample = [mutate_sample, seed[1], only_pixel_trans] | |||||
if self._is_trans_valid(seed[0], mutate_sample[0]): | |||||
mutate_samples.append(mutate_sample) | |||||
mutate_strategies.append(method) | |||||
if not mutate_samples: | |||||
mutate_samples.append(seed) | |||||
mutate_strategies.append(None) | |||||
return np.array(mutate_samples), mutate_strategies | |||||
def _init_mutates(self, mutate_config): | |||||
""" Check whether the mutate_config meet the specification.""" | |||||
has_pixel_trans = False | |||||
for mutate in mutate_config: | |||||
if mutate['method'] in self.pixel_value_trans_list: | |||||
has_pixel_trans = True | |||||
break | |||||
if not has_pixel_trans: | |||||
msg = "mutate methods in mutate_config at lease have one in {}".format( | |||||
self.pixel_value_trans_list) | |||||
raise ValueError(msg) | |||||
mutates = {} | |||||
for mutate in mutate_config: | |||||
method = mutate['method'] | |||||
params = mutate['params'] | |||||
if method not in self.attacks_list: | |||||
mutates[method] = self.strategies[method]() | |||||
else: | |||||
self._check_attack_params(method, params) | |||||
network = self.target_model._network | |||||
loss_fn = self.target_model._loss_fn | |||||
mutates[method] = self.strategies[method](network, | |||||
loss_fn=loss_fn) | |||||
return mutates | |||||
def evaluate(self, fuzz_samples, gt_labels, fuzz_preds, | |||||
fuzz_strategies): | |||||
""" | |||||
Evaluate generated fuzzing samples in three dimention: accuracy, | |||||
attack success rate and neural coverage. | |||||
Args: | |||||
fuzz_samples (numpy.ndarray): Generated fuzzing samples according to seeds. | |||||
gt_labels (numpy.ndarray): Ground Truth of seeds. | |||||
fuzz_preds (numpy.ndarray): Predictions of generated fuzz samples. | |||||
fuzz_strategies (numpy.ndarray): Mutate strategies of fuzz samples. | |||||
Returns: | |||||
dict, evaluate metrics include accuarcy, attack success rate | |||||
and neural coverage. | |||||
""" | |||||
gt_labels = np.asarray(gt_labels) | |||||
fuzz_preds = np.asarray(fuzz_preds) | |||||
temp = np.argmax(gt_labels, axis=1) == np.argmax(fuzz_preds, axis=1) | |||||
acc = np.sum(temp) / np.size(temp) | |||||
cond = [elem in self.attacks_list for elem in fuzz_strategies] | |||||
temp = temp[cond] | |||||
attack_success_rate = 1 - np.sum(temp) / np.size(temp) | |||||
self.coverage_metrics.calculate_coverage( | |||||
np.array(fuzz_samples).astype(np.float32)) | |||||
kmnc = self.coverage_metrics.get_kmnc() | |||||
nbc = self.coverage_metrics.get_nbc() | |||||
snac = self.coverage_metrics.get_snac() | |||||
metrics = {} | |||||
metrics['Accuracy'] = acc | |||||
metrics['Attack_succrss_rate'] = attack_success_rate | |||||
metrics['Neural_coverage_KMNC'] = kmnc | |||||
metrics['Neural_coverage_NBC'] = nbc | |||||
metrics['Neural_coverage_SNAC'] = snac | |||||
return metrics | |||||
def fuzzing(self, mutate_config, initial_seeds, coverage_metric='KMNC', | |||||
eval_metric=True, max_iters=10000, mutate_num_per_seed=20): | |||||
""" | """ | ||||
Fuzzing tests for deep neural networks. | Fuzzing tests for deep neural networks. | ||||
Args: | Args: | ||||
mutate_config (list): Mutate configs. The format is | |||||
[{'method': 'Blur', | |||||
'params': {'auto_param': True}}, | |||||
{'method': 'Contrast', | |||||
'params': {'factor': 2}}, | |||||
...]. The support methods list is in `self.strategies`, | |||||
The params of each method must within the range of changeable | |||||
parameters. | |||||
initial_seeds (numpy.ndarray): Initial seeds used to generate | |||||
mutated samples. | |||||
coverage_metric (str): Model coverage metric of neural networks. | coverage_metric (str): Model coverage metric of neural networks. | ||||
Default: 'KMNC'. | Default: 'KMNC'. | ||||
eval_metric (bool): Whether to evaluate the generated fuzz samples. | |||||
Default: True. | |||||
max_iters (int): Max number of select a seed to mutate. | |||||
Default: 10000. | |||||
mutate_num_per_seed (int): The number of mutate times for a seed. | |||||
Default: 20. | |||||
Returns: | Returns: | ||||
list, mutated tests mis-predicted by target DNN model. | |||||
list, mutated samples. | |||||
""" | """ | ||||
seed = self._select_next() | |||||
failed_tests = [] | |||||
seed_num = 0 | |||||
while seed and seed_num < self.max_seed_num: | |||||
mutate_tests = self._metamorphic_mutate(seed[0]) | |||||
coverages, predicts = self._run(mutate_tests, coverage_metric) | |||||
# Check whether the mutate_config meet the specification. | |||||
mutates = self._init_mutates(mutate_config) | |||||
seed, initial_seeds = self._select_next(initial_seeds) | |||||
fuzz_samples = [] | |||||
gt_labels = [] | |||||
fuzz_preds = [] | |||||
fuzz_strategies = [] | |||||
iter_num = 0 | |||||
while initial_seeds and iter_num < max_iters: | |||||
# Mutate a seed. | |||||
mutate_samples, mutate_strategies = self._metamorphic_mutate(seed, | |||||
mutates, | |||||
mutate_config, | |||||
mutate_num_per_seed) | |||||
# Calculate the coverages and predictions of generated samples. | |||||
coverages, predicts = self._run(mutate_samples, coverage_metric) | |||||
coverage_gains = self._coverage_gains(coverages) | coverage_gains = self._coverage_gains(coverages) | ||||
for mutate, cov, res in zip(mutate_tests, coverage_gains, predicts): | |||||
if np.argmax(seed[1]) != np.argmax(res): | |||||
failed_tests.append(mutate) | |||||
continue | |||||
for mutate, cov, pred, strategy in zip(mutate_samples, | |||||
coverage_gains, | |||||
predicts, mutate_strategies): | |||||
fuzz_samples.append(mutate[0]) | |||||
gt_labels.append(mutate[1]) | |||||
fuzz_preds.append(pred) | |||||
fuzz_strategies.append(strategy) | |||||
# if the mutate samples has coverage gains add this samples in | |||||
# the initial seeds to guide new mutates. | |||||
if cov > 0: | if cov > 0: | ||||
self.initial_seeds.append([mutate, seed[1]]) | |||||
seed = self._select_next() | |||||
seed_num += 1 | |||||
return failed_tests | |||||
initial_seeds.append(mutate) | |||||
seed, initial_seeds = self._select_next(initial_seeds) | |||||
iter_num += 1 | |||||
metrics = None | |||||
if eval_metric: | |||||
metrics = self.evaluate(fuzz_samples, gt_labels, fuzz_preds, | |||||
fuzz_strategies) | |||||
return fuzz_samples, gt_labels, fuzz_preds, fuzz_strategies, metrics | |||||
def _coverage_gains(self, coverages): | def _coverage_gains(self, coverages): | ||||
""" Calculate the coverage gains of mutated samples. """ | |||||
gains = [0] + coverages[:-1] | gains = [0] + coverages[:-1] | ||||
gains = np.array(coverages) - np.array(gains) | gains = np.array(coverages) - np.array(gains) | ||||
return gains | return gains | ||||
def _run(self, mutate_tests, coverage_metric="KNMC"): | |||||
def _run(self, mutate_samples, coverage_metric="KNMC"): | |||||
""" Calculate the coverages and predictions of generated samples.""" | |||||
samples = [s[0] for s in mutate_samples] | |||||
samples = np.array(samples) | |||||
coverages = [] | coverages = [] | ||||
result = self.target_model.predict( | |||||
Tensor(mutate_tests.astype(np.float32))) | |||||
result = result.asnumpy() | |||||
for index in range(len(mutate_tests)): | |||||
mutate = np.expand_dims(mutate_tests[index], 0) | |||||
self.coverage_metrics.model_coverage_test( | |||||
mutate.astype(np.float32), batch_size=1) | |||||
predictions = self.target_model.predict(Tensor(samples.astype(np.float32))) | |||||
predictions = predictions.asnumpy() | |||||
for index in range(len(samples)): | |||||
mutate = samples[:index + 1] | |||||
self.coverage_metrics.calculate_coverage(mutate.astype(np.float32)) | |||||
if coverage_metric == "KMNC": | if coverage_metric == "KMNC": | ||||
coverages.append(self.coverage_metrics.get_kmnc()) | coverages.append(self.coverage_metrics.get_kmnc()) | ||||
if coverage_metric == 'NBC': | |||||
coverages.append(self.coverage_metrics.get_nbc()) | |||||
if coverage_metric == 'SNAC': | |||||
coverages.append(self.coverage_metrics.get_snac()) | |||||
return coverages, predictions | |||||
return coverages, result | |||||
def _select_next(self): | |||||
seed = choice(self.initial_seeds) | |||||
return seed | |||||
def _select_next(self, initial_seeds): | |||||
"""Randomly select a seed from `initial_seeds`.""" | |||||
seed_num = choice(range(len(initial_seeds))) | |||||
seed = initial_seeds[seed_num] | |||||
del initial_seeds[seed_num] | |||||
return seed, initial_seeds | |||||
def _random_pick_mutate(self, affine_trans_list, pixel_value_trans_list): | |||||
strage = choice(affine_trans_list + pixel_value_trans_list) | |||||
return strage | |||||
def _is_trans_valid(self, seed, mutate_test): | |||||
def _is_trans_valid(self, seed, mutate_sample): | |||||
""" Check a mutated sample is valid. If the number of changed pixels in | |||||
a seed is less than pixels_change_rate*size(seed), this mutate is valid. | |||||
Else check the infinite norm of seed changes, if the value of the | |||||
infinite norm less than pixel_value_change_rate*255, this mutate is | |||||
valid too. Otherwise the opposite.""" | |||||
is_valid = False | is_valid = False | ||||
pixels_change_rate = 0.02 | pixels_change_rate = 0.02 | ||||
pixel_value_change_rate = 0.2 | pixel_value_change_rate = 0.2 | ||||
diff = np.array(seed - mutate_test).flatten() | |||||
diff = np.array(seed - mutate_sample).flatten() | |||||
size = np.shape(diff)[0] | size = np.shape(diff)[0] | ||||
l0 = np.linalg.norm(diff, ord=0) | l0 = np.linalg.norm(diff, ord=0) | ||||
linf = np.linalg.norm(diff, ord=np.inf) | linf = np.linalg.norm(diff, ord=np.inf) | ||||
@@ -167,5 +320,4 @@ class Fuzzer: | |||||
else: | else: | ||||
if linf < pixel_value_change_rate*255: | if linf < pixel_value_change_rate*255: | ||||
is_valid = True | is_valid = True | ||||
return is_valid | return is_valid |
@@ -88,7 +88,8 @@ def is_rgb(img): | |||||
Bool, True if input is RGB. | Bool, True if input is RGB. | ||||
""" | """ | ||||
if is_numpy(img): | if is_numpy(img): | ||||
if len(np.shape(img)) == 3: | |||||
img_shape = np.shape(img) | |||||
if len(np.shape(img)) == 3 and (img_shape[0] == 3 or img_shape[2] == 3): | |||||
return True | return True | ||||
return False | return False | ||||
raise TypeError('img should be Numpy array. Got {}'.format(type(img))) | raise TypeError('img should be Numpy array. Got {}'.format(type(img))) | ||||
@@ -127,6 +128,7 @@ class ImageTransform: | |||||
of the image is not normalized , it will be normalized between 0 to 1.""" | of the image is not normalized , it will be normalized between 0 to 1.""" | ||||
rgb = is_rgb(image) | rgb = is_rgb(image) | ||||
chw = False | chw = False | ||||
gray3dim = False | |||||
normalized = is_normalized(image) | normalized = is_normalized(image) | ||||
if rgb: | if rgb: | ||||
chw = is_chw(image) | chw = is_chw(image) | ||||
@@ -135,12 +137,16 @@ class ImageTransform: | |||||
else: | else: | ||||
image = image | image = image | ||||
else: | else: | ||||
image = image | |||||
if len(np.shape(image)) == 3: | |||||
gray3dim = True | |||||
image = image[0] | |||||
else: | |||||
image = image | |||||
if normalized: | if normalized: | ||||
image = np.uint8(image*255) | image = np.uint8(image*255) | ||||
return rgb, chw, normalized, image | |||||
return rgb, chw, normalized, gray3dim, image | |||||
def _original_format(self, image, chw, normalized): | |||||
def _original_format(self, image, chw, normalized, gray3dim): | |||||
""" Return transformed image with original format. """ | """ Return transformed image with original format. """ | ||||
if not is_numpy(image): | if not is_numpy(image): | ||||
image = np.array(image) | image = np.array(image) | ||||
@@ -148,6 +154,8 @@ class ImageTransform: | |||||
image = hwc_to_chw(image) | image = hwc_to_chw(image) | ||||
if normalized: | if normalized: | ||||
image = image / 255 | image = image / 255 | ||||
if gray3dim: | |||||
image = np.expand_dims(image, 0) | |||||
return image | return image | ||||
def transform(self, image): | def transform(self, image): | ||||
@@ -191,11 +199,12 @@ class Contrast(ImageTransform): | |||||
Returns: | Returns: | ||||
numpy.ndarray, transformed image. | numpy.ndarray, transformed image. | ||||
""" | """ | ||||
_, chw, normalized, image = self._check(image) | |||||
_, chw, normalized, gray3dim, image = self._check(image) | |||||
image = to_pil(image) | image = to_pil(image) | ||||
img_contrast = ImageEnhance.Contrast(image) | img_contrast = ImageEnhance.Contrast(image) | ||||
trans_image = img_contrast.enhance(self.factor) | trans_image = img_contrast.enhance(self.factor) | ||||
trans_image = self._original_format(trans_image, chw, normalized) | |||||
trans_image = self._original_format(trans_image, chw, normalized, | |||||
gray3dim) | |||||
return trans_image | return trans_image | ||||
@@ -237,11 +246,12 @@ class Brightness(ImageTransform): | |||||
Returns: | Returns: | ||||
numpy.ndarray, transformed image. | numpy.ndarray, transformed image. | ||||
""" | """ | ||||
_, chw, normalized, image = self._check(image) | |||||
_, chw, normalized, gray3dim, image = self._check(image) | |||||
image = to_pil(image) | image = to_pil(image) | ||||
img_contrast = ImageEnhance.Brightness(image) | img_contrast = ImageEnhance.Brightness(image) | ||||
trans_image = img_contrast.enhance(self.factor) | trans_image = img_contrast.enhance(self.factor) | ||||
trans_image = self._original_format(trans_image, chw, normalized) | |||||
trans_image = self._original_format(trans_image, chw, normalized, | |||||
gray3dim) | |||||
return trans_image | return trans_image | ||||
@@ -280,10 +290,11 @@ class Blur(ImageTransform): | |||||
Returns: | Returns: | ||||
numpy.ndarray, transformed image. | numpy.ndarray, transformed image. | ||||
""" | """ | ||||
_, chw, normalized, image = self._check(image) | |||||
_, chw, normalized, gray3dim, image = self._check(image) | |||||
image = to_pil(image) | image = to_pil(image) | ||||
trans_image = image.filter(ImageFilter.GaussianBlur(radius=self.radius)) | trans_image = image.filter(ImageFilter.GaussianBlur(radius=self.radius)) | ||||
trans_image = self._original_format(trans_image, chw, normalized) | |||||
trans_image = self._original_format(trans_image, chw, normalized, | |||||
gray3dim) | |||||
return trans_image | return trans_image | ||||
@@ -324,12 +335,13 @@ class Noise(ImageTransform): | |||||
Returns: | Returns: | ||||
numpy.ndarray, transformed image. | numpy.ndarray, transformed image. | ||||
""" | """ | ||||
_, chw, normalized, image = self._check(image) | |||||
_, chw, normalized, gray3dim, image = self._check(image) | |||||
noise = np.random.uniform(low=-1, high=1, size=np.shape(image)) | noise = np.random.uniform(low=-1, high=1, size=np.shape(image)) | ||||
trans_image = np.copy(image) | trans_image = np.copy(image) | ||||
trans_image[noise < -self.factor] = 0 | trans_image[noise < -self.factor] = 0 | ||||
trans_image[noise > self.factor] = 1 | trans_image[noise > self.factor] = 1 | ||||
trans_image = self._original_format(trans_image, chw, normalized) | |||||
trans_image = self._original_format(trans_image, chw, normalized, | |||||
gray3dim) | |||||
return trans_image | return trans_image | ||||
@@ -375,7 +387,7 @@ class Translate(ImageTransform): | |||||
Returns: | Returns: | ||||
numpy.ndarray, transformed image. | numpy.ndarray, transformed image. | ||||
""" | """ | ||||
_, chw, normalized, image = self._check(image) | |||||
_, chw, normalized, gray3dim, image = self._check(image) | |||||
img = to_pil(image) | img = to_pil(image) | ||||
if self.auto_param: | if self.auto_param: | ||||
image_shape = np.shape(image) | image_shape = np.shape(image) | ||||
@@ -383,7 +395,8 @@ class Translate(ImageTransform): | |||||
self.y_bias = image_shape[1]*self.y_bias | self.y_bias = image_shape[1]*self.y_bias | ||||
trans_image = img.transform(img.size, Image.AFFINE, | trans_image = img.transform(img.size, Image.AFFINE, | ||||
(1, 0, self.x_bias, 0, 1, self.y_bias)) | (1, 0, self.x_bias, 0, 1, self.y_bias)) | ||||
trans_image = self._original_format(trans_image, chw, normalized) | |||||
trans_image = self._original_format(trans_image, chw, normalized, | |||||
gray3dim) | |||||
return trans_image | return trans_image | ||||
@@ -431,7 +444,7 @@ class Scale(ImageTransform): | |||||
Returns: | Returns: | ||||
numpy.ndarray, transformed image. | numpy.ndarray, transformed image. | ||||
""" | """ | ||||
rgb, chw, normalized, image = self._check(image) | |||||
rgb, chw, normalized, gray3dim, image = self._check(image) | |||||
if rgb: | if rgb: | ||||
h, w, _ = np.shape(image) | h, w, _ = np.shape(image) | ||||
else: | else: | ||||
@@ -442,7 +455,8 @@ class Scale(ImageTransform): | |||||
trans_image = img.transform(img.size, Image.AFFINE, | trans_image = img.transform(img.size, Image.AFFINE, | ||||
(self.factor_x, 0, move_x_centor, | (self.factor_x, 0, move_x_centor, | ||||
0, self.factor_y, move_y_centor)) | 0, self.factor_y, move_y_centor)) | ||||
trans_image = self._original_format(trans_image, chw, normalized) | |||||
trans_image = self._original_format(trans_image, chw, normalized, | |||||
gray3dim) | |||||
return trans_image | return trans_image | ||||
@@ -500,7 +514,7 @@ class Shear(ImageTransform): | |||||
Returns: | Returns: | ||||
numpy.ndarray, transformed image. | numpy.ndarray, transformed image. | ||||
""" | """ | ||||
rgb, chw, normalized, image = self._check(image) | |||||
rgb, chw, normalized, gray3dim, image = self._check(image) | |||||
img = to_pil(image) | img = to_pil(image) | ||||
if rgb: | if rgb: | ||||
h, w, _ = np.shape(image) | h, w, _ = np.shape(image) | ||||
@@ -523,7 +537,8 @@ class Shear(ImageTransform): | |||||
trans_image = img.transform(img.size, Image.AFFINE, | trans_image = img.transform(img.size, Image.AFFINE, | ||||
(scale, scale*self.factor_x, move_x_cen, | (scale, scale*self.factor_x, move_x_cen, | ||||
scale*self.factor_y, scale, move_y_cen)) | scale*self.factor_y, scale, move_y_cen)) | ||||
trans_image = self._original_format(trans_image, chw, normalized) | |||||
trans_image = self._original_format(trans_image, chw, normalized, | |||||
gray3dim) | |||||
return trans_image | return trans_image | ||||
@@ -562,8 +577,9 @@ class Rotate(ImageTransform): | |||||
Returns: | Returns: | ||||
numpy.ndarray, transformed image. | numpy.ndarray, transformed image. | ||||
""" | """ | ||||
_, chw, normalized, image = self._check(image) | |||||
_, chw, normalized, gray3dim, image = self._check(image) | |||||
img = to_pil(image) | img = to_pil(image) | ||||
trans_image = img.rotate(self.angle, expand=True) | trans_image = img.rotate(self.angle, expand=True) | ||||
trans_image = self._original_format(trans_image, chw, normalized) | |||||
trans_image = self._original_format(trans_image, chw, normalized, | |||||
gray3dim) | |||||
return trans_image | return trans_image |
@@ -0,0 +1,172 @@ | |||||
# Copyright 2019 Huawei Technologies Co., Ltd | |||||
# | |||||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||||
# you may not use this file except in compliance with the License. | |||||
# You may obtain a copy of the License at | |||||
# | |||||
# http://www.apache.org/licenses/LICENSE-2.0 | |||||
# | |||||
# Unless required by applicable law or agreed to in writing, software | |||||
# distributed under the License is distributed on an "AS IS" BASIS, | |||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
# See the License for the specific language governing permissions and | |||||
# limitations under the License. | |||||
""" | |||||
Model-fuzz coverage test. | |||||
""" | |||||
import numpy as np | |||||
import pytest | |||||
from mindspore import context | |||||
from mindspore import nn | |||||
from mindspore.common.initializer import TruncatedNormal | |||||
from mindspore.ops import operations as P | |||||
from mindspore.train import Model | |||||
from mindarmour.fuzzing.fuzzing import Fuzzer | |||||
from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics | |||||
from mindarmour.utils.logger import LogUtil | |||||
LOGGER = LogUtil.get_instance() | |||||
TAG = 'Fuzzing test' | |||||
LOGGER.set_level('INFO') | |||||
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): | |||||
weight = weight_variable() | |||||
return nn.Conv2d(in_channels, out_channels, | |||||
kernel_size=kernel_size, stride=stride, padding=padding, | |||||
weight_init=weight, has_bias=False, pad_mode="valid") | |||||
def fc_with_initialize(input_channels, out_channels): | |||||
weight = weight_variable() | |||||
bias = weight_variable() | |||||
return nn.Dense(input_channels, out_channels, weight, bias) | |||||
def weight_variable(): | |||||
return TruncatedNormal(0.02) | |||||
class Net(nn.Cell): | |||||
""" | |||||
Lenet network | |||||
""" | |||||
def __init__(self): | |||||
super(Net, self).__init__() | |||||
self.conv1 = conv(1, 6, 5) | |||||
self.conv2 = conv(6, 16, 5) | |||||
self.fc1 = fc_with_initialize(16*5*5, 120) | |||||
self.fc2 = fc_with_initialize(120, 84) | |||||
self.fc3 = fc_with_initialize(84, 10) | |||||
self.relu = nn.ReLU() | |||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) | |||||
self.reshape = P.Reshape() | |||||
def construct(self, x): | |||||
x = self.conv1(x) | |||||
x = self.relu(x) | |||||
x = self.max_pool2d(x) | |||||
x = self.conv2(x) | |||||
x = self.relu(x) | |||||
x = self.max_pool2d(x) | |||||
x = self.reshape(x, (-1, 16*5*5)) | |||||
x = self.fc1(x) | |||||
x = self.relu(x) | |||||
x = self.fc2(x) | |||||
x = self.relu(x) | |||||
x = self.fc3(x) | |||||
return x | |||||
@pytest.mark.level0 | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.env_onecard | |||||
@pytest.mark.component_mindarmour | |||||
def test_fuzzing_ascend(): | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# load network | |||||
net = Net() | |||||
model = Model(net) | |||||
batch_size = 8 | |||||
num_classe = 10 | |||||
mutate_config = [{'method': 'Blur', | |||||
'params': {'auto_param': True}}, | |||||
{'method': 'Contrast', | |||||
'params': {'factor': 2}}, | |||||
{'method': 'Translate', | |||||
'params': {'x_bias': 0.1, 'y_bias': 0.2}}, | |||||
{'method': 'FGSM', | |||||
'params': {'eps': 0.1, 'alpha': 0.1}} | |||||
] | |||||
# initialize fuzz test with training dataset | |||||
train_images = np.random.rand(32, 1, 32, 32).astype(np.float32) | |||||
model_coverage_test = ModelCoverageMetrics(model, 1000, 10, train_images) | |||||
# fuzz test with original test data | |||||
# get test data | |||||
test_images = np.random.rand(batch_size, 1, 32, 32).astype(np.float32) | |||||
test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32) | |||||
test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32) | |||||
initial_seeds = [] | |||||
# make initial seeds | |||||
for img, label in zip(test_images, test_labels): | |||||
initial_seeds.append([img, label, 0]) | |||||
initial_seeds = initial_seeds[:100] | |||||
model_coverage_test.calculate_coverage( | |||||
np.array(test_images[:100]).astype(np.float32)) | |||||
LOGGER.info(TAG, 'KMNC of this test is : %s', | |||||
model_coverage_test.get_kmnc()) | |||||
model_fuzz_test = Fuzzer(model, train_images, 1000, 10) | |||||
_, _, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, initial_seeds) | |||||
print(metrics) | |||||
@pytest.mark.level0 | |||||
@pytest.mark.platform_x86_cpu | |||||
@pytest.mark.env_onecard | |||||
@pytest.mark.component_mindarmour | |||||
def test_fuzzing_cpu(): | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# load network | |||||
net = Net() | |||||
model = Model(net) | |||||
batch_size = 8 | |||||
num_classe = 10 | |||||
mutate_config = [{'method': 'Blur', | |||||
'params': {'auto_param': True}}, | |||||
{'method': 'Contrast', | |||||
'params': {'factor': 2}}, | |||||
{'method': 'Translate', | |||||
'params': {'x_bias': 0.1, 'y_bias': 0.2}}, | |||||
{'method': 'FGSM', | |||||
'params': {'eps': 0.1, 'alpha': 0.1}} | |||||
] | |||||
# initialize fuzz test with training dataset | |||||
train_images = np.random.rand(32, 1, 32, 32).astype(np.float32) | |||||
model_coverage_test = ModelCoverageMetrics(model, 1000, 10, train_images) | |||||
# fuzz test with original test data | |||||
# get test data | |||||
test_images = np.random.rand(batch_size, 1, 32, 32).astype(np.float32) | |||||
test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32) | |||||
test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32) | |||||
initial_seeds = [] | |||||
# make initial seeds | |||||
for img, label in zip(test_images, test_labels): | |||||
initial_seeds.append([img, label, 0]) | |||||
initial_seeds = initial_seeds[:100] | |||||
model_coverage_test.calculate_coverage( | |||||
np.array(test_images[:100]).astype(np.float32)) | |||||
LOGGER.info(TAG, 'KMNC of this test is : %s', | |||||
model_coverage_test.get_kmnc()) | |||||
model_fuzz_test = Fuzzer(model, train_images, 1000, 10) | |||||
_, _, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, initial_seeds) | |||||
print(metrics) |