|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Fuzzing.
- """
- from random import choice
-
- import numpy as np
- from mindspore import Model
- from mindspore import Tensor
-
- from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics
- from mindarmour.utils._check_param import check_model, check_numpy_param, \
- check_param_multi_types, check_norm_level, check_param_in_range
- from mindarmour.fuzzing.image_transform import Contrast, Brightness, Blur, \
- Noise, Translate, Scale, Shear, Rotate
- from mindarmour.attacks import FastGradientSignMethod, \
- MomentumDiverseInputIterativeMethod, ProjectedGradientDescent
-
-
- class Fuzzer:
- """
- Fuzzing test framework for deep neural networks.
-
- Reference: `DeepHunter: A Coverage-Guided Fuzz Testing Framework for Deep
- Neural Networks <https://dl.acm.org/doi/10.1145/3293882.3330579>`_
-
- Args:
- target_model (Model): Target fuzz model.
- train_dataset (numpy.ndarray): Training dataset used for determining
- the neurons' output boundaries.
- segmented_num (int): The number of segmented sections of neurons'
- output intervals.
- neuron_num (int): The number of testing neurons.
- """
-
- def __init__(self, target_model, train_dataset, segmented_num, neuron_num):
- self.target_model = check_model('model', target_model, Model)
- self.train_dataset = check_numpy_param('train_dataset', train_dataset)
- self.coverage_metrics = ModelCoverageMetrics(target_model,
- segmented_num,
- neuron_num, train_dataset)
- # Allowed mutate strategies so far.
- self.strategies = {'Contrast': Contrast, 'Brightness': Brightness,
- 'Blur': Blur, 'Noise': Noise, 'Translate': Translate,
- 'Scale': Scale, 'Shear': Shear, 'Rotate': Rotate,
- 'FGSM': FastGradientSignMethod,
- 'PGD': ProjectedGradientDescent,
- 'MDIIM': MomentumDiverseInputIterativeMethod}
- self.affine_trans_list = ['Translate', 'Scale', 'Shear', 'Rotate']
- self.pixel_value_trans_list = ['Contrast', 'Brightness', 'Blur',
- 'Noise']
- self.attacks_list = ['FGSM', 'PGD', 'MDIIM']
- self.attack_param_checklists = {
- 'FGSM': {'params': {'eps': {'dtype': [float, int], 'range': [0, 1]},
- 'alpha': {'dtype': [float, int],
- 'range': [0, 1]},
- 'bounds': {'dtype': [list, tuple],
- 'range': None},
- }},
- 'PGD': {'params': {'eps': {'dtype': [float, int], 'range': [0, 1]},
- 'eps_iter': {'dtype': [float, int],
- 'range': [0, 1e5]},
- 'nb_iter': {'dtype': [float, int],
- 'range': [0, 1e5]},
- 'bounds': {'dtype': [list, tuple],
- 'range': None},
- }},
- 'MDIIM': {
- 'params': {'eps': {'dtype': [float, int], 'range': [0, 1]},
- 'norm_level': {'dtype': [str], 'range': None},
- 'prob': {'dtype': [float, int], 'range': [0, 1]},
- 'bounds': {'dtype': [list, tuple], 'range': None},
- }}}
-
- def _check_attack_params(self, method, params):
- """Check input parameters of attack methods."""
- allow_params = self.attack_param_checklists[method]['params'].keys()
- for p in params:
- if p not in allow_params:
- msg = "parameters of {} must in {}".format(method, allow_params)
- raise ValueError(msg)
- if p == 'bounds':
- bounds = check_param_multi_types('bounds', params[p],
- [list, tuple])
- for b in bounds:
- _ = check_param_multi_types('bound', b, [int, float])
- elif p == 'norm_level':
- _ = check_norm_level(params[p])
- else:
- allow_type = self.attack_param_checklists[method]['params'][p][
- 'dtype']
- allow_range = self.attack_param_checklists[method]['params'][p][
- 'range']
- _ = check_param_multi_types(str(p), params[p], allow_type)
- _ = check_param_in_range(str(p), params[p], allow_range[0],
- allow_range[1])
-
- def _metamorphic_mutate(self, seed, mutates, mutate_config,
- mutate_num_per_seed):
- """Mutate a seed using strategies random selected from mutate_config."""
- mutate_samples = []
- mutate_strategies = []
- only_pixel_trans = seed[2]
- for _ in range(mutate_num_per_seed):
- strage = choice(mutate_config)
- # Choose a pixel value based transform method
- if only_pixel_trans:
- while strage['method'] not in self.pixel_value_trans_list:
- strage = choice(mutate_config)
- transform = mutates[strage['method']]
- params = strage['params']
- method = strage['method']
- if method in list(self.pixel_value_trans_list + self.affine_trans_list):
- transform.set_params(**params)
- mutate_sample = transform.transform(seed[0])
- else:
- for p in params:
- transform.__setattr__('_'+str(p), params[p])
- mutate_sample = transform.generate([seed[0].astype(np.float32)],
- [seed[1]])[0]
- if method not in self.pixel_value_trans_list:
- only_pixel_trans = 1
- mutate_sample = [mutate_sample, seed[1], only_pixel_trans]
- if self._is_trans_valid(seed[0], mutate_sample[0]):
- mutate_samples.append(mutate_sample)
- mutate_strategies.append(method)
- if not mutate_samples:
- mutate_samples.append(seed)
- mutate_strategies.append(None)
- return np.array(mutate_samples), mutate_strategies
-
- def _init_mutates(self, mutate_config):
- """ Check whether the mutate_config meet the specification."""
- has_pixel_trans = False
- for mutate in mutate_config:
- if mutate['method'] in self.pixel_value_trans_list:
- has_pixel_trans = True
- break
- if not has_pixel_trans:
- msg = "mutate methods in mutate_config at lease have one in {}".format(
- self.pixel_value_trans_list)
- raise ValueError(msg)
- mutates = {}
- for mutate in mutate_config:
- method = mutate['method']
- params = mutate['params']
- if method not in self.attacks_list:
- mutates[method] = self.strategies[method]()
- else:
- self._check_attack_params(method, params)
- network = self.target_model._network
- loss_fn = self.target_model._loss_fn
- mutates[method] = self.strategies[method](network,
- loss_fn=loss_fn)
- return mutates
-
- def evaluate(self, fuzz_samples, gt_labels, fuzz_preds,
- fuzz_strategies):
- """
- Evaluate generated fuzzing samples in three dimention: accuracy,
- attack success rate and neural coverage.
-
- Args:
- fuzz_samples (numpy.ndarray): Generated fuzzing samples according to seeds.
- gt_labels (numpy.ndarray): Ground Truth of seeds.
- fuzz_preds (numpy.ndarray): Predictions of generated fuzz samples.
- fuzz_strategies (numpy.ndarray): Mutate strategies of fuzz samples.
-
- Returns:
- dict, evaluate metrics include accuarcy, attack success rate
- and neural coverage.
- """
-
- gt_labels = np.asarray(gt_labels)
- fuzz_preds = np.asarray(fuzz_preds)
- temp = np.argmax(gt_labels, axis=1) == np.argmax(fuzz_preds, axis=1)
- acc = np.sum(temp) / np.size(temp)
-
- cond = [elem in self.attacks_list for elem in fuzz_strategies]
- temp = temp[cond]
- attack_success_rate = 1 - np.sum(temp) / np.size(temp)
-
- self.coverage_metrics.calculate_coverage(
- np.array(fuzz_samples).astype(np.float32))
- kmnc = self.coverage_metrics.get_kmnc()
- nbc = self.coverage_metrics.get_nbc()
- snac = self.coverage_metrics.get_snac()
-
- metrics = {}
- metrics['Accuracy'] = acc
- metrics['Attack_succrss_rate'] = attack_success_rate
- metrics['Neural_coverage_KMNC'] = kmnc
- metrics['Neural_coverage_NBC'] = nbc
- metrics['Neural_coverage_SNAC'] = snac
- return metrics
-
- def fuzzing(self, mutate_config, initial_seeds, coverage_metric='KMNC',
- eval_metric=True, max_iters=10000, mutate_num_per_seed=20):
- """
- Fuzzing tests for deep neural networks.
-
- Args:
- mutate_config (list): Mutate configs. The format is
- [{'method': 'Blur',
- 'params': {'auto_param': True}},
- {'method': 'Contrast',
- 'params': {'factor': 2}},
- ...]. The support methods list is in `self.strategies`,
- The params of each method must within the range of changeable
- parameters.
- initial_seeds (numpy.ndarray): Initial seeds used to generate
- mutated samples.
- coverage_metric (str): Model coverage metric of neural networks.
- Default: 'KMNC'.
- eval_metric (bool): Whether to evaluate the generated fuzz samples.
- Default: True.
- max_iters (int): Max number of select a seed to mutate.
- Default: 10000.
- mutate_num_per_seed (int): The number of mutate times for a seed.
- Default: 20.
-
- Returns:
- list, mutated samples.
- """
- # Check whether the mutate_config meet the specification.
- mutates = self._init_mutates(mutate_config)
- seed, initial_seeds = self._select_next(initial_seeds)
- fuzz_samples = []
- gt_labels = []
- fuzz_preds = []
- fuzz_strategies = []
- iter_num = 0
- while initial_seeds and iter_num < max_iters:
- # Mutate a seed.
- mutate_samples, mutate_strategies = self._metamorphic_mutate(seed,
- mutates,
- mutate_config,
- mutate_num_per_seed)
- # Calculate the coverages and predictions of generated samples.
- coverages, predicts = self._run(mutate_samples, coverage_metric)
- coverage_gains = self._coverage_gains(coverages)
- for mutate, cov, pred, strategy in zip(mutate_samples,
- coverage_gains,
- predicts, mutate_strategies):
- fuzz_samples.append(mutate[0])
- gt_labels.append(mutate[1])
- fuzz_preds.append(pred)
- fuzz_strategies.append(strategy)
- # if the mutate samples has coverage gains add this samples in
- # the initial seeds to guide new mutates.
- if cov > 0:
- initial_seeds.append(mutate)
- seed, initial_seeds = self._select_next(initial_seeds)
- iter_num += 1
- metrics = None
- if eval_metric:
- metrics = self.evaluate(fuzz_samples, gt_labels, fuzz_preds,
- fuzz_strategies)
- return fuzz_samples, gt_labels, fuzz_preds, fuzz_strategies, metrics
-
- def _coverage_gains(self, coverages):
- """ Calculate the coverage gains of mutated samples. """
- gains = [0] + coverages[:-1]
- gains = np.array(coverages) - np.array(gains)
- return gains
-
- def _run(self, mutate_samples, coverage_metric="KNMC"):
- """ Calculate the coverages and predictions of generated samples."""
- samples = [s[0] for s in mutate_samples]
- samples = np.array(samples)
- coverages = []
- predictions = self.target_model.predict(Tensor(samples.astype(np.float32)))
- predictions = predictions.asnumpy()
- for index in range(len(samples)):
- mutate = samples[:index + 1]
- self.coverage_metrics.calculate_coverage(mutate.astype(np.float32))
- if coverage_metric == "KMNC":
- coverages.append(self.coverage_metrics.get_kmnc())
- if coverage_metric == 'NBC':
- coverages.append(self.coverage_metrics.get_nbc())
- if coverage_metric == 'SNAC':
- coverages.append(self.coverage_metrics.get_snac())
- return coverages, predictions
-
- def _select_next(self, initial_seeds):
- """Randomly select a seed from `initial_seeds`."""
- seed_num = choice(range(len(initial_seeds)))
- seed = initial_seeds[seed_num]
- del initial_seeds[seed_num]
- return seed, initial_seeds
-
- def _is_trans_valid(self, seed, mutate_sample):
- """ Check a mutated sample is valid. If the number of changed pixels in
- a seed is less than pixels_change_rate*size(seed), this mutate is valid.
- Else check the infinite norm of seed changes, if the value of the
- infinite norm less than pixel_value_change_rate*255, this mutate is
- valid too. Otherwise the opposite."""
- is_valid = False
- pixels_change_rate = 0.02
- pixel_value_change_rate = 0.2
- diff = np.array(seed - mutate_sample).flatten()
- size = np.shape(diff)[0]
- l0 = np.linalg.norm(diff, ord=0)
- linf = np.linalg.norm(diff, ord=np.inf)
- if l0 > pixels_change_rate*size:
- if linf < 256:
- is_valid = True
- else:
- if linf < pixel_value_change_rate*255:
- is_valid = True
- return is_valid
|