Browse Source

Merge branch 'dev0.8.0' of github.com:fastnlp/fastNLP into dev0.8.0

tags/v1.0.0alpha
x54-729 3 years ago
parent
commit
fcd5125009
17 changed files with 546 additions and 397 deletions
  1. +3
    -1
      fastNLP/core/callbacks/__init__.py
  2. +83
    -1
      fastNLP/core/callbacks/callback.py
  3. +32
    -47
      fastNLP/core/callbacks/checkpoint_callback.py
  4. +61
    -0
      fastNLP/core/callbacks/early_stop_callback.py
  5. +14
    -15
      fastNLP/core/callbacks/load_best_model_callback.py
  6. +12
    -34
      fastNLP/core/callbacks/progress_callback.py
  7. +19
    -11
      fastNLP/core/callbacks/utils.py
  8. +2
    -0
      fastNLP/core/controllers/evaluator.py
  9. +14
    -0
      fastNLP/core/controllers/trainer.py
  10. +1
    -1
      fastNLP/core/drivers/torch_driver/ddp.py
  11. +145
    -227
      fastNLP/core/drivers/torch_driver/dist_utils.py
  12. +54
    -20
      fastNLP/core/metrics/classify_f1_pre_rec_metric.py
  13. +10
    -0
      fastNLP/core/utils/exceptions.py
  14. +1
    -3
      fastNLP/core/utils/rich_progress.py
  15. +1
    -6
      tests/core/callbacks/test_utils.py
  16. +6
    -31
      tests/core/drivers/torch_driver/test_dist_utils.py
  17. +88
    -0
      tests/core/metrics/test_classify_f1_pre_rec_metric_torch.py

+ 3
- 1
fastNLP/core/callbacks/__init__.py View File

@@ -10,7 +10,8 @@ __all__ = [
'ProgressCallback',
'RichCallback',
"LRSchedCallback",
'LoadBestModelCallback'
'LoadBestModelCallback',
"EarlyStopCallback"
]


@@ -21,4 +22,5 @@ from .checkpoint_callback import ModelCheckpointCallback, TrainerCheckpointCallb
from .progress_callback import choose_progress_callback, ProgressCallback, RichCallback
from .lr_scheduler_callback import LRSchedCallback
from .load_best_model_callback import LoadBestModelCallback
from .early_stop_callback import EarlyStopCallback


+ 83
- 1
fastNLP/core/callbacks/callback.py View File

@@ -1,11 +1,15 @@
from typing import Union, Callable, Dict, Optional
from typing import Union, Callable, Dict, Optional, Any
from abc import ABC

__all__ = [
'Callback',
]

from .callback_events import Events, EventsList, Filter
from .utils import _get_monitor_value
from fastNLP.core.callbacks.callback_events import _SingleEventState
from fastNLP.core.log import logger
from fastNLP.core.utils import apply_to_collection


class Callback:
@@ -150,4 +154,82 @@ class _CallbackWrapper(Callback):
return self.fn.__name__


class CanItemDataType(ABC):
"""
检测可以进行传输的对象。

"""

@classmethod
def __subclasshook__(cls, subclass: Any) -> Union[bool, Any]:
if cls is CanItemDataType:
item = getattr(subclass, 'item', None)
return callable(item)
return NotImplemented


class HasMonitorCallback(Callback):
def __init__(self, monitor, larger_better, must_have_monitor=False):
self.set_monitor(monitor, larger_better)
self.must_have_moinitor = must_have_monitor

def set_monitor(self, monitor, larger_better):
self.monitor = str(monitor) if monitor is not None else None
self.larger_better = bool(larger_better)
if larger_better:
self.monitor_value = float('-inf')
else:
self.monitor_value = float('inf')
self._real_monitor = self.monitor

def on_after_trainer_initialized(self, trainer, driver):
"""
如果本身的 monitor 没有设置,则根据 Trainer 中的 monitor 设置 monitor 。
同时对于必须要有 monitor 设置的 callback ,该函数会进行检查。

:param trainer:
:param driver:
:return:
"""
if self.monitor is None and trainer.monitor is not None:
self.set_monitor(monitor=trainer.monitor, larger_better=trainer.larger_better)
if self.must_have_moinitor and self.monitor is None:
raise RuntimeError(f"No `monitor` is set for {self.__class__.__name__}. "
f"You can set it in the initialization or through Trainer.")

def get_monitor_value(self, results:Dict)->float:
"""
获取 monitor 的值,如果 monitor 没有直接找到,会尝试使用匹配的方式寻找,并把匹配到的设置到 self._real_monitor 属性上。

:param results:
:return:
"""
if len(results)==0:
return 0
# 保证所有的 tensor 都被转换为了 python 特定的类型
results = apply_to_collection(results, dtype=CanItemDataType, function=lambda x: x.item())
use_monitor, monitor_value = _get_monitor_value(monitor=self.monitor,
real_monitor=self._real_monitor,
res=results)
if self._real_monitor != use_monitor: # 发生了替换需要打印
logger.warning(
f"We can not find `{self.monitor}` in the evaluation result (with keys as {list(results.keys())}), "
f"we use the `{use_monitor}` as the monitor for {self.__class__.__name__}.")
self._real_monitor = use_monitor
return monitor_value

def is_better_monitor_value(self, monitor_value: float, keep_if_better=True):
"""
检测 monitor_value 是否是更好的

:param monitor_value:
:param keep_if_better: 如果传入的 monitor_value 值更好,则将其保存下来。
:return:
"""
better = False
if (self.larger_better and monitor_value > self.monitor_value) or \
(not self.larger_better and monitor_value < self.monitor_value):
better = True
if keep_if_better:
self.monitor_value = monitor_value
return better

+ 32
- 47
fastNLP/core/callbacks/checkpoint_callback.py View File

@@ -5,12 +5,12 @@ __all__ = [
import os
from typing import Union, Optional, Callable, Dict, Sequence, Any, Mapping
from pathlib import Path
from abc import ABC
import sys
from copy import deepcopy


import fastNLP
from .callback import Callback, Filter
from .callback import Callback, HasMonitorCallback
from fastNLP.core.callbacks.utils import _get_monitor_value
from fastNLP.core.log import logger
from fastNLP.envs import FASTNLP_LAUNCH_TIME
@@ -18,22 +18,7 @@ from fastNLP.core.utils import synchronize_safe_rm, synchronize_mkdir
from fastNLP.core.utils import apply_to_collection


class CanItemDataType(ABC):
"""
检测可以进行传输的对象。

"""

@classmethod
def __subclasshook__(cls, subclass: Any) -> Union[bool, Any]:
if cls is CanItemDataType:
item = getattr(subclass, 'item', None)
return callable(item)
return NotImplemented



class CheckpointCallback(Callback):
class CheckpointCallback(HasMonitorCallback):
def __init__(
self,
monitor,
@@ -48,12 +33,8 @@ class CheckpointCallback(Callback):
model_save_fn: Optional[Callable] = None,
**kwargs,
):
if monitor is None and save_topk is not None:
raise ValueError("Parameter `monitor` must be set when you want to use 'save_topk'.")

if monitor is not None and not isinstance(monitor, str):
raise ValueError("Parameter `monitor` should be of 'str' type.")

super().__init__(monitor=monitor, larger_better=larger_better,
must_have_monitor=save_topk is not None)
if save_folder is None:
logger.warning(
"Parameter `path` is None, and we will use the current work directory to find and load your model.")
@@ -91,13 +72,12 @@ class CheckpointCallback(Callback):
"`BaseException` type.")
else:
save_on_exception = []
self.monitor = monitor
self.save_folder = Path(save_folder)
self.save_every_n_epochs = save_every_n_epochs
self.save_every_n_batches = save_every_n_batches
self.save_last = save_last
self.save_topk = save_topk
self.larger_better = larger_better
self.only_state_dict = only_state_dict
self.model_save_fn = model_save_fn
self.save_on_exception = save_on_exception
@@ -107,20 +87,22 @@ class CheckpointCallback(Callback):
self._topk_model = {}
self._topn = 0 # 表示目前已经保存了几个最好的模型;

# 因为我们在 `_get_validate_metric` 函数中,当在返回的 `validate_res` 字典中找不到 `monitor` 时,是使用匹配找到的
# key 对应的 value 当做结果;但是这样存在的一个问题在于如果用户传入的 metric 返回的 sub_metric 的名字可能会混淆,并且其在下一次
# 训练的代码中修改了这些 sub_metric 返回的顺序,那么就会导致模糊匹配拿到的 key 和 value 与之前的不是同一个,这显然不是合理的行为;
# 因此我们通过该变量来表示我们通过模糊匹配拿到的 key;
self._real_monitor = self.monitor

# 注意这里应当保证只有进程 0 在执行这个操作,因为当用户使用 python -m torch.distributed.launch 来拉起进程的时候,
# FASTNLP_LAUNCH_TIME 在每一个进程上的值是不一样的;
self.timestamp_path = self.save_folder.joinpath(os.environ[FASTNLP_LAUNCH_TIME])
# 我们只需要保证这个创建文件夹的操作只在进程 0 上进行即可;因为后续的实际的保存操作,其它进程实际并不会去执行;
synchronize_mkdir(self.timestamp_path)

def on_validate_end(self, trainer, validate_res):
self._save_topk(trainer, validate_res)
def on_after_trainer_initialized(self, trainer, driver):
if self.save_topk is not None:
super().on_after_trainer_initialized(trainer, driver)
if self.save_topk is not None and trainer.evaluator is None:
logger.warning("You set `save_topk`, but `validate_dataloaders` is not set in Trainer.")

def on_validate_end(self, trainer, results):
if len(results) == 0:
return
self._save_topk(trainer, results)

def on_train_epoch_end(self, trainer: "fastNLP.Trainer"):
if trainer.cur_epoch_idx % self.save_every_n_epochs == 0:
@@ -143,7 +125,7 @@ class CheckpointCallback(Callback):

def on_sanity_check_end(self, trainer, sanity_check_res):
# 主要核对一下 monitor 是否存在。
self._get_validate_metric(sanity_check_res)
self.get_monitor_value(results=sanity_check_res)

def on_save_checkpoint(self, trainer) -> Dict:
"""
@@ -154,8 +136,7 @@ class CheckpointCallback(Callback):

states = {}
states['timestamp_path'] = str(self.timestamp_path.absolute())
states['_topk_model'] = apply_to_collection(self._topk_model, dtype=CanItemDataType,
function=lambda x:x.item())
states['_topk_model'] = deepcopy(self._topk_model)
states['save_topk'] = 0 if self.save_topk is None else self.save_topk
states['_real_monitor'] = self._real_monitor
return states
@@ -176,30 +157,30 @@ class CheckpointCallback(Callback):
self._topk_model.update(self._topk_model)
self._real_monitor = states["real_monitor"]

def _save_topk(self, trainer: "fastNLP.Trainer", validate_res: Dict):
def _save_topk(self, trainer: "fastNLP.Trainer", results: Dict):
"""
根据validate_res决定保存哪些model的函数。会自动移除掉不满足topk的文件夹。

:param trainer:
:param validate_res:
:param results:
:return:
"""
if self.save_topk is not None:
_metric_value = self._get_validate_metric(validate_res)
monitor_value = self.get_monitor_value(results=results)
folder_name = f"{self.folder_prefix}-epoch_{trainer.cur_epoch_idx}-batch_{trainer.global_forward_batches}" \
f"-{self._real_monitor}_{_metric_value}"
f"-{self._real_monitor}_{monitor_value}"

_should_save = False
if self._topn < self.save_topk:
self._topk_model[folder_name] = _metric_value
self._topk_model[folder_name] = monitor_value
self._topn += 1
_should_save = True
else:
_least_valuable_model = (min if self.larger_better else max)(self._topk_model,
key=lambda x: self._topk_model[x])
if (self.larger_better and _metric_value > self._topk_model[_least_valuable_model]) or \
(self.larger_better is False and _metric_value < self._topk_model[_least_valuable_model]):
self._topk_model[folder_name] = _metric_value
if (self.larger_better and monitor_value > self._topk_model[_least_valuable_model]) or \
(self.larger_better is False and monitor_value < self._topk_model[_least_valuable_model]):
self._topk_model[folder_name] = monitor_value
_should_save = True
self._topk_model.pop(_least_valuable_model)
synchronize_safe_rm(self.timestamp_path.joinpath(_least_valuable_model))
@@ -235,7 +216,11 @@ class CheckpointCallback(Callback):
:return:
"""
use_monitor, value = _get_monitor_value(monitor=self.monitor, real_monitor=self._real_monitor, res=res)
if self._real_monitor != use_monitor:
logger.warning(f"We can not find `{self._real_monitor}` in the evaluation result (with keys as {list(res.keys())}), "
f"we use the `{use_monitor}` as the monitor for {self.__class__.__name__}.")
self._real_monitor = use_monitor

return value

@property
@@ -263,7 +248,7 @@ class ModelCheckpointCallback(CheckpointCallback):
若 model_save_fn 不为 None,则 fastNLP 将 folder 绝对路径传递给该函数,fastNLP 不在该 folder 下创建任何文件。

:param monitor: 监控的 metric 的名称。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配
的那个作为 monitor 。
的那个作为 monitor 。如果为 None 将尝试从 Trainer 中获取该值。
:param save_folder: 保存的文件夹,fastNLP 将在该文件下以时间戳创建子文件夹,并在里面保存。因此不同次运行可以将被保存到不同的
时间戳文件夹中。如果为 None ,默认使用当前文件夹。
:param save_every_n_epochs: 多少个 epoch 保存一次。
@@ -310,7 +295,7 @@ class TrainerCheckpointCallback(CheckpointCallback):
若 model_save_fn 不为 None,则 fastNLP 只会在每个 folder 下生成 fastnlp_trainer.pkl.tar 文件。

:param monitor: 监控的 metric 的名称。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配
的那个作为 monitor 。
的那个作为 monitor 。如果为 None 将尝试从 Trainer 中获取该值。
:param save_folder: 保存的文件夹,fastNLP 将在该文件下以时间戳创建子文件夹,并在里面保存。因此不同次运行可以将被保存到不同的
时间戳文件夹中。如果为 None ,默认使用当前文件夹。
:param save_every_n_epochs: 多少个 epoch 保存一次。


+ 61
- 0
fastNLP/core/callbacks/early_stop_callback.py View File

@@ -0,0 +1,61 @@
__all__ = [
'EarlyStopCallback'
]

from typing import Dict

from .callback import HasMonitorCallback
from fastNLP.core.utils.exceptions import EarlyStopException


class EarlyStopCallback(HasMonitorCallback):
def __init__(self, monitor:str=None, larger_better:bool=True, patience:int=10):
"""

:param str monitor: 监控的 metric 值。如果为 None,将尝试使用 Trainer 设置的 monitor 。
:param larger_better: monitor 的值是否是越大越好。
:param patience: 多少次 validate 不没有提升就停止。
"""
super(EarlyStopCallback, self).__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=True)
self.wait = 0
self.patience = patience

def on_validate_end(self, trainer, results):
if len(results)==0:
return
monitor_value = self.get_monitor_value(results)
if self.is_better_monitor_value(monitor_value, keep_if_better=True):
self.wait = 0
else:
self.wait += 1

def on_fetch_data_begin(self, trainer):
# 当是 step validate 的时候,下一步执行的就是这个, 所以在这里检查。
if self.wait >= self.patience:
raise EarlyStopException(f"After {self.wait} validations, no improvement for "
f"metric `{self._real_monitor}`")

def on_train_epoch_begin(self, trainer):
# 当是 epoch validate 的时候,下一步执行的就是这个, 所以在这里检查。
if self.wait >= self.patience:
raise EarlyStopException(f"After {self.wait} validations, no improvement for "
f"metric `{self._real_monitor}`(best value: {self.monitor_value})")

def on_save_checkpoint(self, trainer) -> Dict:
states = {
'patience': self.patience,
'wait': self.wait,
'monitor': self.monitor,
'monitor_value': self.monitor_value
}
return states

def on_load_checkpoint(self, trainer, states):
self.patience = states['patience']
self.wait = states['wait']
self.monitor = states['monitor']
self.monitor_value = float(states['monitor_value'])

def callback_name(self):
return f'EarlyStopCallback#monitor-{self.monitor}#patience-{self.patience}'


+ 14
- 15
fastNLP/core/callbacks/load_best_model_callback.py View File

@@ -4,8 +4,7 @@ __all__ = [

import os
from typing import Optional, Callable
from .callback import Callback
from .utils import _get_monitor_value
from .callback import HasMonitorCallback
from io import BytesIO
import shutil

@@ -14,15 +13,15 @@ from fastNLP.core.log import logger
from fastNLP.envs import all_rank_call


class LoadBestModelCallback(Callback):
def __init__(self, monitor:str, larger_better:bool = True, only_state_dict:bool = True,
class LoadBestModelCallback(HasMonitorCallback):
def __init__(self, monitor:str=None, larger_better:bool = True, only_state_dict:bool = True,
save_folder:Optional[str] = None, model_save_fn:Optional[Callable] = None,
model_load_fn:Optional[Callable] = None,
delete_after_train:bool = True):
"""
保存最佳的 monitor 值最佳的模型,并在训练结束的时候重新加载模型。仅在训练正常结束的时候才能加载最好的模型。

:param str monitor: 监控的 metric 值。
:param str monitor: 监控的 metric 值。如果为 None,将尝试使用 Trainer 设置的 monitor 。
:param larger_better: 该 metric 值是否是越大越好。
:param save_folder: 保存的文件夹,如果为空,则保存在内存中。不为空,则保存一份权重到文件中,当为多机训练,且本值不为空时,请确保
不同的机器均可访问当该路径。当 model_save_fn 不为 None 时该值一定不能为空。
@@ -33,6 +32,7 @@ class LoadBestModelCallback(Callback):
请在函数内完成对模型的加载。
:param delete_after_train: 在训练结束后是否删掉模型。
"""
super().__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=True)
if model_load_fn is not None:
assert callable(model_load_fn), "`model_load_fn` must be a callable object."
assert model_save_fn is not None, "`model_load_fn` and `model_save_fn` must be passed at the same time."
@@ -56,15 +56,11 @@ class LoadBestModelCallback(Callback):
self.real_save_folder = None
self.buffer = BytesIO()

self.monitor = monitor
self.larger_better = larger_better
self.save_folder = save_folder
self.only_state_dict = only_state_dict
self.model_save_fn = model_save_fn
self.model_load_fn = model_load_fn
self.delete_after_after = delete_after_train
self._real_monitor = None
self.monitor_value = float('-inf') if larger_better else float('inf')

def on_after_trainer_initialized(self, trainer, driver):
if self.save_folder is not None and driver.is_distributed() and int(os.environ.get(FASTNLP_BACKEND_LAUNCH, 0))==1:
@@ -76,13 +72,16 @@ class LoadBestModelCallback(Callback):
raise RuntimeError(f"Currently {driver.__class__.__name__} does not support using `save_folder` to "
f"save best model when launch using script.")

super().on_after_trainer_initialized(trainer, driver)

def on_sanity_check_end(self, trainer, sanity_check_res):
self.get_monitor_value(sanity_check_res)

def on_validate_end(self, trainer, results):
self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor,
real_monitor=self._real_monitor,
res=results)
if (monitor_value < self.monitor_value and self.larger_better is False) or \
(monitor_value > self.monitor_value and self.larger_better):
self.monitor_value = monitor_value
if len(results)==0:
return
monitor_value = self.get_monitor_value(results)
if self.is_better_monitor_value(monitor_value, keep_if_better=True):
if self.real_save_folder:
trainer.save_model(folder=self.real_save_folder, only_state_dict=self.only_state_dict,
model_save_fn=self.model_save_fn)


+ 12
- 34
fastNLP/core/callbacks/progress_callback.py View File

@@ -8,7 +8,7 @@ __all__ = [
'RichCallback'
]

from .callback import Callback
from .callback import HasMonitorCallback
from fastNLP.core.callbacks.utils import _get_monitor_value
from fastNLP.core.utils import f_rich_progress
from fastNLP.core.log import logger
@@ -28,15 +28,13 @@ def choose_progress_callback(progress_bar:str):
return None


class ProgressCallback(Callback):
class ProgressCallback(HasMonitorCallback):
def on_train_end(self, trainer):
f_rich_progress.stop()

def on_sanity_check_end(self, trainer, sanity_check_res):
if len(sanity_check_res) and getattr(self, 'monitor', None) is not None:
self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor,
real_monitor=self._real_monitor,
res=sanity_check_res)
self.get_monitor_value(sanity_check_res)


class RichCallback(ProgressCallback):
@@ -46,28 +44,22 @@ class RichCallback(ProgressCallback):

:param print_every: 多少个 batch 更新一次显示。
:param loss_round_ndigit: 显示的 loss 保留多少位有效数字
:param monitor: 当检测到这个key的结果更好时,会打印出不同的颜色进行提示。
:param monitor: 当检测到这个key的结果更好时,会打印出不同的颜色进行提示。如果为 None ,会尝试使用 trainer 中设置的 monitor 。
:param larger_better: 是否是monitor的结果越大越好。
:param format_json: 是否format json再打印
"""
super().__init__()
super().__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=False)
self.print_every = print_every
self.progress_bar = f_rich_progress
self.task2id = {}
self.loss = 0
self.loss_round_ndigit = loss_round_ndigit
self.monitor = monitor
self.larger_better = larger_better
if larger_better:
self.monitor_value = float('-inf')
else:
self.monitor_value = float('inf')
self._real_monitor = monitor
self.format_json = format_json

def on_after_trainer_initialized(self, trainer, driver):
if not self.progress_bar.disable:
self.progress_bar.set_disable(flag=trainer.driver.get_local_rank() != 0)
super(RichCallback, self).on_after_trainer_initialized(trainer, driver)

def on_train_begin(self, trainer):
self.task2id['epoch'] = self.progress_bar.add_task(description='Epoch:0', total=trainer.n_epochs,
@@ -109,16 +101,12 @@ class RichCallback(ProgressCallback):
text_style = ''
characters = '-'
if self.monitor is not None:
self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor,
real_monitor=self._real_monitor,
res=results)
if (self.larger_better and monitor_value > self.monitor_value) or \
(not self.larger_better and monitor_value < self.monitor_value):
monitor_value = self.get_monitor_value(results)
if self.is_better_monitor_value(monitor_value, keep_if_better=True):
if abs(self.monitor_value) != float('inf'):
rule_style = 'spring_green3'
text_style = '[bold]'
characters = '+'
self.monitor_value = monitor_value
self.progress_bar.print()
self.progress_bar.console.rule(text_style+f"Eval. results on Epoch:{trainer.cur_epoch_idx}, "
f"Batch:{trainer.batch_idx_in_epoch}",
@@ -151,18 +139,12 @@ class RawTextCallback(ProgressCallback):
:param larger_better: 是否是monitor的结果越大越好。
:param format_json: 是否format json再打印
"""
super().__init__()
super().__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=False)
self.print_every = print_every
self.task2id = {}
self.loss = 0
self.loss_round_ndigit = loss_round_ndigit
self.monitor = monitor
self.larger_better = larger_better
if larger_better:
self.monitor_value = float('-inf')
else:
self.monitor_value = float('inf')
self._real_monitor = monitor
self.set_monitor(monitor, larger_better)
self.format_json = format_json
self.num_signs = 10

@@ -189,14 +171,10 @@ class RawTextCallback(ProgressCallback):
base_text = f'Eval. results on Epoch:{trainer.cur_epoch_idx}, Batch:{trainer.batch_idx_in_epoch}'
text = ''
if self.monitor is not None:
self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor,
real_monitor=self._real_monitor,
res=results)
if (self.larger_better and monitor_value > self.monitor_value) or \
(not self.larger_better and monitor_value < self.monitor_value):
monitor_value = self.get_monitor_value(results)
if self.is_better_monitor_value(monitor_value, keep_if_better=True):
if abs(self.monitor_value) != float('inf'):
text = '+'*self.num_signs + base_text + '+'*self.num_signs
self.monitor_value = monitor_value
if len(text) == 0:
text = '-'*self.num_signs + base_text + '-'*self.num_signs



+ 19
- 11
fastNLP/core/callbacks/utils.py View File

@@ -19,23 +19,31 @@ def _get_monitor_value(monitor: str, real_monitor: Optional[str], res: dict) ->(
if monitor in res:
return monitor, res[monitor]

if real_monitor in res:
return real_monitor, res[real_monitor]

pairs = []
for idx, (key, value) in enumerate(res.items()):
match = SequenceMatcher(None, key, monitor).find_longest_match(0, len(key), 0, len(monitor))
pairs.append((key, value, match.size, idx))
match_size = _match_length(monitor, key)
pairs.append((key, value, match_size, idx))

pairs.sort(key=lambda pair: (pair[2], -pair[3]), reverse=True)
key, value, match_size = pairs[0][:3]

if real_monitor is not None and real_monitor in res and real_monitor != key:
# 如果 real_monitor 比新找的更长就继续用之前的。
match = SequenceMatcher(None, real_monitor, monitor).find_longest_match(0, len(real_monitor), 0, len(monitor))
if match.size > match_size:
return real_monitor, res[real_monitor]
return key, value


logger.warning(f"We can not find `{monitor}` in the evaluation result (with keys as {list(res.keys())}), "
f"we use the `{key}` as the monitor.")
real_monitor = key
return real_monitor, value
def _match_length(a:str, b:str)->int:
"""
需要把长度短的放在前面

:param a:
:param b:
:return:
"""
short = a if len(a) < len(b) else b
long = a if len(a)>=len(b) else b
match = SequenceMatcher(None, short, long).find_longest_match(0, len(short), 0, len(long))
return match.size



+ 2
- 0
fastNLP/core/controllers/evaluator.py View File

@@ -219,6 +219,7 @@ class Evaluator:
def remove_progress_bar(self, dataloader_name):
if self.progress_bar == 'rich' and hasattr(self, '_rich_task_id'):
f_rich_progress.destroy_task(self._rich_task_id)
f_rich_progress.refresh() # 使得最终的bar可以消失
delattr(self, '_rich_task_id')
elif self.progress_bar == 'raw':
desc = 'Evaluation ends'
@@ -229,6 +230,7 @@ class Evaluator:
def finally_progress_bar(self):
if self.progress_bar == 'rich' and hasattr(self, '_rich_task_id'):
f_rich_progress.destroy_task(self._rich_task_id)
f_rich_progress.refresh()
delattr(self, '_rich_task_id')

@property


+ 14
- 0
fastNLP/core/controllers/trainer.py View File

@@ -25,6 +25,7 @@ from fastNLP.core.utils import check_fn_not_empty_params, get_fn_arg_names, matc
from fastNLP.envs import rank_zero_call
from fastNLP.core.log import logger
from fastNLP.envs import FASTNLP_MODEL_FILENAME
from fastNLP.core.utils.exceptions import EarlyStopException


class Trainer(TrainerEventTrigger):
@@ -49,6 +50,8 @@ class Trainer(TrainerEventTrigger):
output_mapping: Optional[Union[Callable, Dict]] = None,
accumulation_steps: int = 1,
fp16: bool = False,
monitor: str = None,
larger_better: bool = True,
marker: Optional[str] = None,
**kwargs
):
@@ -102,6 +105,10 @@ class Trainer(TrainerEventTrigger):
如果 batch 是一个 `dataclass`,那么我们会先将该 dataclass 转换为一个 Dict,然后再进行上述转换
:param accumulation_steps: 梯度累积的步数,表示每隔几个 batch 优化器迭代一次;默认为 1;
:param fp16: 是否开启混合精度训练;默认为 False;
:param monitor: 当存在 validate_dataloaders 时,默认的 monitor metric 的名字。传入的 callback 如果有 monitor 参数且没有
在 callback 初始化设定的,将采取这个值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配
的那个作为 monitor 。
:param larger_better: monitor 的值是否是越大越好。
:param marker: 用于标记一个 Trainer 实例,从而在用户调用 `Trainer.on` 函数时,标记该 callback 函数属于哪一个具体的 'trainer' 实例;默认为 None;
:param kwargs: 一些其它的可能需要的参数;
torch_non_blocking: 表示用于 pytorch 的 tensor 的 to 方法的参数 non_blocking;
@@ -210,6 +217,8 @@ class Trainer(TrainerEventTrigger):
self.evaluator = None
self.epoch_validate = lambda *args, **kwargs: ...
self.step_validate = lambda *args, **kwargs: ...
self.monitor = monitor
self.larger_better = larger_better
if metrics is not None and validate_dataloaders is not None:
if not callable(validate_every) and (not isinstance(validate_every, int) or validate_every == 0):
raise ValueError("Parameter 'validate_every' should be set to 'int' type and either < 0 or > 0.")
@@ -239,6 +248,7 @@ class Trainer(TrainerEventTrigger):
else:
# validate_every > 0
self._step_validate_filter = Filter(every=validate_every)

self.metrics = metrics
self.validate_every = validate_every

@@ -320,6 +330,10 @@ class Trainer(TrainerEventTrigger):
self.driver.barrier()
self.on_train_end()
self.driver.barrier()

except EarlyStopException as e:
logger.info(f"Catch early stop exception: {e.msg}.")
self.on_exception(e)
except KeyboardInterrupt as e:
self.driver.on_exception()
self.on_exception(e)


+ 1
- 1
fastNLP/core/drivers/torch_driver/ddp.py View File

@@ -599,7 +599,7 @@ class TorchDDPDriver(TorchDriver):
:param group:
:return:
"""
return fastnlp_torch_all_gather(obj, device=self.data_device, group=group)
return fastnlp_torch_all_gather(obj, group=group)


def find_free_network_port() -> str:


+ 145
- 227
fastNLP/core/drivers/torch_driver/dist_utils.py View File

@@ -1,11 +1,8 @@
import io
import pickle
from typing import Mapping
_pickler = pickle.Pickler
_unpickler = pickle.Unpickler
from abc import ABC
from typing import Any, Union, List
import numpy as np
from typing import Any, List
from fastNLP.envs.imports import _TORCH_GREATER_EQUAL_1_8


@@ -13,103 +10,25 @@ from fastNLP.envs.imports import _NEED_IMPORT_TORCH
if _NEED_IMPORT_TORCH:
import torch
from torch import distributed as dist
try:
from torch._C._distributed_c10d import ProcessGroupMPI
except ImportError:
_MPI_AVAILABLE = False

try:
from torch._C._distributed_c10d import ProcessGroupNCCL
except ImportError:
_NCCL_AVAILABLE = False

try:
from torch._C._distributed_c10d import ProcessGroupGloo
from torch._C._distributed_c10d import _ProcessGroupWrapper
except ImportError:
_GLOO_AVAILABLE = False

from fastNLP.core.utils import apply_to_collection



def all_gather_object(object_list, obj, group=None):
"""
Gathers picklable objects from the whole group into a list. Similar to
:func:`all_gather`, but Python objects can be passed in. Note that the object
must be picklable in order to be gathered.

Args:
object_list (list[Any]): Output list. It should be correctly sized as the
size of the group for this collective and will contain the output.
object (Any): Pickable Python object to be broadcast from current process.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Default is ``None``.

Returns:
None. If the calling rank is part of this group, the output of the
collective will be populated into the input ``object_list``. If the
calling rank is not part of the group, the passed in ``object_list`` will
be unmodified.

.. note:: Note that this API differs slightly from the :func:`all_gather`
collective since it does not provide an ``async_op`` handle and thus
will be a blocking call.

.. note:: For NCCL-based processed groups, internal tensor representations
of objects must be moved to the GPU device before communication takes
place. In this case, the device used is given by
``torch.cuda.current_device()`` and it is the user's responsiblity to
ensure that this is set so that each rank has an individual GPU, via
``torch.cuda.set_device()``.

.. warning::
:func:`all_gather_object` uses ``pickle`` module implicitly, which is
known to be insecure. It is possible to construct malicious pickle data
which will execute arbitrary code during unpickling. Only call this
function with data you trust.

Example::
>>> # Note: Process group initialization omitted on each rank.
>>> import torch.distributed as dist
>>> # Assumes world_size of 3.
>>> gather_objects = ["foo", 12, {1: 2}] # any picklable object
>>> output = [None for _ in gather_objects]
>>> dist.all_gather_object(output, gather_objects[dist.get_rank()])
>>> output
['foo', 12, {1: 2}]
"""
if dist.distributed_c10d._rank_not_in_group(group):
return

input_tensor, local_size = _object_to_tensor(obj)
current_device = torch.device("cpu")
if dist.is_nccl_available() and isinstance(
group or dist.distributed_c10d._get_default_group(), dist.ProcessGroupNCCL
):
# See note about using torch.cuda.current_device() here in docstring.
# We cannot simply use my_rank since rank == device is not necessarily
# true.
current_device = torch.device("cuda", torch.cuda.current_device())
input_tensor = input_tensor.to(current_device)
local_size = local_size.to(current_device)
# Gather all local sizes. This is so that we can find the max size, and index
# until the correct size when deserializing the tensors.
group_size = dist.get_world_size(group=group)
object_sizes_tensor = torch.zeros(
group_size, dtype=torch.long, device=current_device
)
object_size_list = [
object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size)
]
# Allgather tensor sizes
dist.all_gather(object_size_list, local_size, group=group)
max_object_size = int(max(object_size_list).item()) # type: ignore[type-var]
# Resize tensor to max size across all ranks.
input_tensor.resize_(max_object_size)
coalesced_output_tensor = torch.empty(
max_object_size * group_size, dtype=torch.uint8, device=current_device
)
# Output tensors are nonoverlapping views of coalesced_output_tensor
output_tensors = [
coalesced_output_tensor[max_object_size * i : max_object_size * (i + 1)]
for i in range(group_size)
]
dist.all_gather(output_tensors, input_tensor, group=group)
# Deserialize outputs back to object.
for i, tensor in enumerate(output_tensors):
tensor = tensor.type(torch.uint8)
if tensor.device != torch.device("cpu"):
tensor = tensor.cpu()
tensor_size = object_size_list[i]
object_list[i] = _tensor_to_object(tensor, tensor_size)


def _validate_output_list_for_rank(my_rank, dst, gather_list):
if dst == my_rank:
if not gather_list:
@@ -123,8 +42,10 @@ def _validate_output_list_for_rank(my_rank, dst, gather_list):
)


def gather_object(obj, object_gather_list=None, dst=0, group=None):
def fastnlp_torch_gather_object(obj, object_gather_list=None, dst=0, group=None):
"""
从其它 rank gather 东西到 dst rank 。

Gathers picklable objects from the whole group in a single process.
Similar to :func:`gather`, but Python objects can be passed in. Note that the
object must be picklable in order to be gathered.
@@ -176,6 +97,8 @@ def gather_object(obj, object_gather_list=None, dst=0, group=None):
# Ensure object_gather_list is specified appopriately.
my_rank = dist.get_rank()
_validate_output_list_for_rank(my_rank, dst, object_gather_list)
# 防止 unpickle 的时候出现在了发送的 gpu 上。
obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu'))
input_tensor, local_size = _object_to_tensor(obj)
group_backend = dist.get_backend(group)
current_device = torch.device("cpu")
@@ -266,113 +189,11 @@ def send_recv_object(obj, src, cur_rank, device, group=None, tag=0):
return _tensor_to_object(tensor.cpu(), size)


def _all_gather(obj, **kwargs):
group = kwargs.get('group', None)
if isinstance(obj, torch.Tensor):
gathered_tensor = [torch.zeros_like(obj) for _ in
range(torch.distributed.get_world_size(group=group))]

torch.distributed.all_gather(gathered_tensor, obj, group=group)

return gathered_tensor

elif isinstance(obj, tuple) and isinstance(obj[1], torch.Tensor):
tensor, size = obj
# 首先需要同步 size 吧?
group_size = dist.get_world_size(group=group)
object_sizes_tensor = torch.zeros(
group_size, dtype=torch.long, device=tensor.device
)
object_size_list = [
object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size)
]
dist.all_gather(object_size_list, size, group=group)
max_object_size = int(max(object_size_list).item()) # type: ignore[type-var]
# Resize tensor to max size across all ranks.
tensor.resize_(max_object_size)
coalesced_output_tensor = torch.empty(
max_object_size * group_size, dtype=torch.uint8, device=tensor.device
)

# Output tensors are nonoverlapping views of coalesced_output_tensor
output_tensors = [
coalesced_output_tensor[max_object_size * i: max_object_size * (i + 1)]
for i in range(group_size)
]
dist.all_gather(output_tensors, tensor, group=group)
object_list = []
for i, tensor in enumerate(output_tensors):
tensor = tensor.type(torch.uint8)
tensor_size = object_size_list[i]
object_list.append(_tensor_to_object(tensor, tensor_size))
return object_list
elif isinstance(obj, tuple) and len(obj) == 2:
obj, _type = obj
gathered_tensor = [torch.zeros_like(obj) for _ in
range(torch.distributed.get_world_size(group=group))]

torch.distributed.all_gather(gathered_tensor, obj, group=group)

if _type == np.ndarray:
gathered_tensor = [t.detach().cpu().numpy() for t in gathered_tensor]
else:
gathered_tensor = [_type(t.item()) for t in gathered_tensor]

return gathered_tensor
else:
raise RuntimeError("Unsupported types to implement all_gather.")


class CanTransferDataType(ABC):
"""
检测可以进行传输的对象。

"""

@classmethod
def __subclasshook__(cls, subclass: Any) -> Union[bool, Any]:
if cls is CanTransferDataType:
if issubclass(subclass, Mapping):
return False
if subclass in (torch.Tensor, tuple, list, str, int, float, bool, np.ndarray):
return True
return False
return NotImplemented


def _tensorize(obj, device=None):
if isinstance(obj, torch.Tensor):
return obj
if isinstance(obj, bool):
return torch.tensor(obj, dtype=torch.uint8, device=device), bool
if isinstance(obj, float):
return torch.tensor(obj, dtype=torch.float, device=device), float
if isinstance(obj, int):
return torch.tensor(obj, dtype=torch.int, device=device), int
if isinstance(obj, np.ndarray):
return torch.from_numpy(obj), np.ndarray
return _object_to_tensor(obj, device)


def _to_device(tensor, device):
return tensor.contiguous().to(device)


def convert_to_tensors(data: Any, device=None) -> Any:
data = apply_to_collection(data, CanTransferDataType, _tensorize)
def _move_to_device_and_make_contiguous(t: Union[torch.Tensor, tuple], device: Union[str, torch.device]):
if isinstance(t, tuple):
if isinstance(t[1], torch.Tensor): # 说明是 object 转的
return t[0].to(device).contiguous(), t[1].to(device)
else: # 说明第二个元素是type,见 to_dtype_tensor 函数
return t[0].to(device).contiguous(), t[1]
return t.to(device).contiguous()

data = apply_to_collection(data, (torch.Tensor, tuple), _move_to_device_and_make_contiguous, device=device)
return data


def fastnlp_torch_all_gather(obj:Any, device=None, group=None)->List:
def fastnlp_torch_all_gather(obj: Any, device=None, group=None) ->List:
"""
实现任何类型的数据都使用该接口可以进行 all_gather 操作。对于非 tensor 类型的数据,通过 pickle 序列化再反序列化的方式进行传输。

@@ -390,36 +211,28 @@ def fastnlp_torch_all_gather(obj:Any, device=None, group=None)->List:
{'a': 1, 'b':[1, 2], 'c':{'d': 2}}
]

:param obj: 任意结构的数据,所有的 value 都会变成 list ,其长度为 world_size ,依次为每个 rank 上的对象值
:param device: 当前 rank 使用的 device 是哪个。为 None 的话默认使用 torch.cuda.current_device() 获取。
:param obj: 任意结构的数据,如果为 tensor ,需要保证每个显卡上的 tensor 的形状是一样的。如果传入的是非 tensor 对象都将直接进行
序列化之后进行传输。
:param device: 当前该参数无意义。
:param group:
:return: 返回的结果是 [obj0, obj1, ...],其中 obj_i 即为第 i 个 rank 上的 obj 。
"""
# # 首先将所有的都移动到cpu上并且连续,防止有 pickle 出问题
# obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu'))
if device is None:
device = torch.cuda.current_device()
if _TORCH_GREATER_EQUAL_1_8:
if isinstance(obj, torch.Tensor):
objs = [torch.zeros_like(obj) for _ in range(dist.get_world_size(group))]
dist.all_gather(objs, obj, group=group)
else:
objs = [None for _ in range(dist.get_world_size(group))]
dist.all_gather_object(objs, obj)
objs = apply_to_collection(objs, torch.Tensor, _to_device, device=device) # 保证如果有tensor的话,所有tensor都在当前卡上
return objs
group = group if group is not None else torch.distributed.group.WORLD
data = convert_to_tensors(obj, device=device)
data = apply_to_collection(data, (torch.Tensor, tuple), _all_gather, group=group)

objs = []

def _get_obj_on_idx(obj, idx):
return obj[idx]

for i in range(dist.get_world_size(group)):
objs.append(apply_to_collection(data, dtype=list, function=_get_obj_on_idx, idx=i))

# 防止 unpickle 的时候弄到发送的 gpu 上了
obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu'))
if _TORCH_GREATER_EQUAL_1_8:
dist.all_gather_object(objs, obj, group=group)
else:
objs = all_gather_object(objs, obj, group=group)
return objs


def fastnlp_torch_broadcast_object(obj, src, device, group=None):
def fastnlp_torch_broadcast_object(obj, src, device=None, group=None):
"""
将 src 上的 obj 对象广播到其它 rank 上。

@@ -430,10 +243,9 @@ def fastnlp_torch_broadcast_object(obj, src, device, group=None):
:return:
"""
cur_rank = dist.get_rank(group)
# if cur_rank == src:
# # 如果有 tensor 全部移动到 cpu 上,方便 pickle
# obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu'))

if cur_rank == src:
# 如果有 tensor 全部移动到 cpu 上,方便 pickle , 不然 unpickle 的时候可能会 pickle 到发送过来的卡那里
obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu'))
if _TORCH_GREATER_EQUAL_1_8:
if cur_rank!=src:
get_obj = [None]
@@ -442,6 +254,8 @@ def fastnlp_torch_broadcast_object(obj, src, device, group=None):
else:
dist.broadcast_object_list([obj], src=src, group=group)
return obj
if device is None:
device = torch.cuda.current_device()

if cur_rank == src:
tensor, size = _object_to_tensor(obj, device=device)
@@ -460,3 +274,107 @@ def fastnlp_torch_broadcast_object(obj, src, device, group=None):
return _tensor_to_object(tensor, tensor_size=size.item())


def _check_for_nccl_backend(group):
pg = group or dist.distributed_c10d._get_default_group()
# It is not expected for PG to be wrapped many times, but support it just
# in case
while isinstance(pg, _ProcessGroupWrapper):
pg = pg.wrapped_pg

return (
dist.is_nccl_available() and
isinstance(pg, dist.ProcessGroupNCCL)
)


def all_gather_object(object_list, obj, group=None):
"""
复制 pytorch 的代码,使得可以版本兼容低版本的 pytorch 。

Gathers picklable objects from the whole group into a list. Similar to
:func:`all_gather`, but Python objects can be passed in. Note that the object
must be picklable in order to be gathered.

Args:
object_list (list[Any]): Output list. It should be correctly sized as the
size of the group for this collective and will contain the output.
object (Any): Pickable Python object to be broadcast from current process.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Default is ``None``.

Returns:
None. If the calling rank is part of this group, the output of the
collective will be populated into the input ``object_list``. If the
calling rank is not part of the group, the passed in ``object_list`` will
be unmodified.

.. note:: Note that this API differs slightly from the :func:`all_gather`
collective since it does not provide an ``async_op`` handle and thus
will be a blocking call.

.. note:: For NCCL-based processed groups, internal tensor representations
of objects must be moved to the GPU device before communication takes
place. In this case, the device used is given by
``torch.cuda.current_device()`` and it is the user's responsiblity to
ensure that this is set so that each rank has an individual GPU, via
``torch.cuda.set_device()``.

.. warning::
:func:`all_gather_object` uses ``pickle`` module implicitly, which is
known to be insecure. It is possible to construct malicious pickle data
which will execute arbitrary code during unpickling. Only call this
function with data you trust.

Example::
>>> # Note: Process group initialization omitted on each rank.
>>> import torch.distributed as dist
>>> # Assumes world_size of 3.
>>> gather_objects = ["foo", 12, {1: 2}] # any picklable object
>>> output = [None for _ in gather_objects]
>>> dist.all_gather_object(output, gather_objects[dist.get_rank()])
>>> output
['foo', 12, {1: 2}]
"""
if dist._rank_not_in_group(group):
return

input_tensor, local_size = _object_to_tensor(obj)
current_device = torch.device("cpu")
is_nccl_backend = _check_for_nccl_backend(group)
if is_nccl_backend:
# See note about using torch.cuda.current_device() here in docstring.
# We cannot simply use my_rank since rank == device is not necessarily
# true.
current_device = torch.device("cuda", torch.cuda.current_device())
input_tensor = input_tensor.to(current_device)
local_size = local_size.to(current_device)
# Gather all local sizes. This is so that we can find the max size, and index
# until the correct size when deserializing the tensors.
group_size = dist.get_world_size(group=group)
object_sizes_tensor = torch.zeros(
group_size, dtype=torch.long, device=current_device
)
object_size_list = [
object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size)
]
# Allgather tensor sizes
dist.all_gather(object_size_list, local_size, group=group)
max_object_size = int(max(object_size_list).item()) # type: ignore[type-var]
# Resize tensor to max size across all ranks.
input_tensor.resize_(max_object_size)
coalesced_output_tensor = torch.empty(
max_object_size * group_size, dtype=torch.uint8, device=current_device
)
# Output tensors are nonoverlapping views of coalesced_output_tensor
output_tensors = [
coalesced_output_tensor[max_object_size * i : max_object_size * (i + 1)]
for i in range(group_size)
]
dist.all_gather(output_tensors, input_tensor, group=group)
# Deserialize outputs back to object.
for i, tensor in enumerate(output_tensors):
tensor = tensor.type(torch.uint8)
if tensor.device != torch.device("cpu"):
tensor = tensor.cpu()
tensor_size = object_size_list[i]
object_list[i] = _tensor_to_object(tensor, tensor_size)

+ 54
- 20
fastNLP/core/metrics/classify_f1_pre_rec_metric.py View File

@@ -29,14 +29,16 @@ def _compute_f_pre_rec(beta_square, tp, fn, fp):


class ClassifyFPreRecMetric(Metric):
def __init__(self, backend: Union[str, Backend, None] = 'auto', aggregate_when_get_metric: bool = False,
tag_vocab: Vocabulary = None, encoding_type: str = None, ignore_labels: List[str] = None,
only_gross: bool = True, f_type='micro', beta=1) -> None:
def __init__(self, tag_vocab: Vocabulary = None, ignore_labels: List[str] = None, num_class: int = 0,
only_gross: bool = True, f_type='micro', beta=1, backend: Union[str, Backend, None] = 'auto',
aggregate_when_get_metric: bool = False) -> None:
super(ClassifyFPreRecMetric, self).__init__(backend=backend,
aggregate_when_get_metric=aggregate_when_get_metric)
if f_type not in ('micro', 'macro'):
raise ValueError("f_type only supports `micro` or `macro`', got {}.".format(f_type))

if tag_vocab:
if not isinstance(tag_vocab, Vocabulary):
raise TypeError("tag_vocab can only be fastNLP.Vocabulary, not {}.".format(type(tag_vocab)))
self.ignore_labels = ignore_labels
self.f_type = f_type
self.beta = beta
@@ -45,9 +47,32 @@ class ClassifyFPreRecMetric(Metric):

self.tag_vocab = tag_vocab

self._tp, self._fp, self._fn = defaultdict(partial(self.register_element, aggregate_method='sum')),\
defaultdict(partial(self.register_element, aggregate_method='sum')),\
defaultdict(partial(self.register_element, aggregate_method='sum'))
self._tp = {}
self._fp = {}
self._fn = {}
if tag_vocab:
for word, _ in tag_vocab:
word = word.lower()
if word != 'o':
word = word[2:]
if word in self._true_positives:
continue
self._tp[word] = self.register_element(name=f'tp_{word}', aggregate_method='sum',
backend=backend)
self._fn[word] = self.register_element(name=f'fn_{word}', aggregate_method='sum',
backend=backend)
self._fp[word] = self.register_element(name=f'fp_{word}', aggregate_method='sum',
backend=backend)
elif num_class > 0:
for word in range(num_class):
self._tp[word] = self.register_element(name=f'tp_{word}', aggregate_method='sum',
backend=backend)
self._fn[word] = self.register_element(name=f'fn_{word}', aggregate_method='sum',
backend=backend)
self._fp[word] = self.register_element(name=f'fp_{word}', aggregate_method='sum',
backend=backend)
else:
raise ValueError()

def get_metric(self) -> dict:
r"""
@@ -68,9 +93,11 @@ class ClassifyFPreRecMetric(Metric):
tag_name = self.tag_vocab.to_word(tag)
else:
tag_name = int(tag)
tp = self._tp[tag]
fn = self._fn[tag]
fp = self._fp[tag]
tp = self._tp[tag].get_scalar()
fn = self._fn[tag].get_scalar()
fp = self._fp[tag].get_scalar()
if tp == fn == fp == 0:
continue
f, pre, rec = _compute_f_pre_rec(self.beta_square, tp, fn, fp)
f_sum += f
pre_sum += pre
@@ -90,20 +117,29 @@ class ClassifyFPreRecMetric(Metric):

if self.f_type == 'micro':
f, pre, rec = _compute_f_pre_rec(self.beta_square,
sum(self._tp.values()),
sum(self._fn.values()),
sum(self._fp.values()))
sum(val.get_scalar() for val in self._tp.values()),
sum(val.get_scalar() for val in self._fn.values()),
sum(val.get_scalar() for val in self._fp.values()))
evaluate_result['f'] = f
evaluate_result['pre'] = pre
evaluate_result['rec'] = rec


for key, value in evaluate_result.items():
evaluate_result[key] = round(value, 6)

return evaluate_result

def update(self, pred, target, seq_len=None):
r"""
evaluate函数将针对一个批次的预测结果做评价指标的累计

:param torch.Tensor pred: 预测的tensor, tensor的形状可以是torch.Size([B,]), torch.Size([B, n_classes]),
torch.Size([B, max_len]), 或者torch.Size([B, max_len, n_classes])
:param torch.Tensor target: 真实值的tensor, tensor的形状可以是Element's can be: torch.Size([B,]),
torch.Size([B,]), torch.Size([B, max_len]), 或者torch.Size([B, max_len])
:param torch.Tensor seq_len: 序列长度标记, 标记的形状可以是None, None, torch.Size([B]), 或者torch.Size([B]).
如果mask也被传进来的话seq_len会被忽略.
"""
pred = self.tensor2numpy(pred)
target = self.tensor2numpy(target)
if seq_len is not None:
@@ -122,14 +158,14 @@ class ClassifyFPreRecMetric(Metric):
f"pred have element numbers: {len(target.flatten())}")

pass
elif len(pred.ndim) == len(target.ndim) + 1:
elif pred.ndim == target.ndim + 1:
pred = pred.argmax(axis=-1)
if seq_len is None and len(target.ndim) > 1:
if seq_len is None and target.ndim > 1:
warnings.warn("You are not passing `seq_len` to exclude pad when calculate accuracy.")
else:
raise RuntimeError(f"when pred have "
f"size:{pred.ndim}, target should have size: {pred.ndim} or "
f"{pred.ndim[:-1]}, got {target.ndim}.")
f"size:{pred.shape}, target should have size: {pred.shape} or "
f"{pred.shape[:-1]}, got {target.shape}.")
if masks is not None:
target = target * masks
pred = pred * masks
@@ -138,5 +174,3 @@ class ClassifyFPreRecMetric(Metric):
self._tp[target_idx] += ((pred == target_idx) * (target != target_idx)).sum().item()
self._fp[target_idx] += ((pred == target_idx) * (target == target_idx)).sum().item()
self._fn[target_idx] += ((pred != target_idx) * (target != target_idx)).sum().item()



+ 10
- 0
fastNLP/core/utils/exceptions.py View File

@@ -0,0 +1,10 @@

class EarlyStopException(BaseException):
r"""
用于EarlyStop时从Trainer训练循环中跳出。

"""

def __init__(self, msg):
super(EarlyStopException, self).__init__(msg)
self.msg = msg

+ 1
- 3
fastNLP/core/utils/rich_progress.py View File

@@ -94,9 +94,6 @@ class FRichProgress(Progress, metaclass=Singleton):
self.print = self.console.print
self.log = self.console.log

# start new
self.start()
self.console.show_cursor(show=True)
return self

def set_transient(self, transient: bool = True):
@@ -154,6 +151,7 @@ class FRichProgress(Progress, metaclass=Singleton):
super().start()
self.console.show_cursor(show=True)


if (sys.stdin and sys.stdin.isatty()) and get_global_rank() == 0:
f_rich_progress = FRichProgress().new_progess(
"[progress.description]{task.description}",


+ 1
- 6
tests/core/callbacks/test_utils.py View File

@@ -12,32 +12,27 @@ def test_get_monitor_value():
with Capturing() as output:
monitor, value = _get_monitor_value(monitor='f1', real_monitor=None, res=res)
assert monitor == 'f1' and value==0.2
assert 'We can not find' not in output[0]

# 测试可以匹配,且选择更靠前的
res = {'acc#f1': 0.2, 'acc#rec': 0.3, 'add#f':0.4}
with Capturing() as output:
monitor, value = _get_monitor_value(monitor='f1', real_monitor=None, res=res)
assert monitor=='acc#f1' and value==0.2
assert 'We can not find' in output[0]

# 测试monitor匹配不上,使用real_monitor
res = {'acc#f1': 0.2, 'acc#rec': 0.3, 'add#f':0.4}
with Capturing() as output:
monitor, value = _get_monitor_value(monitor='acc#f', real_monitor='acc#rec', res=res)
monitor, value = _get_monitor_value(monitor='acc', real_monitor='acc#rec', res=res)
assert monitor=='acc#rec' and value==0.3
assert 'We can not find' not in output[0]

# 测试monitor/real_monitor匹配不上, 重新选择
res = {'acc#f1': 0.2, 'acc#rec': 0.3, 'add#f':0.4}
with Capturing() as output:
monitor, value = _get_monitor_value(monitor='acc#f', real_monitor='acc#r', res=res)
assert monitor=='acc#f1' and value==0.2
assert 'We can not find' in output[0]

# 测试partial的位置
res = {"acc#acc": 0.52, "loss#loss": 2}
with Capturing() as output:
monitor, value = _get_monitor_value(monitor='-loss', real_monitor=None, res=res)
assert monitor=='loss#loss' and value==2
assert 'We can not find' in output[0]

+ 6
- 31
tests/core/drivers/torch_driver/test_dist_utils.py View File

@@ -7,38 +7,10 @@ import numpy as np
# print(isinstance((1,), tuple))
# exit()

from fastNLP.core.drivers.torch_driver.dist_utils import fastnlp_torch_all_gather, convert_to_tensors, fastnlp_torch_broadcast_object
from fastNLP.core.drivers.torch_driver.dist_utils import fastnlp_torch_all_gather, fastnlp_torch_broadcast_object
from tests.helpers.utils import re_run_current_cmd_for_torch, magic_argv_env_context



def test_convert_to_tensors():
local_rank = 0
obj = {
'tensor': torch.full(size=(2,), fill_value=local_rank),
'numpy': np.full(shape=(1,), fill_value=local_rank),
'bool': local_rank % 2 == 0,
'float': local_rank + 0.1,
'int': local_rank,
'dict': {
'rank': local_rank
},
'list': [local_rank] * 2,
'str': 'xxx'
}
data = convert_to_tensors(obj)
assert len(data) == len(obj)
assert (data['tensor'] == obj['tensor']).sum() == 2
for name in ['list', 'str']:
assert len(data[name])==2 and isinstance(data[name][0], torch.Tensor) and \
isinstance(data[name][1], torch.Tensor) and data[name][1].ndim==1

for name in ['numpy', 'bool', 'float', 'int']:
assert isinstance(data[name][0], torch.Tensor) and data[name][0].numel()==1

assert isinstance(data['dict']['rank'][0], torch.Tensor) and data[name][0].numel() == 1


@magic_argv_env_context
def test_fastnlp_torch_all_gather():
os.environ['MASTER_ADDR'] = '127.0.0.1'
@@ -66,7 +38,7 @@ def test_fastnlp_torch_all_gather():
'tensors': [torch.full(size=(2,), fill_value=local_rank).cuda(),
torch.full(size=(2,), fill_value=local_rank).cuda()]
}
data = fastnlp_torch_all_gather(obj, device=torch.cuda.current_device())
data = fastnlp_torch_all_gather(obj)
world_size = int(os.environ['WORLD_SIZE'])
assert len(data) == world_size
for i in range(world_size):
@@ -81,10 +53,12 @@ def test_fastnlp_torch_all_gather():
assert data[i]['tensors'][0][0] == i

for obj in [1, True, 'xxx']:
data = fastnlp_torch_all_gather(obj, device=torch.cuda.current_device())
data = fastnlp_torch_all_gather(obj)
assert len(data)==world_size
assert data[0]==data[1]

dist.destroy_process_group()

@magic_argv_env_context
def test_fastnlp_torch_broadcast_object():
os.environ['MASTER_ADDR'] = '127.0.0.1'
@@ -130,3 +104,4 @@ def test_fastnlp_torch_broadcast_object():
for obj in [int(os.environ['LOCAL_RANK']), bool(os.environ['LOCAL_RANK']=='1'), os.environ['LOCAL_RANK']]:
data = fastnlp_torch_broadcast_object(obj, src=0, device=torch.cuda.current_device())
assert int(data)==0
dist.destroy_process_group()

+ 88
- 0
tests/core/metrics/test_classify_f1_pre_rec_metric_torch.py View File

@@ -0,0 +1,88 @@
import pytest
import torch
import numpy as np

from fastNLP.core.metrics import ClassifyFPreRecMetric


class TestClassfiyFPreRecMetric:
def test_case_1(self):
pred = torch.tensor([[-0.4375, -0.1779, -1.0985, -1.1592, 0.4910],
[1.3410, 0.2889, -0.8667, -1.8580, 0.3029],
[0.7459, -1.1957, 0.3231, 0.0308, -0.1847],
[1.1439, -0.0057, 0.8203, 0.0312, -1.0051],
[-0.4870, 0.3215, -0.8290, 0.9221, 0.4683],
[0.9078, 1.0674, -0.5629, 0.3895, 0.8917],
[-0.7743, -0.4041, -0.9026, 0.2112, 1.0892],
[1.8232, -1.4188, -2.5615, -2.4187, 0.5907],
[-1.0592, 0.4164, -0.1192, 1.4238, -0.9258],
[-1.1137, 0.5773, 2.5778, 0.5398, -0.3323],
[-0.3868, -0.5165, 0.2286, -1.3876, 0.5561],
[-0.3304, 1.3619, -1.5744, 0.4902, -0.7661],
[1.8387, 0.5234, 0.4269, 1.3748, -1.2793],
[0.6692, 0.2571, 1.2425, -0.5894, -0.0184],
[0.4165, 0.4084, -0.1280, 1.4489, -2.3058],
[-0.5826, -0.5469, 1.5898, -0.2786, -0.9882],
[-1.5548, -2.2891, 0.2983, -1.2145, -0.1947],
[-0.7222, 2.3543, -0.5801, -0.0640, -1.5614],
[-1.4978, 1.9297, -1.3652, -0.2358, 2.5566],
[0.1561, -0.0316, 0.9331, 1.0363, 2.3949],
[0.2650, -0.8459, 1.3221, 0.1321, -1.1900],
[0.0664, -1.2353, -0.5242, -1.4491, 1.3300],
[-0.2744, 0.0941, 0.7157, 0.1404, 1.2046],
[0.9341, -0.6652, 1.4512, 0.9608, -0.3623],
[-1.1641, 0.0873, 0.1163, -0.2068, -0.7002],
[1.4775, -2.0025, -0.5634, -0.1589, 0.0247],
[1.0151, 1.0304, -0.1042, -0.6955, -0.0629],
[-0.3119, -0.4558, 0.7757, 0.0758, -1.6297],
[1.0654, 0.0313, -0.7716, 0.1194, 0.6913],
[-0.8088, -0.6648, -0.5018, -0.0230, -0.8207],
[-0.7753, -0.3508, 1.6163, 0.7158, 1.5207],
[0.8692, 0.7718, -0.6734, 0.6515, 0.0641]])
arg_max_pred = torch.argmax(pred, dim=-1)
target = torch.tensor([0, 2, 4, 1, 4, 0, 1, 3, 3, 3, 1, 3, 4, 4, 3, 4, 0, 2, 4, 4, 3, 4, 4, 3,
0, 3, 0, 0, 0, 1, 3, 1])

metric = ClassifyFPreRecMetric(f_type='macro', num_class=5)
metric.update(pred, target)
result_dict = metric.get_metric()
f1_score = 0.1882051282051282
recall = 0.1619047619047619
pre = 0.23928571428571427

ground_truth = {'f': f1_score, 'pre': pre, 'rec': recall}
for keys in ['f', 'pre', 'rec']:
np.allclose(result_dict[keys], ground_truth[keys], atol=0.000001)

metric = ClassifyFPreRecMetric(f_type='micro', num_class=5)
metric.update(pred, target)
result_dict = metric.get_metric()
f1_score = 0.21875
recall = 0.21875
pre = 0.21875

ground_truth = {'f': f1_score, 'pre': pre, 'rec': recall}
for keys in ['f', 'pre', 'rec']:
np.allclose(result_dict[keys], ground_truth[keys], atol=0.000001)

metric = ClassifyFPreRecMetric(only_gross=False, f_type='macro', num_class=5)
metric.update(pred, target)
result_dict = metric.get_metric()
ground_truth = {
'0': {'f1-score': 0.13333333333333333, 'precision': 0.125, 'recall': 0.14285714285714285, 'support': 7},
'1': {'f1-score': 0.0, 'precision': 0.0, 'recall': 0.0, 'support': 5},
'2': {'f1-score': 0.0, 'precision': 0.0, 'recall': 0.0, 'support': 2},
'3': {'f1-score': 0.30769230769230765, 'precision': 0.5, 'recall': 0.2222222222222222, 'support': 9},
'4': {'f1-score': 0.5, 'precision': 0.5714285714285714, 'recall': 0.4444444444444444, 'support': 9},
'macro avg': {'f1-score': 0.1882051282051282, 'precision': 0.23928571428571427,
'recall': 0.1619047619047619, 'support': 32},
'micro avg': {'f1-score': 0.21875, 'precision': 0.21875, 'recall': 0.21875, 'support': 32},
'weighted avg': {'f1-score': 0.2563301282051282, 'precision': 0.3286830357142857, 'recall': 0.21875,
'support': 32}}
for keys in result_dict.keys():
if keys == "f" or "pre" or "rec":
continue
gl = str(keys[-1])
tmp_d = {"p": "precision", "r": "recall", "f": "f1-score"}
gk = tmp_d[keys[0]]
np.allclose(result_dict[keys], ground_truth[gl][gk], atol=0.000001)

Loading…
Cancel
Save