Browse Source

Merge remote-tracking branch 'refs/remotes/origin/dev0.8.0' into dev0.8.0

tags/v1.0.0alpha
MorningForest 3 years ago
parent
commit
ab3b66715e
32 changed files with 1199 additions and 590 deletions
  1. +3
    -1
      fastNLP/core/callbacks/__init__.py
  2. +83
    -1
      fastNLP/core/callbacks/callback.py
  3. +32
    -47
      fastNLP/core/callbacks/checkpoint_callback.py
  4. +61
    -0
      fastNLP/core/callbacks/early_stop_callback.py
  5. +14
    -15
      fastNLP/core/callbacks/load_best_model_callback.py
  6. +12
    -34
      fastNLP/core/callbacks/progress_callback.py
  7. +19
    -11
      fastNLP/core/callbacks/utils.py
  8. +2
    -0
      fastNLP/core/controllers/evaluator.py
  9. +15
    -2
      fastNLP/core/controllers/trainer.py
  10. +2
    -2
      fastNLP/core/drivers/driver.py
  11. +2
    -2
      fastNLP/core/drivers/jittor_driver/mpi.py
  12. +6
    -6
      fastNLP/core/drivers/jittor_driver/single_device.py
  13. +5
    -5
      fastNLP/core/drivers/paddle_driver/fleet.py
  14. +4
    -4
      fastNLP/core/drivers/paddle_driver/single_device.py
  15. +26
    -15
      fastNLP/core/drivers/torch_driver/ddp.py
  16. +145
    -227
      fastNLP/core/drivers/torch_driver/dist_utils.py
  17. +4
    -5
      fastNLP/core/drivers/torch_driver/single_device.py
  18. +6
    -7
      fastNLP/core/drivers/torch_driver/torch_driver.py
  19. +17
    -7
      fastNLP/core/samplers/__init__.py
  20. +14
    -5
      fastNLP/core/samplers/reproducible_batch_sampler.py
  21. +133
    -13
      fastNLP/core/samplers/reproducible_sampler.py
  22. +42
    -13
      fastNLP/core/samplers/unrepeated_sampler.py
  23. +42
    -0
      fastNLP/core/samplers/utils.py
  24. +10
    -0
      fastNLP/core/utils/exceptions.py
  25. +1
    -3
      fastNLP/core/utils/rich_progress.py
  26. +1
    -6
      tests/core/callbacks/test_utils.py
  27. +2
    -2
      tests/core/drivers/paddle_driver/test_single_device.py
  28. +6
    -31
      tests/core/drivers/torch_driver/test_dist_utils.py
  29. +1
    -1
      tests/core/drivers/torch_driver/test_torch_replace_sampler.py
  30. +9
    -9
      tests/core/samplers/test_reproducible_batch_sampler.py
  31. +431
    -107
      tests/core/samplers/test_reproducible_sampler.py
  32. +49
    -9
      tests/core/samplers/test_unrepeated_sampler.py

+ 3
- 1
fastNLP/core/callbacks/__init__.py View File

@@ -10,7 +10,8 @@ __all__ = [
'ProgressCallback',
'RichCallback',
"LRSchedCallback",
'LoadBestModelCallback'
'LoadBestModelCallback',
"EarlyStopCallback"
]


@@ -21,4 +22,5 @@ from .checkpoint_callback import ModelCheckpointCallback, TrainerCheckpointCallb
from .progress_callback import choose_progress_callback, ProgressCallback, RichCallback
from .lr_scheduler_callback import LRSchedCallback
from .load_best_model_callback import LoadBestModelCallback
from .early_stop_callback import EarlyStopCallback


+ 83
- 1
fastNLP/core/callbacks/callback.py View File

@@ -1,11 +1,15 @@
from typing import Union, Callable, Dict, Optional
from typing import Union, Callable, Dict, Optional, Any
from abc import ABC

__all__ = [
'Callback',
]

from .callback_events import Events, EventsList, Filter
from .utils import _get_monitor_value
from fastNLP.core.callbacks.callback_events import _SingleEventState
from fastNLP.core.log import logger
from fastNLP.core.utils import apply_to_collection


class Callback:
@@ -150,4 +154,82 @@ class _CallbackWrapper(Callback):
return self.fn.__name__


class CanItemDataType(ABC):
"""
检测可以进行传输的对象。

"""

@classmethod
def __subclasshook__(cls, subclass: Any) -> Union[bool, Any]:
if cls is CanItemDataType:
item = getattr(subclass, 'item', None)
return callable(item)
return NotImplemented


class HasMonitorCallback(Callback):
def __init__(self, monitor, larger_better, must_have_monitor=False):
self.set_monitor(monitor, larger_better)
self.must_have_moinitor = must_have_monitor

def set_monitor(self, monitor, larger_better):
self.monitor = str(monitor) if monitor is not None else None
self.larger_better = bool(larger_better)
if larger_better:
self.monitor_value = float('-inf')
else:
self.monitor_value = float('inf')
self._real_monitor = self.monitor

def on_after_trainer_initialized(self, trainer, driver):
"""
如果本身的 monitor 没有设置,则根据 Trainer 中的 monitor 设置 monitor 。
同时对于必须要有 monitor 设置的 callback ,该函数会进行检查。

:param trainer:
:param driver:
:return:
"""
if self.monitor is None and trainer.monitor is not None:
self.set_monitor(monitor=trainer.monitor, larger_better=trainer.larger_better)
if self.must_have_moinitor and self.monitor is None:
raise RuntimeError(f"No `monitor` is set for {self.__class__.__name__}. "
f"You can set it in the initialization or through Trainer.")

def get_monitor_value(self, results:Dict)->float:
"""
获取 monitor 的值,如果 monitor 没有直接找到,会尝试使用匹配的方式寻找,并把匹配到的设置到 self._real_monitor 属性上。

:param results:
:return:
"""
if len(results)==0:
return 0
# 保证所有的 tensor 都被转换为了 python 特定的类型
results = apply_to_collection(results, dtype=CanItemDataType, function=lambda x: x.item())
use_monitor, monitor_value = _get_monitor_value(monitor=self.monitor,
real_monitor=self._real_monitor,
res=results)
if self._real_monitor != use_monitor: # 发生了替换需要打印
logger.warning(
f"We can not find `{self.monitor}` in the evaluation result (with keys as {list(results.keys())}), "
f"we use the `{use_monitor}` as the monitor for {self.__class__.__name__}.")
self._real_monitor = use_monitor
return monitor_value

def is_better_monitor_value(self, monitor_value: float, keep_if_better=True):
"""
检测 monitor_value 是否是更好的

:param monitor_value:
:param keep_if_better: 如果传入的 monitor_value 值更好,则将其保存下来。
:return:
"""
better = False
if (self.larger_better and monitor_value > self.monitor_value) or \
(not self.larger_better and monitor_value < self.monitor_value):
better = True
if keep_if_better:
self.monitor_value = monitor_value
return better

+ 32
- 47
fastNLP/core/callbacks/checkpoint_callback.py View File

@@ -5,12 +5,12 @@ __all__ = [
import os
from typing import Union, Optional, Callable, Dict, Sequence, Any, Mapping
from pathlib import Path
from abc import ABC
import sys
from copy import deepcopy


import fastNLP
from .callback import Callback, Filter
from .callback import Callback, HasMonitorCallback
from fastNLP.core.callbacks.utils import _get_monitor_value
from fastNLP.core.log import logger
from fastNLP.envs import FASTNLP_LAUNCH_TIME
@@ -18,22 +18,7 @@ from fastNLP.core.utils import synchronize_safe_rm, synchronize_mkdir
from fastNLP.core.utils import apply_to_collection


class CanItemDataType(ABC):
"""
检测可以进行传输的对象。

"""

@classmethod
def __subclasshook__(cls, subclass: Any) -> Union[bool, Any]:
if cls is CanItemDataType:
item = getattr(subclass, 'item', None)
return callable(item)
return NotImplemented



class CheckpointCallback(Callback):
class CheckpointCallback(HasMonitorCallback):
def __init__(
self,
monitor,
@@ -48,12 +33,8 @@ class CheckpointCallback(Callback):
model_save_fn: Optional[Callable] = None,
**kwargs,
):
if monitor is None and save_topk is not None:
raise ValueError("Parameter `monitor` must be set when you want to use 'save_topk'.")

if monitor is not None and not isinstance(monitor, str):
raise ValueError("Parameter `monitor` should be of 'str' type.")

super().__init__(monitor=monitor, larger_better=larger_better,
must_have_monitor=save_topk is not None)
if save_folder is None:
logger.warning(
"Parameter `path` is None, and we will use the current work directory to find and load your model.")
@@ -91,13 +72,12 @@ class CheckpointCallback(Callback):
"`BaseException` type.")
else:
save_on_exception = []
self.monitor = monitor
self.save_folder = Path(save_folder)
self.save_every_n_epochs = save_every_n_epochs
self.save_every_n_batches = save_every_n_batches
self.save_last = save_last
self.save_topk = save_topk
self.larger_better = larger_better
self.only_state_dict = only_state_dict
self.model_save_fn = model_save_fn
self.save_on_exception = save_on_exception
@@ -107,20 +87,22 @@ class CheckpointCallback(Callback):
self._topk_model = {}
self._topn = 0 # 表示目前已经保存了几个最好的模型;

# 因为我们在 `_get_validate_metric` 函数中,当在返回的 `validate_res` 字典中找不到 `monitor` 时,是使用匹配找到的
# key 对应的 value 当做结果;但是这样存在的一个问题在于如果用户传入的 metric 返回的 sub_metric 的名字可能会混淆,并且其在下一次
# 训练的代码中修改了这些 sub_metric 返回的顺序,那么就会导致模糊匹配拿到的 key 和 value 与之前的不是同一个,这显然不是合理的行为;
# 因此我们通过该变量来表示我们通过模糊匹配拿到的 key;
self._real_monitor = self.monitor

# 注意这里应当保证只有进程 0 在执行这个操作,因为当用户使用 python -m torch.distributed.launch 来拉起进程的时候,
# FASTNLP_LAUNCH_TIME 在每一个进程上的值是不一样的;
self.timestamp_path = self.save_folder.joinpath(os.environ[FASTNLP_LAUNCH_TIME])
# 我们只需要保证这个创建文件夹的操作只在进程 0 上进行即可;因为后续的实际的保存操作,其它进程实际并不会去执行;
synchronize_mkdir(self.timestamp_path)

def on_validate_end(self, trainer, validate_res):
self._save_topk(trainer, validate_res)
def on_after_trainer_initialized(self, trainer, driver):
if self.save_topk is not None:
super().on_after_trainer_initialized(trainer, driver)
if self.save_topk is not None and trainer.evaluator is None:
logger.warning("You set `save_topk`, but `validate_dataloaders` is not set in Trainer.")

def on_validate_end(self, trainer, results):
if len(results) == 0:
return
self._save_topk(trainer, results)

def on_train_epoch_end(self, trainer: "fastNLP.Trainer"):
if trainer.cur_epoch_idx % self.save_every_n_epochs == 0:
@@ -143,7 +125,7 @@ class CheckpointCallback(Callback):

def on_sanity_check_end(self, trainer, sanity_check_res):
# 主要核对一下 monitor 是否存在。
self._get_validate_metric(sanity_check_res)
self.get_monitor_value(results=sanity_check_res)

def on_save_checkpoint(self, trainer) -> Dict:
"""
@@ -154,8 +136,7 @@ class CheckpointCallback(Callback):

states = {}
states['timestamp_path'] = str(self.timestamp_path.absolute())
states['_topk_model'] = apply_to_collection(self._topk_model, dtype=CanItemDataType,
function=lambda x:x.item())
states['_topk_model'] = deepcopy(self._topk_model)
states['save_topk'] = 0 if self.save_topk is None else self.save_topk
states['_real_monitor'] = self._real_monitor
return states
@@ -176,30 +157,30 @@ class CheckpointCallback(Callback):
self._topk_model.update(self._topk_model)
self._real_monitor = states["real_monitor"]

def _save_topk(self, trainer: "fastNLP.Trainer", validate_res: Dict):
def _save_topk(self, trainer: "fastNLP.Trainer", results: Dict):
"""
根据validate_res决定保存哪些model的函数。会自动移除掉不满足topk的文件夹。

:param trainer:
:param validate_res:
:param results:
:return:
"""
if self.save_topk is not None:
_metric_value = self._get_validate_metric(validate_res)
monitor_value = self.get_monitor_value(results=results)
folder_name = f"{self.folder_prefix}-epoch_{trainer.cur_epoch_idx}-batch_{trainer.global_forward_batches}" \
f"-{self._real_monitor}_{_metric_value}"
f"-{self._real_monitor}_{monitor_value}"

_should_save = False
if self._topn < self.save_topk:
self._topk_model[folder_name] = _metric_value
self._topk_model[folder_name] = monitor_value
self._topn += 1
_should_save = True
else:
_least_valuable_model = (min if self.larger_better else max)(self._topk_model,
key=lambda x: self._topk_model[x])
if (self.larger_better and _metric_value > self._topk_model[_least_valuable_model]) or \
(self.larger_better is False and _metric_value < self._topk_model[_least_valuable_model]):
self._topk_model[folder_name] = _metric_value
if (self.larger_better and monitor_value > self._topk_model[_least_valuable_model]) or \
(self.larger_better is False and monitor_value < self._topk_model[_least_valuable_model]):
self._topk_model[folder_name] = monitor_value
_should_save = True
self._topk_model.pop(_least_valuable_model)
synchronize_safe_rm(self.timestamp_path.joinpath(_least_valuable_model))
@@ -235,7 +216,11 @@ class CheckpointCallback(Callback):
:return:
"""
use_monitor, value = _get_monitor_value(monitor=self.monitor, real_monitor=self._real_monitor, res=res)
if self._real_monitor != use_monitor:
logger.warning(f"We can not find `{self._real_monitor}` in the evaluation result (with keys as {list(res.keys())}), "
f"we use the `{use_monitor}` as the monitor for {self.__class__.__name__}.")
self._real_monitor = use_monitor

return value

@property
@@ -263,7 +248,7 @@ class ModelCheckpointCallback(CheckpointCallback):
若 model_save_fn 不为 None,则 fastNLP 将 folder 绝对路径传递给该函数,fastNLP 不在该 folder 下创建任何文件。

:param monitor: 监控的 metric 的名称。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配
的那个作为 monitor 。
的那个作为 monitor 。如果为 None 将尝试从 Trainer 中获取该值。
:param save_folder: 保存的文件夹,fastNLP 将在该文件下以时间戳创建子文件夹,并在里面保存。因此不同次运行可以将被保存到不同的
时间戳文件夹中。如果为 None ,默认使用当前文件夹。
:param save_every_n_epochs: 多少个 epoch 保存一次。
@@ -310,7 +295,7 @@ class TrainerCheckpointCallback(CheckpointCallback):
若 model_save_fn 不为 None,则 fastNLP 只会在每个 folder 下生成 fastnlp_trainer.pkl.tar 文件。

:param monitor: 监控的 metric 的名称。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配
的那个作为 monitor 。
的那个作为 monitor 。如果为 None 将尝试从 Trainer 中获取该值。
:param save_folder: 保存的文件夹,fastNLP 将在该文件下以时间戳创建子文件夹,并在里面保存。因此不同次运行可以将被保存到不同的
时间戳文件夹中。如果为 None ,默认使用当前文件夹。
:param save_every_n_epochs: 多少个 epoch 保存一次。


+ 61
- 0
fastNLP/core/callbacks/early_stop_callback.py View File

@@ -0,0 +1,61 @@
__all__ = [
'EarlyStopCallback'
]

from typing import Dict

from .callback import HasMonitorCallback
from fastNLP.core.utils.exceptions import EarlyStopException


class EarlyStopCallback(HasMonitorCallback):
def __init__(self, monitor:str=None, larger_better:bool=True, patience:int=10):
"""

:param str monitor: 监控的 metric 值。如果为 None,将尝试使用 Trainer 设置的 monitor 。
:param larger_better: monitor 的值是否是越大越好。
:param patience: 多少次 validate 不没有提升就停止。
"""
super(EarlyStopCallback, self).__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=True)
self.wait = 0
self.patience = patience

def on_validate_end(self, trainer, results):
if len(results)==0:
return
monitor_value = self.get_monitor_value(results)
if self.is_better_monitor_value(monitor_value, keep_if_better=True):
self.wait = 0
else:
self.wait += 1

def on_fetch_data_begin(self, trainer):
# 当是 step validate 的时候,下一步执行的就是这个, 所以在这里检查。
if self.wait >= self.patience:
raise EarlyStopException(f"After {self.wait} validations, no improvement for "
f"metric `{self._real_monitor}`")

def on_train_epoch_begin(self, trainer):
# 当是 epoch validate 的时候,下一步执行的就是这个, 所以在这里检查。
if self.wait >= self.patience:
raise EarlyStopException(f"After {self.wait} validations, no improvement for "
f"metric `{self._real_monitor}`(best value: {self.monitor_value})")

def on_save_checkpoint(self, trainer) -> Dict:
states = {
'patience': self.patience,
'wait': self.wait,
'monitor': self.monitor,
'monitor_value': self.monitor_value
}
return states

def on_load_checkpoint(self, trainer, states):
self.patience = states['patience']
self.wait = states['wait']
self.monitor = states['monitor']
self.monitor_value = float(states['monitor_value'])

def callback_name(self):
return f'EarlyStopCallback#monitor-{self.monitor}#patience-{self.patience}'


+ 14
- 15
fastNLP/core/callbacks/load_best_model_callback.py View File

@@ -4,8 +4,7 @@ __all__ = [

import os
from typing import Optional, Callable
from .callback import Callback
from .utils import _get_monitor_value
from .callback import HasMonitorCallback
from io import BytesIO
import shutil

@@ -14,15 +13,15 @@ from fastNLP.core.log import logger
from fastNLP.envs import all_rank_call


class LoadBestModelCallback(Callback):
def __init__(self, monitor:str, larger_better:bool = True, only_state_dict:bool = True,
class LoadBestModelCallback(HasMonitorCallback):
def __init__(self, monitor:str=None, larger_better:bool = True, only_state_dict:bool = True,
save_folder:Optional[str] = None, model_save_fn:Optional[Callable] = None,
model_load_fn:Optional[Callable] = None,
delete_after_train:bool = True):
"""
保存最佳的 monitor 值最佳的模型,并在训练结束的时候重新加载模型。仅在训练正常结束的时候才能加载最好的模型。

:param str monitor: 监控的 metric 值。
:param str monitor: 监控的 metric 值。如果为 None,将尝试使用 Trainer 设置的 monitor 。
:param larger_better: 该 metric 值是否是越大越好。
:param save_folder: 保存的文件夹,如果为空,则保存在内存中。不为空,则保存一份权重到文件中,当为多机训练,且本值不为空时,请确保
不同的机器均可访问当该路径。当 model_save_fn 不为 None 时该值一定不能为空。
@@ -33,6 +32,7 @@ class LoadBestModelCallback(Callback):
请在函数内完成对模型的加载。
:param delete_after_train: 在训练结束后是否删掉模型。
"""
super().__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=True)
if model_load_fn is not None:
assert callable(model_load_fn), "`model_load_fn` must be a callable object."
assert model_save_fn is not None, "`model_load_fn` and `model_save_fn` must be passed at the same time."
@@ -56,15 +56,11 @@ class LoadBestModelCallback(Callback):
self.real_save_folder = None
self.buffer = BytesIO()

self.monitor = monitor
self.larger_better = larger_better
self.save_folder = save_folder
self.only_state_dict = only_state_dict
self.model_save_fn = model_save_fn
self.model_load_fn = model_load_fn
self.delete_after_after = delete_after_train
self._real_monitor = None
self.monitor_value = float('-inf') if larger_better else float('inf')

def on_after_trainer_initialized(self, trainer, driver):
if self.save_folder is not None and driver.is_distributed() and int(os.environ.get(FASTNLP_BACKEND_LAUNCH, 0))==1:
@@ -76,13 +72,16 @@ class LoadBestModelCallback(Callback):
raise RuntimeError(f"Currently {driver.__class__.__name__} does not support using `save_folder` to "
f"save best model when launch using script.")

super().on_after_trainer_initialized(trainer, driver)

def on_sanity_check_end(self, trainer, sanity_check_res):
self.get_monitor_value(sanity_check_res)

def on_validate_end(self, trainer, results):
self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor,
real_monitor=self._real_monitor,
res=results)
if (monitor_value < self.monitor_value and self.larger_better is False) or \
(monitor_value > self.monitor_value and self.larger_better):
self.monitor_value = monitor_value
if len(results)==0:
return
monitor_value = self.get_monitor_value(results)
if self.is_better_monitor_value(monitor_value, keep_if_better=True):
if self.real_save_folder:
trainer.save_model(folder=self.real_save_folder, only_state_dict=self.only_state_dict,
model_save_fn=self.model_save_fn)


+ 12
- 34
fastNLP/core/callbacks/progress_callback.py View File

@@ -8,7 +8,7 @@ __all__ = [
'RichCallback'
]

from .callback import Callback
from .callback import HasMonitorCallback
from fastNLP.core.callbacks.utils import _get_monitor_value
from fastNLP.core.utils import f_rich_progress
from fastNLP.core.log import logger
@@ -28,15 +28,13 @@ def choose_progress_callback(progress_bar:str):
return None


class ProgressCallback(Callback):
class ProgressCallback(HasMonitorCallback):
def on_train_end(self, trainer):
f_rich_progress.stop()

def on_sanity_check_end(self, trainer, sanity_check_res):
if len(sanity_check_res) and getattr(self, 'monitor', None) is not None:
self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor,
real_monitor=self._real_monitor,
res=sanity_check_res)
self.get_monitor_value(sanity_check_res)


class RichCallback(ProgressCallback):
@@ -46,28 +44,22 @@ class RichCallback(ProgressCallback):

:param print_every: 多少个 batch 更新一次显示。
:param loss_round_ndigit: 显示的 loss 保留多少位有效数字
:param monitor: 当检测到这个key的结果更好时,会打印出不同的颜色进行提示。
:param monitor: 当检测到这个key的结果更好时,会打印出不同的颜色进行提示。如果为 None ,会尝试使用 trainer 中设置的 monitor 。
:param larger_better: 是否是monitor的结果越大越好。
:param format_json: 是否format json再打印
"""
super().__init__()
super().__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=False)
self.print_every = print_every
self.progress_bar = f_rich_progress
self.task2id = {}
self.loss = 0
self.loss_round_ndigit = loss_round_ndigit
self.monitor = monitor
self.larger_better = larger_better
if larger_better:
self.monitor_value = float('-inf')
else:
self.monitor_value = float('inf')
self._real_monitor = monitor
self.format_json = format_json

def on_after_trainer_initialized(self, trainer, driver):
if not self.progress_bar.disable:
self.progress_bar.set_disable(flag=trainer.driver.get_local_rank() != 0)
super(RichCallback, self).on_after_trainer_initialized(trainer, driver)

def on_train_begin(self, trainer):
self.task2id['epoch'] = self.progress_bar.add_task(description='Epoch:0', total=trainer.n_epochs,
@@ -109,16 +101,12 @@ class RichCallback(ProgressCallback):
text_style = ''
characters = '-'
if self.monitor is not None:
self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor,
real_monitor=self._real_monitor,
res=results)
if (self.larger_better and monitor_value > self.monitor_value) or \
(not self.larger_better and monitor_value < self.monitor_value):
monitor_value = self.get_monitor_value(results)
if self.is_better_monitor_value(monitor_value, keep_if_better=True):
if abs(self.monitor_value) != float('inf'):
rule_style = 'spring_green3'
text_style = '[bold]'
characters = '+'
self.monitor_value = monitor_value
self.progress_bar.print()
self.progress_bar.console.rule(text_style+f"Eval. results on Epoch:{trainer.cur_epoch_idx}, "
f"Batch:{trainer.batch_idx_in_epoch}",
@@ -151,18 +139,12 @@ class RawTextCallback(ProgressCallback):
:param larger_better: 是否是monitor的结果越大越好。
:param format_json: 是否format json再打印
"""
super().__init__()
super().__init__(monitor=monitor, larger_better=larger_better, must_have_monitor=False)
self.print_every = print_every
self.task2id = {}
self.loss = 0
self.loss_round_ndigit = loss_round_ndigit
self.monitor = monitor
self.larger_better = larger_better
if larger_better:
self.monitor_value = float('-inf')
else:
self.monitor_value = float('inf')
self._real_monitor = monitor
self.set_monitor(monitor, larger_better)
self.format_json = format_json
self.num_signs = 10

@@ -189,14 +171,10 @@ class RawTextCallback(ProgressCallback):
base_text = f'Eval. results on Epoch:{trainer.cur_epoch_idx}, Batch:{trainer.batch_idx_in_epoch}'
text = ''
if self.monitor is not None:
self._real_monitor, monitor_value = _get_monitor_value(monitor=self.monitor,
real_monitor=self._real_monitor,
res=results)
if (self.larger_better and monitor_value > self.monitor_value) or \
(not self.larger_better and monitor_value < self.monitor_value):
monitor_value = self.get_monitor_value(results)
if self.is_better_monitor_value(monitor_value, keep_if_better=True):
if abs(self.monitor_value) != float('inf'):
text = '+'*self.num_signs + base_text + '+'*self.num_signs
self.monitor_value = monitor_value
if len(text) == 0:
text = '-'*self.num_signs + base_text + '-'*self.num_signs



+ 19
- 11
fastNLP/core/callbacks/utils.py View File

@@ -19,23 +19,31 @@ def _get_monitor_value(monitor: str, real_monitor: Optional[str], res: dict) ->(
if monitor in res:
return monitor, res[monitor]

if real_monitor in res:
return real_monitor, res[real_monitor]

pairs = []
for idx, (key, value) in enumerate(res.items()):
match = SequenceMatcher(None, key, monitor).find_longest_match(0, len(key), 0, len(monitor))
pairs.append((key, value, match.size, idx))
match_size = _match_length(monitor, key)
pairs.append((key, value, match_size, idx))

pairs.sort(key=lambda pair: (pair[2], -pair[3]), reverse=True)
key, value, match_size = pairs[0][:3]

if real_monitor is not None and real_monitor in res and real_monitor != key:
# 如果 real_monitor 比新找的更长就继续用之前的。
match = SequenceMatcher(None, real_monitor, monitor).find_longest_match(0, len(real_monitor), 0, len(monitor))
if match.size > match_size:
return real_monitor, res[real_monitor]
return key, value


logger.warning(f"We can not find `{monitor}` in the evaluation result (with keys as {list(res.keys())}), "
f"we use the `{key}` as the monitor.")
real_monitor = key
return real_monitor, value
def _match_length(a:str, b:str)->int:
"""
需要把长度短的放在前面

:param a:
:param b:
:return:
"""
short = a if len(a) < len(b) else b
long = a if len(a)>=len(b) else b
match = SequenceMatcher(None, short, long).find_longest_match(0, len(short), 0, len(long))
return match.size



+ 2
- 0
fastNLP/core/controllers/evaluator.py View File

@@ -219,6 +219,7 @@ class Evaluator:
def remove_progress_bar(self, dataloader_name):
if self.progress_bar == 'rich' and hasattr(self, '_rich_task_id'):
f_rich_progress.destroy_task(self._rich_task_id)
f_rich_progress.refresh() # 使得最终的bar可以消失
delattr(self, '_rich_task_id')
elif self.progress_bar == 'raw':
desc = 'Evaluation ends'
@@ -229,6 +230,7 @@ class Evaluator:
def finally_progress_bar(self):
if self.progress_bar == 'rich' and hasattr(self, '_rich_task_id'):
f_rich_progress.destroy_task(self._rich_task_id)
f_rich_progress.refresh()
delattr(self, '_rich_task_id')

@property


+ 15
- 2
fastNLP/core/controllers/trainer.py View File

@@ -23,9 +23,9 @@ from fastNLP.core.drivers import Driver
from fastNLP.core.drivers.utils import choose_driver
from fastNLP.core.utils import check_fn_not_empty_params, get_fn_arg_names, match_and_substitute_params, nullcontext
from fastNLP.envs import rank_zero_call
from fastNLP.core.samplers import ReproducibleIterator, ReproducibleBatchSampler
from fastNLP.core.log import logger
from fastNLP.envs import FASTNLP_MODEL_FILENAME
from fastNLP.core.utils.exceptions import EarlyStopException


class Trainer(TrainerEventTrigger):
@@ -50,6 +50,8 @@ class Trainer(TrainerEventTrigger):
output_mapping: Optional[Union[Callable, Dict]] = None,
accumulation_steps: int = 1,
fp16: bool = False,
monitor: str = None,
larger_better: bool = True,
marker: Optional[str] = None,
**kwargs
):
@@ -103,6 +105,10 @@ class Trainer(TrainerEventTrigger):
如果 batch 是一个 `dataclass`,那么我们会先将该 dataclass 转换为一个 Dict,然后再进行上述转换
:param accumulation_steps: 梯度累积的步数,表示每隔几个 batch 优化器迭代一次;默认为 1;
:param fp16: 是否开启混合精度训练;默认为 False;
:param monitor: 当存在 validate_dataloaders 时,默认的 monitor metric 的名字。传入的 callback 如果有 monitor 参数且没有
在 callback 初始化设定的,将采取这个值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配
的那个作为 monitor 。
:param larger_better: monitor 的值是否是越大越好。
:param marker: 用于标记一个 Trainer 实例,从而在用户调用 `Trainer.on` 函数时,标记该 callback 函数属于哪一个具体的 'trainer' 实例;默认为 None;
:param kwargs: 一些其它的可能需要的参数;
torch_non_blocking: 表示用于 pytorch 的 tensor 的 to 方法的参数 non_blocking;
@@ -211,6 +217,8 @@ class Trainer(TrainerEventTrigger):
self.evaluator = None
self.epoch_validate = lambda *args, **kwargs: ...
self.step_validate = lambda *args, **kwargs: ...
self.monitor = monitor
self.larger_better = larger_better
if metrics is not None and validate_dataloaders is not None:
if not callable(validate_every) and (not isinstance(validate_every, int) or validate_every == 0):
raise ValueError("Parameter 'validate_every' should be set to 'int' type and either < 0 or > 0.")
@@ -240,6 +248,7 @@ class Trainer(TrainerEventTrigger):
else:
# validate_every > 0
self._step_validate_filter = Filter(every=validate_every)

self.metrics = metrics
self.validate_every = validate_every

@@ -321,6 +330,10 @@ class Trainer(TrainerEventTrigger):
self.driver.barrier()
self.on_train_end()
self.driver.barrier()

except EarlyStopException as e:
logger.info(f"Catch early stop exception: {e.msg}.")
self.on_exception(e)
except KeyboardInterrupt as e:
self.driver.on_exception()
self.on_exception(e)
@@ -610,7 +623,7 @@ class Trainer(TrainerEventTrigger):
r"""
用于断点重训的加载函数;
注意在 fastNLP 中断点重训的保存和加载逻辑是分开的,因此可能存在一种情况:用户只希望加载一个断点重训的状态,而在之后不再进行断点重训的
保存;在这种情况下,dataloader 的 sampler 就不一定会被替换成我们的 ReproducibleIterator;
保存;在这种情况下,dataloader 的 sampler 就不一定会被替换成我们的 ReproducibleSampler;

注意我们目前不支持单卡到多卡的断点重训;



+ 2
- 2
fastNLP/core/drivers/driver.py View File

@@ -49,13 +49,13 @@ class Driver(ABC):
不同 gpu 上出现重复;为 'unrepeatdist' 时,表示该 dataloader 应该保证所有 gpu 上迭代出来的数据合并起来应该刚好等于原始的
数据,允许不同 gpu 上 batch 的数量不一致。其中 trainer 中 kwargs 的参数 `use_dist_sampler` 为 True 时,该值为 "dist";
否则为 None ,evaluator 中的 kwargs 的参数 `use_dist_sampler` 为 True 时,该值为 "unrepeatdist",否则为 None;
注意当 dist 为 ReproducibleIterator, ReproducibleBatchSampler 时,是断点重训加载时 driver.load 函数在调用;
注意当 dist 为 ReproducibleSampler, ReproducibleBatchSampler 时,是断点重训加载时 driver.load 函数在调用;
当 dist 为 str 或者 None 时,是 trainer 在初始化时调用该函数;

:param reproducible: 如果为 False ,不要做任何考虑;如果为 True ,需要保证返回的 dataloader 可以保存当前的迭代状态,使得
可以可以加载。
:return: 应当返回一个被替换 sampler 后的新的 dataloader 对象 (注意此处一定需要返回一个新的 dataloader 对象) ;此外,
如果传入的 dataloader 中是 ReproducibleIterator 或者 ReproducibleBatchSampler 需要重新初始化一个放入返回的
如果传入的 dataloader 中是 ReproducibleSampler 或者 ReproducibleBatchSampler 需要重新初始化一个放入返回的
dataloader 中。如果 dist 为空,且 reproducible 为 False,可直接返回原对象。
"""
if dist is None and reproducible is False:


+ 2
- 2
fastNLP/core/drivers/jittor_driver/mpi.py View File

@@ -3,7 +3,7 @@ from typing import Optional, Union

from .jittor_driver import JittorDriver
from fastNLP.envs.imports import _NEED_IMPORT_JITTOR
from fastNLP.core.samplers import ReproducibleIterator
from fastNLP.core.samplers import ReproducibleSampler

if _NEED_IMPORT_JITTOR:
import jittor
@@ -70,7 +70,7 @@ class JittorMPIDriver(JittorDriver):
def test_step(self, batch):
return self._test_step(batch)

def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleIterator]],
def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleSampler]],
reproducible: bool = False, sampler_or_batch_sampler=None):
pass



+ 6
- 6
fastNLP/core/drivers/jittor_driver/single_device.py View File

@@ -3,7 +3,7 @@ from typing import Dict, Union
from .jittor_driver import JittorDriver
from fastNLP.core.utils import auto_param_call
from fastNLP.envs.imports import _NEED_IMPORT_JITTOR
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleIterator
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler

if _NEED_IMPORT_JITTOR:
import jittor
@@ -99,25 +99,25 @@ class JittorSingleDriver(JittorDriver):
def is_distributed(self):
return False

def set_dist_repro_dataloader(self, dataloader, dist: Union[str, ReproducibleBatchSampler, ReproducibleIterator],
def set_dist_repro_dataloader(self, dataloader, dist: Union[str, ReproducibleBatchSampler, ReproducibleSampler],
reproducible: bool = False, sampler_or_batch_sampler=None):
# reproducible 的相关功能暂时没有实现
if isinstance(dist, ReproducibleBatchSampler):
raise NotImplementedError
dataloader.batch_sampler = dist_sample
if isinstance(dist, ReproducibleIterator):
if isinstance(dist, ReproducibleSampler):
raise NotImplementedError
dataloader.batch_sampler.sampler = dist

if reproducible:
raise NotImplementedError
if isinstance(dataloader.batch_sampler.sampler, ReproducibleIterator):
if isinstance(dataloader.batch_sampler.sampler, ReproducibleSampler):
return dataloader
elif isinstance(dataloader.batch_sampler, ReproducibleBatchSampler):
elif isinstance(dataloader.batch_sampler, RandomBatchSampler):
return dataloader
else:
# TODO
batch_sampler = ReproducibleBatchSampler(
batch_sampler = RandomBatchSampler(
batch_sampler=dataloader.batch_sampler,
batch_size=dataloader.batch_sampler.batch_size,
drop_last=dataloader.drop_last


+ 5
- 5
fastNLP/core/drivers/paddle_driver/fleet.py View File

@@ -19,7 +19,7 @@ from fastNLP.core.utils import (
paddle_move_data_to_device,
is_in_paddle_dist,
)
from fastNLP.core.samplers import ReproducibleIterator, RandomSampler, UnrepeatedSampler
from fastNLP.core.samplers import ReproducibleSampler, RandomSampler, UnrepeatedRandomSampler
from fastNLP.envs.env import FASTNLP_DISTRIBUTED_CHECK, USER_CUDA_VISIBLE_DEVICES
from fastNLP.core.log import logger

@@ -312,13 +312,13 @@ class PaddleFleetDriver(PaddleDriver):
def test_step(self, batch):
return self._test_step(batch)

def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleIterator]],
def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleSampler]],
reproducible: bool = False, sampler_or_batch_sampler=None):
# 暂时不支持iterableDataset
assert dataloader.dataset_kind != _DatasetKind.ITER, \
"FastNLP does not support `IteratorDataset` now."
if isinstance(dist, ReproducibleIterator):
if isinstance(dist, ReproducibleSampler):
dataloader.batch_sampler.sampler = dist
return dataloader

@@ -340,7 +340,7 @@ class PaddleFleetDriver(PaddleDriver):
# trainer
elif dist == "dist":
# 如果用户的 trainer.use_dist_sampler 为 True,那么此时其是否进行断点重训,不影响这里的行为;
if isinstance(dataloader.batch_sampler.sampler, ReproducibleIterator):
if isinstance(dataloader.batch_sampler.sampler, ReproducibleSampler):
dataloader.batch_sampler.sampler.set_distributed(
num_replicas=self.world_size,
rank=self.global_rank,
@@ -362,7 +362,7 @@ class PaddleFleetDriver(PaddleDriver):
return dataloader
# evaluator
elif dist == "unrepeatdist":
sampler = UnrepeatedSampler(
sampler = UnrepeatedRandomSampler(
dataset=dataloader.dataset,
shuffle=shuffle,
seed=int(os.environ.get("FASTNLP_SEED", 0))


+ 4
- 4
fastNLP/core/drivers/paddle_driver/single_device.py View File

@@ -10,7 +10,7 @@ from fastNLP.core.utils import (
get_paddle_device_id,
paddle_move_data_to_device,
)
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleIterator
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler
from fastNLP.core.log import logger

if _NEED_IMPORT_PADDLE:
@@ -139,7 +139,7 @@ class PaddleSingleDriver(PaddleDriver):
"""
return paddle_move_data_to_device(batch, "gpu:0")

def set_dist_repro_dataloader(self, dataloader, dist: Union[str, ReproducibleBatchSampler, ReproducibleIterator],
def set_dist_repro_dataloader(self, dataloader, dist: Union[str, ReproducibleBatchSampler, ReproducibleSampler],
reproducible: bool = False, sampler_or_batch_sampler=None):
# 暂时不支持IteratorDataset
assert dataloader.dataset_kind != _DatasetKind.ITER, \
@@ -147,12 +147,12 @@ class PaddleSingleDriver(PaddleDriver):
if isinstance(dist, ReproducibleBatchSampler):
dataloader.batch_sampler = dist
return dataloader
if isinstance(dist, ReproducibleIterator):
if isinstance(dist, ReproducibleSampler):
dataloader.batch_sampler.sampler = dist
return dataloader

if reproducible:
if isinstance(dataloader.batch_sampler.sampler, ReproducibleIterator):
if isinstance(dataloader.batch_sampler.sampler, ReproducibleSampler):
return dataloader
elif isinstance(dataloader.batch_sampler, ReproducibleBatchSampler):
return dataloader


+ 26
- 15
fastNLP/core/drivers/torch_driver/ddp.py View File

@@ -28,11 +28,11 @@ from fastNLP.core.drivers.torch_driver.utils import (
)
from fastNLP.core.drivers.utils import distributed_open_proc
from fastNLP.core.utils import auto_param_call, check_user_specific_params
from fastNLP.core.samplers import ReproducibleIterator, RandomSampler, UnrepeatedSampler, ReproducibleBatchSampler
from fastNLP.core.samplers import ReproducibleSampler, RandomSampler, UnrepeatedSequentialSampler, ReproducibleBatchSampler, \
re_instantiate_sampler, UnrepeatedSampler, conversion_between_reproducible_and_unrepeated_sampler
from fastNLP.envs import FASTNLP_DISTRIBUTED_CHECK, FASTNLP_GLOBAL_RANK, FASTNLP_GLOBAL_SEED
from fastNLP.core.log import logger
from fastNLP.core.drivers.torch_driver.dist_utils import fastnlp_torch_all_gather, fastnlp_torch_broadcast_object
from fastNLP.core.samplers import re_instantiate_sampler


class TorchDDPDriver(TorchDriver):
@@ -446,13 +446,23 @@ class TorchDDPDriver(TorchDriver):
# return self.model(batch, **{_MODE_PARAMETER: ForwardState.TEST})
return self._test_step(batch)

def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleIterator, ReproducibleBatchSampler]]=None,
def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleSampler, ReproducibleBatchSampler]]=None,
reproducible: bool = False):
# 如果 dist 为 ReproducibleBatchSampler, ReproducibleIterator 说明是在断点重训时 driver.load 函数调用;
# 如果 dist 为 ReproducibleBatchSampler, ReproducibleSampler 说明是在断点重训时 driver.load 函数调用;
# 注意这里不需要调用 dist_sampler.set_distributed;因为如果用户使用的是 TorchDDPDriver,那么其在 Trainer 初始化的时候就已经调用了该函数;
if isinstance(dist, ReproducibleBatchSampler):
dist.set_distributed(
num_replicas=self.world_size,
rank=self.global_rank,
pad=True
)
return replace_batch_sampler(dataloader, dist)
if isinstance(dist, ReproducibleIterator):
if isinstance(dist, ReproducibleSampler):
dist.set_distributed(
num_replicas=self.world_size,
rank=self.global_rank,
pad=True
)
return replace_sampler(dataloader, dist)

# 如果 dist 为 str 或者 None,说明是在 trainer 初试化时调用;
@@ -465,7 +475,7 @@ class TorchDDPDriver(TorchDriver):
if isinstance(dist, ReproducibleBatchSampler):
dist = re_instantiate_sampler(dist)
return replace_batch_sampler(dataloader, dist)
if isinstance(dist, ReproducibleIterator):
if isinstance(dist, ReproducibleSampler):
dist = re_instantiate_sampler(dist)
return replace_sampler(dataloader, dist)
return dataloader
@@ -481,7 +491,7 @@ class TorchDDPDriver(TorchDriver):
pad=True
)
return replace_batch_sampler(dataloader, batch_sampler)
elif isinstance(args.sampler, ReproducibleIterator):
elif isinstance(args.sampler, ReproducibleSampler):
sampler = re_instantiate_sampler(args.sampler)
sampler.set_distributed(
num_replicas=self.world_size,
@@ -503,14 +513,15 @@ class TorchDDPDriver(TorchDriver):
return replace_sampler(dataloader, sampler)
# evaluator
elif dist == "unrepeatdist":
# todo @yh,补充 unrepeatdist 相关内容;
args = self.get_dataloader_args(dataloader)

# todo 判断 batch_sampler;
sampler = UnrepeatedSampler(
dataset=args.dataset,
shuffle=args.shuffle,
)
if isinstance(args.sampler, ReproducibleSampler):
sampler = conversion_between_reproducible_and_unrepeated_sampler(args.sampler)
elif not isinstance(args.sampler, UnrepeatedSampler):
sampler = UnrepeatedSequentialSampler(
dataset=args.dataset
)
else:
sampler = re_instantiate_sampler(args.sampler)
sampler.set_distributed(
num_replicas=self.world_size,
rank=self.global_rank
@@ -588,7 +599,7 @@ class TorchDDPDriver(TorchDriver):
:param group:
:return:
"""
return fastnlp_torch_all_gather(obj, device=self.data_device, group=group)
return fastnlp_torch_all_gather(obj, group=group)


def find_free_network_port() -> str:


+ 145
- 227
fastNLP/core/drivers/torch_driver/dist_utils.py View File

@@ -1,11 +1,8 @@
import io
import pickle
from typing import Mapping
_pickler = pickle.Pickler
_unpickler = pickle.Unpickler
from abc import ABC
from typing import Any, Union, List
import numpy as np
from typing import Any, List
from fastNLP.envs.imports import _TORCH_GREATER_EQUAL_1_8


@@ -13,103 +10,25 @@ from fastNLP.envs.imports import _NEED_IMPORT_TORCH
if _NEED_IMPORT_TORCH:
import torch
from torch import distributed as dist
try:
from torch._C._distributed_c10d import ProcessGroupMPI
except ImportError:
_MPI_AVAILABLE = False

try:
from torch._C._distributed_c10d import ProcessGroupNCCL
except ImportError:
_NCCL_AVAILABLE = False

try:
from torch._C._distributed_c10d import ProcessGroupGloo
from torch._C._distributed_c10d import _ProcessGroupWrapper
except ImportError:
_GLOO_AVAILABLE = False

from fastNLP.core.utils import apply_to_collection



def all_gather_object(object_list, obj, group=None):
"""
Gathers picklable objects from the whole group into a list. Similar to
:func:`all_gather`, but Python objects can be passed in. Note that the object
must be picklable in order to be gathered.

Args:
object_list (list[Any]): Output list. It should be correctly sized as the
size of the group for this collective and will contain the output.
object (Any): Pickable Python object to be broadcast from current process.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Default is ``None``.

Returns:
None. If the calling rank is part of this group, the output of the
collective will be populated into the input ``object_list``. If the
calling rank is not part of the group, the passed in ``object_list`` will
be unmodified.

.. note:: Note that this API differs slightly from the :func:`all_gather`
collective since it does not provide an ``async_op`` handle and thus
will be a blocking call.

.. note:: For NCCL-based processed groups, internal tensor representations
of objects must be moved to the GPU device before communication takes
place. In this case, the device used is given by
``torch.cuda.current_device()`` and it is the user's responsiblity to
ensure that this is set so that each rank has an individual GPU, via
``torch.cuda.set_device()``.

.. warning::
:func:`all_gather_object` uses ``pickle`` module implicitly, which is
known to be insecure. It is possible to construct malicious pickle data
which will execute arbitrary code during unpickling. Only call this
function with data you trust.

Example::
>>> # Note: Process group initialization omitted on each rank.
>>> import torch.distributed as dist
>>> # Assumes world_size of 3.
>>> gather_objects = ["foo", 12, {1: 2}] # any picklable object
>>> output = [None for _ in gather_objects]
>>> dist.all_gather_object(output, gather_objects[dist.get_rank()])
>>> output
['foo', 12, {1: 2}]
"""
if dist.distributed_c10d._rank_not_in_group(group):
return

input_tensor, local_size = _object_to_tensor(obj)
current_device = torch.device("cpu")
if dist.is_nccl_available() and isinstance(
group or dist.distributed_c10d._get_default_group(), dist.ProcessGroupNCCL
):
# See note about using torch.cuda.current_device() here in docstring.
# We cannot simply use my_rank since rank == device is not necessarily
# true.
current_device = torch.device("cuda", torch.cuda.current_device())
input_tensor = input_tensor.to(current_device)
local_size = local_size.to(current_device)
# Gather all local sizes. This is so that we can find the max size, and index
# until the correct size when deserializing the tensors.
group_size = dist.get_world_size(group=group)
object_sizes_tensor = torch.zeros(
group_size, dtype=torch.long, device=current_device
)
object_size_list = [
object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size)
]
# Allgather tensor sizes
dist.all_gather(object_size_list, local_size, group=group)
max_object_size = int(max(object_size_list).item()) # type: ignore[type-var]
# Resize tensor to max size across all ranks.
input_tensor.resize_(max_object_size)
coalesced_output_tensor = torch.empty(
max_object_size * group_size, dtype=torch.uint8, device=current_device
)
# Output tensors are nonoverlapping views of coalesced_output_tensor
output_tensors = [
coalesced_output_tensor[max_object_size * i : max_object_size * (i + 1)]
for i in range(group_size)
]
dist.all_gather(output_tensors, input_tensor, group=group)
# Deserialize outputs back to object.
for i, tensor in enumerate(output_tensors):
tensor = tensor.type(torch.uint8)
if tensor.device != torch.device("cpu"):
tensor = tensor.cpu()
tensor_size = object_size_list[i]
object_list[i] = _tensor_to_object(tensor, tensor_size)


def _validate_output_list_for_rank(my_rank, dst, gather_list):
if dst == my_rank:
if not gather_list:
@@ -123,8 +42,10 @@ def _validate_output_list_for_rank(my_rank, dst, gather_list):
)


def gather_object(obj, object_gather_list=None, dst=0, group=None):
def fastnlp_torch_gather_object(obj, object_gather_list=None, dst=0, group=None):
"""
从其它 rank gather 东西到 dst rank 。

Gathers picklable objects from the whole group in a single process.
Similar to :func:`gather`, but Python objects can be passed in. Note that the
object must be picklable in order to be gathered.
@@ -176,6 +97,8 @@ def gather_object(obj, object_gather_list=None, dst=0, group=None):
# Ensure object_gather_list is specified appopriately.
my_rank = dist.get_rank()
_validate_output_list_for_rank(my_rank, dst, object_gather_list)
# 防止 unpickle 的时候出现在了发送的 gpu 上。
obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu'))
input_tensor, local_size = _object_to_tensor(obj)
group_backend = dist.get_backend(group)
current_device = torch.device("cpu")
@@ -266,113 +189,11 @@ def send_recv_object(obj, src, cur_rank, device, group=None, tag=0):
return _tensor_to_object(tensor.cpu(), size)


def _all_gather(obj, **kwargs):
group = kwargs.get('group', None)
if isinstance(obj, torch.Tensor):
gathered_tensor = [torch.zeros_like(obj) for _ in
range(torch.distributed.get_world_size(group=group))]

torch.distributed.all_gather(gathered_tensor, obj, group=group)

return gathered_tensor

elif isinstance(obj, tuple) and isinstance(obj[1], torch.Tensor):
tensor, size = obj
# 首先需要同步 size 吧?
group_size = dist.get_world_size(group=group)
object_sizes_tensor = torch.zeros(
group_size, dtype=torch.long, device=tensor.device
)
object_size_list = [
object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size)
]
dist.all_gather(object_size_list, size, group=group)
max_object_size = int(max(object_size_list).item()) # type: ignore[type-var]
# Resize tensor to max size across all ranks.
tensor.resize_(max_object_size)
coalesced_output_tensor = torch.empty(
max_object_size * group_size, dtype=torch.uint8, device=tensor.device
)

# Output tensors are nonoverlapping views of coalesced_output_tensor
output_tensors = [
coalesced_output_tensor[max_object_size * i: max_object_size * (i + 1)]
for i in range(group_size)
]
dist.all_gather(output_tensors, tensor, group=group)
object_list = []
for i, tensor in enumerate(output_tensors):
tensor = tensor.type(torch.uint8)
tensor_size = object_size_list[i]
object_list.append(_tensor_to_object(tensor, tensor_size))
return object_list
elif isinstance(obj, tuple) and len(obj) == 2:
obj, _type = obj
gathered_tensor = [torch.zeros_like(obj) for _ in
range(torch.distributed.get_world_size(group=group))]

torch.distributed.all_gather(gathered_tensor, obj, group=group)

if _type == np.ndarray:
gathered_tensor = [t.detach().cpu().numpy() for t in gathered_tensor]
else:
gathered_tensor = [_type(t.item()) for t in gathered_tensor]

return gathered_tensor
else:
raise RuntimeError("Unsupported types to implement all_gather.")


class CanTransferDataType(ABC):
"""
检测可以进行传输的对象。

"""

@classmethod
def __subclasshook__(cls, subclass: Any) -> Union[bool, Any]:
if cls is CanTransferDataType:
if issubclass(subclass, Mapping):
return False
if subclass in (torch.Tensor, tuple, list, str, int, float, bool, np.ndarray):
return True
return False
return NotImplemented


def _tensorize(obj, device=None):
if isinstance(obj, torch.Tensor):
return obj
if isinstance(obj, bool):
return torch.tensor(obj, dtype=torch.uint8, device=device), bool
if isinstance(obj, float):
return torch.tensor(obj, dtype=torch.float, device=device), float
if isinstance(obj, int):
return torch.tensor(obj, dtype=torch.int, device=device), int
if isinstance(obj, np.ndarray):
return torch.from_numpy(obj), np.ndarray
return _object_to_tensor(obj, device)


def _to_device(tensor, device):
return tensor.contiguous().to(device)


def convert_to_tensors(data: Any, device=None) -> Any:
data = apply_to_collection(data, CanTransferDataType, _tensorize)
def _move_to_device_and_make_contiguous(t: Union[torch.Tensor, tuple], device: Union[str, torch.device]):
if isinstance(t, tuple):
if isinstance(t[1], torch.Tensor): # 说明是 object 转的
return t[0].to(device).contiguous(), t[1].to(device)
else: # 说明第二个元素是type,见 to_dtype_tensor 函数
return t[0].to(device).contiguous(), t[1]
return t.to(device).contiguous()

data = apply_to_collection(data, (torch.Tensor, tuple), _move_to_device_and_make_contiguous, device=device)
return data


def fastnlp_torch_all_gather(obj:Any, device=None, group=None)->List:
def fastnlp_torch_all_gather(obj: Any, device=None, group=None) ->List:
"""
实现任何类型的数据都使用该接口可以进行 all_gather 操作。对于非 tensor 类型的数据,通过 pickle 序列化再反序列化的方式进行传输。

@@ -390,36 +211,28 @@ def fastnlp_torch_all_gather(obj:Any, device=None, group=None)->List:
{'a': 1, 'b':[1, 2], 'c':{'d': 2}}
]

:param obj: 任意结构的数据,所有的 value 都会变成 list ,其长度为 world_size ,依次为每个 rank 上的对象值
:param device: 当前 rank 使用的 device 是哪个。为 None 的话默认使用 torch.cuda.current_device() 获取。
:param obj: 任意结构的数据,如果为 tensor ,需要保证每个显卡上的 tensor 的形状是一样的。如果传入的是非 tensor 对象都将直接进行
序列化之后进行传输。
:param device: 当前该参数无意义。
:param group:
:return: 返回的结果是 [obj0, obj1, ...],其中 obj_i 即为第 i 个 rank 上的 obj 。
"""
# # 首先将所有的都移动到cpu上并且连续,防止有 pickle 出问题
# obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu'))
if device is None:
device = torch.cuda.current_device()
if _TORCH_GREATER_EQUAL_1_8:
if isinstance(obj, torch.Tensor):
objs = [torch.zeros_like(obj) for _ in range(dist.get_world_size(group))]
dist.all_gather(objs, obj, group=group)
else:
objs = [None for _ in range(dist.get_world_size(group))]
dist.all_gather_object(objs, obj)
objs = apply_to_collection(objs, torch.Tensor, _to_device, device=device) # 保证如果有tensor的话,所有tensor都在当前卡上
return objs
group = group if group is not None else torch.distributed.group.WORLD
data = convert_to_tensors(obj, device=device)
data = apply_to_collection(data, (torch.Tensor, tuple), _all_gather, group=group)

objs = []

def _get_obj_on_idx(obj, idx):
return obj[idx]

for i in range(dist.get_world_size(group)):
objs.append(apply_to_collection(data, dtype=list, function=_get_obj_on_idx, idx=i))

# 防止 unpickle 的时候弄到发送的 gpu 上了
obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu'))
if _TORCH_GREATER_EQUAL_1_8:
dist.all_gather_object(objs, obj, group=group)
else:
objs = all_gather_object(objs, obj, group=group)
return objs


def fastnlp_torch_broadcast_object(obj, src, device, group=None):
def fastnlp_torch_broadcast_object(obj, src, device=None, group=None):
"""
将 src 上的 obj 对象广播到其它 rank 上。

@@ -430,10 +243,9 @@ def fastnlp_torch_broadcast_object(obj, src, device, group=None):
:return:
"""
cur_rank = dist.get_rank(group)
# if cur_rank == src:
# # 如果有 tensor 全部移动到 cpu 上,方便 pickle
# obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu'))

if cur_rank == src:
# 如果有 tensor 全部移动到 cpu 上,方便 pickle , 不然 unpickle 的时候可能会 pickle 到发送过来的卡那里
obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu'))
if _TORCH_GREATER_EQUAL_1_8:
if cur_rank!=src:
get_obj = [None]
@@ -442,6 +254,8 @@ def fastnlp_torch_broadcast_object(obj, src, device, group=None):
else:
dist.broadcast_object_list([obj], src=src, group=group)
return obj
if device is None:
device = torch.cuda.current_device()

if cur_rank == src:
tensor, size = _object_to_tensor(obj, device=device)
@@ -460,3 +274,107 @@ def fastnlp_torch_broadcast_object(obj, src, device, group=None):
return _tensor_to_object(tensor, tensor_size=size.item())


def _check_for_nccl_backend(group):
pg = group or dist.distributed_c10d._get_default_group()
# It is not expected for PG to be wrapped many times, but support it just
# in case
while isinstance(pg, _ProcessGroupWrapper):
pg = pg.wrapped_pg

return (
dist.is_nccl_available() and
isinstance(pg, dist.ProcessGroupNCCL)
)


def all_gather_object(object_list, obj, group=None):
"""
复制 pytorch 的代码,使得可以版本兼容低版本的 pytorch 。

Gathers picklable objects from the whole group into a list. Similar to
:func:`all_gather`, but Python objects can be passed in. Note that the object
must be picklable in order to be gathered.

Args:
object_list (list[Any]): Output list. It should be correctly sized as the
size of the group for this collective and will contain the output.
object (Any): Pickable Python object to be broadcast from current process.
group (ProcessGroup, optional): The process group to work on. If None,
the default process group will be used. Default is ``None``.

Returns:
None. If the calling rank is part of this group, the output of the
collective will be populated into the input ``object_list``. If the
calling rank is not part of the group, the passed in ``object_list`` will
be unmodified.

.. note:: Note that this API differs slightly from the :func:`all_gather`
collective since it does not provide an ``async_op`` handle and thus
will be a blocking call.

.. note:: For NCCL-based processed groups, internal tensor representations
of objects must be moved to the GPU device before communication takes
place. In this case, the device used is given by
``torch.cuda.current_device()`` and it is the user's responsiblity to
ensure that this is set so that each rank has an individual GPU, via
``torch.cuda.set_device()``.

.. warning::
:func:`all_gather_object` uses ``pickle`` module implicitly, which is
known to be insecure. It is possible to construct malicious pickle data
which will execute arbitrary code during unpickling. Only call this
function with data you trust.

Example::
>>> # Note: Process group initialization omitted on each rank.
>>> import torch.distributed as dist
>>> # Assumes world_size of 3.
>>> gather_objects = ["foo", 12, {1: 2}] # any picklable object
>>> output = [None for _ in gather_objects]
>>> dist.all_gather_object(output, gather_objects[dist.get_rank()])
>>> output
['foo', 12, {1: 2}]
"""
if dist._rank_not_in_group(group):
return

input_tensor, local_size = _object_to_tensor(obj)
current_device = torch.device("cpu")
is_nccl_backend = _check_for_nccl_backend(group)
if is_nccl_backend:
# See note about using torch.cuda.current_device() here in docstring.
# We cannot simply use my_rank since rank == device is not necessarily
# true.
current_device = torch.device("cuda", torch.cuda.current_device())
input_tensor = input_tensor.to(current_device)
local_size = local_size.to(current_device)
# Gather all local sizes. This is so that we can find the max size, and index
# until the correct size when deserializing the tensors.
group_size = dist.get_world_size(group=group)
object_sizes_tensor = torch.zeros(
group_size, dtype=torch.long, device=current_device
)
object_size_list = [
object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size)
]
# Allgather tensor sizes
dist.all_gather(object_size_list, local_size, group=group)
max_object_size = int(max(object_size_list).item()) # type: ignore[type-var]
# Resize tensor to max size across all ranks.
input_tensor.resize_(max_object_size)
coalesced_output_tensor = torch.empty(
max_object_size * group_size, dtype=torch.uint8, device=current_device
)
# Output tensors are nonoverlapping views of coalesced_output_tensor
output_tensors = [
coalesced_output_tensor[max_object_size * i : max_object_size * (i + 1)]
for i in range(group_size)
]
dist.all_gather(output_tensors, input_tensor, group=group)
# Deserialize outputs back to object.
for i, tensor in enumerate(output_tensors):
tensor = tensor.type(torch.uint8)
if tensor.device != torch.device("cpu"):
tensor = tensor.cpu()
tensor_size = object_size_list[i]
object_list[i] = _tensor_to_object(tensor, tensor_size)

+ 4
- 5
fastNLP/core/drivers/torch_driver/single_device.py View File

@@ -13,9 +13,8 @@ __all__ = [
from .torch_driver import TorchDriver
from fastNLP.core.drivers.torch_driver.utils import replace_sampler, replace_batch_sampler
from fastNLP.core.utils import auto_param_call
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleIterator
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, re_instantiate_sampler
from fastNLP.core.log import logger
from fastNLP.core.samplers import re_instantiate_sampler


class TorchSingleDriver(TorchDriver):
@@ -130,13 +129,13 @@ class TorchSingleDriver(TorchDriver):
else:
return self._test_step(batch)

def set_dist_repro_dataloader(self, dataloader, dist: Union[str, ReproducibleBatchSampler, ReproducibleIterator]=None,
def set_dist_repro_dataloader(self, dataloader, dist: Union[str, ReproducibleBatchSampler, ReproducibleSampler]=None,
reproducible: bool = False):

# 如果 dist 为 ReproducibleBatchSampler, ReproducibleIterator 说明是在断点重训时 driver.load 函数调用;
if isinstance(dist, ReproducibleBatchSampler):
return replace_batch_sampler(dataloader, dist)
elif isinstance(dist, ReproducibleIterator):
elif isinstance(dist, ReproducibleSampler):
return replace_sampler(dataloader, dist)

# 如果 dist 为 str 或者 None,说明是在 trainer 初试化时调用;
@@ -144,7 +143,7 @@ class TorchSingleDriver(TorchDriver):
if isinstance(args.batch_sampler, ReproducibleBatchSampler):
batch_sampler = re_instantiate_sampler(args.batch_sampler)
return replace_batch_sampler(dataloader, batch_sampler)
elif isinstance(args.sampler, ReproducibleIterator):
elif isinstance(args.sampler, ReproducibleSampler):
sampler = re_instantiate_sampler(args.sampler)
return replace_sampler(dataloader, sampler)



+ 6
- 7
fastNLP/core/drivers/torch_driver/torch_driver.py View File

@@ -30,7 +30,7 @@ from fastNLP.core.utils import apply_to_collection, torch_move_data_to_device
from fastNLP.envs import rank_zero_call
from fastNLP.envs import FASTNLP_SEED_WORKERS, FASTNLP_GLOBAL_RANK, FASTNLP_MODEL_FILENAME, FASTNLP_CHECKPOINT_FILENAME
from fastNLP.core.log import logger
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleIterator
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler


class TorchDriver(Driver):
@@ -182,8 +182,8 @@ class TorchDriver(Driver):
# trainer.dataloader 来改变 dataloader 的状态,从而适配训练或者评测环境;

# 1. sampler 的状态,因为我们支持 resume training,即精确恢复到具体的一个 batch;
# 首先 pytorch 的 DataLoader 一定会有 sampler;另一方面,我们在断点重训的时候一定会在 `replace_sampler` 中将 dataloader 的
# sampler 替换为 `ReproducibleIterator`;否则就是在单卡情况下将 batch_sampler 替换为 `ReproducibleBatchSampler`;
# 首先 pytorch 的 DataLoader 一定会有 sampler;另一方面,我们在断点重训的时候一定会在 `set_` 中将 dataloader 的
# sampler 替换为 `ReproducibleSampler`;否则就是在单卡情况下将 batch_sampler 替换为 `ReproducibleBatchSampler`;
dataloader_args = self.get_dataloader_args(dataloader)
if isinstance(dataloader_args.batch_sampler, ReproducibleBatchSampler):
sampler = dataloader_args.batch_sampler
@@ -247,11 +247,10 @@ class TorchDriver(Driver):
dataloader_args = self.get_dataloader_args(dataloader)
if isinstance(dataloader_args.batch_sampler, ReproducibleBatchSampler):
sampler = dataloader_args.batch_sampler
elif isinstance(dataloader_args.sampler, ReproducibleIterator):
elif isinstance(dataloader_args.sampler, ReproducibleSampler):
sampler = dataloader_args.sampler
elif self.is_distributed():
raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our "
"`ReproducibleBatchSampler` or `ReproducibleIterator`.")
raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our or `ReproducibleSampler`.")
else:
sampler = ReproducibleBatchSampler(
batch_sampler=dataloader_args.batch_sampler if dataloader_args.batch_sampler is not None else dataloader_args.sampler,
@@ -291,7 +290,7 @@ class TorchDriver(Driver):

@staticmethod
def worker_init_function(worker_id: int, rank: Optional[int] = None) -> None: # pragma: no cover
"""The worker_init_fn that Lightning automatically adds to your dataloader if you previously set set the seed
"""The worker_init_fn that Lightning automatically adds to your dataloader if you previously set the seed
with ``seed_everything(seed, workers=True)``.

See also the PyTorch documentation on


+ 17
- 7
fastNLP/core/samplers/__init__.py View File

@@ -9,18 +9,28 @@ __all__ = [
'MixSequentialSampler',
'PollingSampler',

'ReproducibleIterator',
'ReproducibleSampler',
'RandomSampler',
're_instantiate_sampler',
"SequentialSampler",
"SortedSampler",

'UnrepeatedSampler',
"UnrepeatedSortedSampler"
'UnrepeatedRandomSampler',
"UnrepeatedSortedSampler",
"UnrepeatedSequentialSampler",

"RandomBatchSampler",
"BucketedBatchSampler",
"ReproducibleBatchSampler",

"re_instantiate_sampler",
"conversion_between_reproducible_and_unrepeated_sampler"
]

from .sampler import BucketSampler, SortedSampler, ConstTokenNumSampler, ConstantTokenNumSampler
from .unrepeated_sampler import UnrepeatedSampler, UnrepeatedSortedSampler
from .unrepeated_sampler import UnrepeatedSampler, UnrepeatedRandomSampler, UnrepeatedSortedSampler, UnrepeatedSequentialSampler
from .mix_sampler import MixSampler, DopedSampler, MixSequentialSampler, PollingSampler
from .reproducible_sampler import ReproducibleIterator, RandomSampler, re_instantiate_sampler
from .reproducible_batch_sampler import ReproducibleBatchSampler, BucketedBatchSampler
from .reproducible_sampler import ReproducibleSampler, RandomSampler, SequentialSampler, SortedSampler
from .utils import re_instantiate_sampler, conversion_between_reproducible_and_unrepeated_sampler
from .reproducible_batch_sampler import RandomBatchSampler, BucketedBatchSampler, ReproducibleBatchSampler


+ 14
- 5
fastNLP/core/samplers/reproducible_batch_sampler.py View File

@@ -1,6 +1,6 @@
__all__ = [
'BucketedBatchSampler',
"ReproducibleBatchSampler"
"RandomBatchSampler"
]

import math
@@ -16,7 +16,10 @@ from fastNLP.core.log import logger
from abc import abstractmethod


class ReproducibleBatchIterator:
class ReproducibleBatchSampler:
def __init__(self, **kwargs):
pass

@abstractmethod
def set_distributed(self, num_replicas, rank, pad=True):
raise NotImplementedError("Each specific batch_sampler should implement its own `set_distributed` method.")
@@ -41,19 +44,25 @@ class ReproducibleBatchIterator:
def set_epoch(self, epoch):
pass

@property
def batch_idx_in_epoch(self):
raise NotImplementedError("Each specific batch_sampler should implement its own `batch_idx_in_epoch` property.")

class ReproducibleBatchSampler(ReproducibleBatchIterator):

class RandomBatchSampler(ReproducibleBatchSampler):
# 这两个参数的值应当交给 driver 的 get_dataloader_args 函数去拿;
def __init__(self, batch_sampler, batch_size: int, drop_last: bool, **kwargs):
"""
可以使得 batch_sampler 对象状态恢复的 wrapper 。

:param batch_sampler: 可迭代出 数字 或 数字列表 的可迭代对象。ReproducibleBatchSampler 将首先遍历一边该对象,然后将迭代
:param batch_sampler: 可迭代出 数字 或 数字列表 的可迭代对象。RandomBatchSampler 将首先遍历一边该对象,然后将迭代
出来的序号暂存起来,使用时按照 batch_size 的 batch 大小吐出序号列表。
:param batch_size: 每个 batch 的大小是多少。
:param drop_last: 如果最后一个 batch 无法构成 batch_size 那么多个 sample ,是否丢掉。
:param kwargs: fastNLP 内部使用。
"""
super().__init__()

self.batch_sampler = batch_sampler
self.batch_size = batch_size
self.drop_last = drop_last
@@ -138,7 +147,7 @@ class ReproducibleBatchSampler(ReproducibleBatchIterator):
(len(self.index_list) - self.data_idx + self.batch_size - 1) // self.batch_size


class BucketedBatchSampler(ReproducibleBatchIterator):
class BucketedBatchSampler(ReproducibleBatchSampler):
def __init__(self, dataset, length: Union[List[int], str], batch_size:int = 32, num_batch_per_bucket:int = 10,
shuffle: bool = True, drop_last: bool = False, seed: int = 0, **kwargs):
"""


+ 133
- 13
fastNLP/core/samplers/reproducible_sampler.py View File

@@ -1,24 +1,21 @@
from typing import Dict, List
from typing import Dict, List, Union
import math
import numpy as np

from fastNLP.core.log import logger
from fastNLP.core.dataset import DataSet

__all__ = [
'ReproducibleIterator',
'ReproducibleSampler',
'RandomSampler',
're_instantiate_sampler'
"SortedSampler",
"SequentialSampler"
]


def re_instantiate_sampler(sampler):
all_attributes = vars(sampler)
return type(sampler)(**all_attributes)


class ReproducibleIterator:
class ReproducibleSampler:
"""
注意所有继承 `ReproducibleIterator` 的类的 `__init__` 方法中都需要加入参数 `**kwargs`,用来使我们再断点重训时重新实例化这个 sampler
注意所有继承 `ReproducibleSampler` 的类的 `__init__` 方法中都需要加入参数 `**kwargs`,用来使我们再断点重训时重新实例化这个 sampler
或者 batch_sampler;注意,所有在 init 中初始化的变量,都不能含有 _ 下横线作为开头;所有不在 init 中设置的变量都必须以下横线开头。

"""
@@ -46,7 +43,7 @@ class ReproducibleIterator:
pass


class RandomSampler(ReproducibleIterator):
class RandomSampler(ReproducibleSampler):
def __init__(self, dataset, shuffle: bool = True, seed: int = 0, **kwargs):
"""

@@ -156,8 +153,8 @@ class RandomSampler(ReproducibleIterator):
f"we cannot use {self.__class__.__name__} to load it."

length = states['length']
assert length == len(self.dataset), "The number of samples is different between the checkpoint record " \
"and current dataset."
assert length == len(self.dataset), f"The number of samples is different between the checkpoint record({length}) " \
f"and current dataset({len(self.dataset)})."
self.seed = states['seed']
self.epoch = states['epoch']
self.num_consumed_samples = states['num_consumed_samples']
@@ -214,9 +211,132 @@ class RandomSampler(ReproducibleIterator):
self.pad else math.floor(((len(self.dataset) - num_consumed_samples) / self.num_replicas))


class SequentialSampler(RandomSampler):
def __init__(self, dataset, dist_mode:str='interval', **kwargs):
"""
按照顺序读取 dataset 。在多卡情况下,间隔读取,例如,在两卡情况下,卡0取 [0,2,4,..], 卡1取 [1,3,5...]。

:param dataset: 实现了 __len__ 方法的数据容器。
:param kwargs:
"""
super().__init__(dataset=dataset, shuffle=False, seed=0, **kwargs)

def __iter__(self):
if self.during_iter: # 如果发现_during_iter为True,说明之前的还没结束,只有强制重新初始化了
self.num_consumed_samples = 0
self.during_iter = True
indices = self.generate_indices()

if self.pad:
# add extra samples to make it evenly divisible
padding_size = self.total_size - len(indices)
if padding_size <= len(indices):
indices += indices[:padding_size]
else:
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
else:
# remove tail of data to make it evenly divisible.
indices = indices[:self.total_size]

assert len(indices) == self.total_size

# subsample
indices = indices[self.num_consumed_samples:]
indices = indices[self.rank:len(indices):self.num_replicas]
assert len(indices) == self.num_left_samples

for index in indices:
self.num_consumed_samples += self.num_replicas
yield index
self.during_iter = False
self.num_consumed_samples = 0

def generate_indices(self) -> List[int]:
"""
生成随机序列

:return:
"""
return list(range(len(self.dataset)))

def state_dict(self) -> Dict:
states = {
'num_consumed_samples': self.num_consumed_samples, # 注意该值是计算所有 rank 上训练的所有数据;
'sampler_type': self.__class__.__name__,
'length': len(self.dataset),
}
return states

def load_state_dict(self, states: Dict):
# 如果 self.during_iter 是 True,那么 data_idx 一定是 0;
assert self.during_iter is False, "Cannot call load_state_dict() when it is " \
"during an unfinished iteration."

assert states['sampler_type'] == self.__class__.__name__, f"The sampler type in checkpoint is {states['sampler_type']}," \
f"we cannot use {self.__class__.__name__} to load it."

length = states['length']
assert length == len(self.dataset), f"The number of samples is different between the checkpoint record({length}) " \
f"and current dataset({len(self.dataset)})."
self.num_consumed_samples = states['num_consumed_samples']
if self.num_consumed_samples >= length: # 如果保存的时候已经到达了最后一个sample了,则直接将结果重置为0
self.num_consumed_samples = 0


class SortedSampler(SequentialSampler):
def __init__(self, dataset, length:Union[str, List], **kwargs):
"""
将 dataset 中的数据根据 length 从长到短进行迭代。在多卡情况下,由于padding 最后一个 sample 可能是最长的那个 sample。

:param dataset: 实现了 __len__ 方法的数据容器。
:param length: 如果为 List,应当与 dataset 有一样的长度,表示 dataset 中每个元素的数量;仅当传入的 dataset 为 fastNLP 的
DataSet 时支持传入 str,会将该str理解为 dataset 的 field 名称,若 field 中的元素为 int,则认为该值是 sample 的长度。
:param seed: 设置的随机数种子
:param kwargs: fastNLP 保留使用
"""
super().__init__(dataset=dataset, **kwargs)
if isinstance(dataset, DataSet):
length = dataset.get_field(length)
if not isinstance(length[0], int):
length = list(map(len, length))
else:
assert len(length) == len(dataset), "When the dataset is not fastNLP.DataSet, " \
"the length parameter can only be List[int]"

assert len(length) == len(dataset), "The length of `data` and `length` should be equal."

self.length = np.array(length, dtype=int) # 按照长到短排列的序号。
self.sorted_indices = np.argsort(self.length)[::-1].tolist() # 按长度从高到低排序的

def generate_indices(self) -> List[int]:
return self.sorted_indices

def __iter__(self):
if self.during_iter: # 如果发现_during_iter为True,说明之前的还没结束,只有强制重新初始化了
self.num_consumed_samples = 0
self.during_iter = True
indices = self.generate_indices()

if self.pad:
padding_size = self.total_size - len(indices)
if padding_size <= len(indices):
indices += indices[:padding_size]
else:
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
else:
# remove tail of data to make it evenly divisible.
indices = indices[:self.total_size]

assert len(indices) == self.total_size

# subsample
indices = indices[self.num_consumed_samples:]
indices = indices[self.rank:len(indices):self.num_replicas]
assert len(indices) == self.num_left_samples

for index in indices:
self.num_consumed_samples += self.num_replicas
yield index
self.during_iter = False
self.num_consumed_samples = 0


+ 42
- 13
fastNLP/core/samplers/unrepeated_sampler.py View File

@@ -1,6 +1,8 @@
__all__ = [
'UnrepeatedSampler',
'UnrepeatedSortedSampler',
'UnrepeatedSampler'
'UnrepeatedRandomSampler',
"UnrepeatedSequentialSampler"
]

from typing import List, Union
@@ -10,13 +12,21 @@ import numpy as np


class UnrepeatedSampler:
"""
在多卡场景下保证 indice 不重复的 sampler
"""
pass


class UnrepeatedRandomSampler(UnrepeatedSampler):
def __init__(self, dataset, shuffle: bool = False, seed: int = 0, **kwargs):
"""
考虑在多卡evaluate的场景下,不能重复sample。

:param dataset:
:param shuffle:
:param seed:
:param dataset: 实现了 __len__ 方法的数据容器。
:param shuffle: 如果为 True,将不进行 shuffle,实际上数据会以从长到短的方式输出。
:param seed: 设置的随机数种子
:param kwargs: fastNLP 保留使用
"""
self.dataset = dataset
self.shuffle = shuffle
@@ -33,8 +43,8 @@ class UnrepeatedSampler:
:return:
"""
num_common = len(self.dataset)//self.num_replicas
self.num_samples = num_common + int(self.rank < (len(self.dataset)-num_common*self.num_replicas))
return self.num_samples
num_samples = num_common + int(self.rank < (len(self.dataset)-num_common*self.num_replicas))
return num_samples

def __iter__(self):
indices = self.generate_indices()
@@ -83,8 +93,8 @@ class UnrepeatedSampler:
return self


class UnrepeatedSortedSampler(UnrepeatedSampler):
def __init__(self, dataset, length:Union[str, List], seed: int = 0):
class UnrepeatedSortedSampler(UnrepeatedRandomSampler):
def __init__(self, dataset, length:Union[str, List], **kwargs):
"""
将 dataset 中的数据根据 length 从长到短进行迭代,并且保证在多卡场景下数据不重复。本 sampler 可能导致各个机器上的
batch 数量不完全一致。
@@ -92,11 +102,9 @@ class UnrepeatedSortedSampler(UnrepeatedSampler):
:param dataset: 实现了 __len__ 方法的数据容器。
:param length: 如果为 List,应当与 dataset 有一样的长度,表示 dataset 中每个元素的数量;仅当传入的 dataset 为 fastNLP 的
DataSet 时支持传入 str,会将该str理解为 dataset 的 field 名称,若 field 中的元素为 int,则认为该值是 sample 的长度。
:param shuffle: 如果为 True,将不进行 shuffle,实际上数据会以从长到短的方式输出。
:param seed: 设置的随机数种子
:param kwargs: fastNLP 保留使用
"""
super().__init__(dataset=dataset, shuffle=False, seed=seed)
super().__init__(dataset=dataset, shuffle=False, seed=0, **kwargs)
if isinstance(dataset, DataSet):
length = dataset.get_field(length)
if not isinstance(length[0], int):
@@ -107,8 +115,29 @@ class UnrepeatedSortedSampler(UnrepeatedSampler):

assert len(length) == len(dataset), "The length of `data` and `length` should be equal."

self.length = np.array(length, dtype=int) # 按照长到短排列的序号。
self.sorted_indices = np.argsort(self.length)[::-1].tolist() # 按长度从高到低排序的
length = np.array(length, dtype=int) # 按照长到短排列的序号。
self.sorted_indices = np.argsort(length)[::-1].tolist() # 按长度从高到低排序的

def generate_indices(self) -> List[int]:
return self.sorted_indices


class UnrepeatedSequentialSampler(UnrepeatedRandomSampler):
def __init__(self, dataset, **kwargs):
"""
按照顺序读取 dataset。在多卡情况下,间隔读取,例如,在两卡情况下,卡0取 [0,2,4,..], 卡1取 [1,3,5...]。

:param dataset: 实现了 __len__ 方法的数据容器。
:param kwargs:
"""
super(UnrepeatedSequentialSampler, self).__init__(dataset, shuffle=False, seed=0, **kwargs)

def __iter__(self):
indices = self.generate_indices()
indices = indices[self.rank:len(indices):self.num_replicas]
for index in indices:
yield index

def generate_indices(self) -> List[int]:
return list(range(len(self.dataset)))


+ 42
- 0
fastNLP/core/samplers/utils.py View File

@@ -0,0 +1,42 @@
__all__ = [
're_instantiate_sampler',
'conversion_between_reproducible_and_unrepeated_sampler'
]

from fastNLP.core.samplers.unrepeated_sampler import *
from fastNLP.core.samplers.reproducible_sampler import *


def conversion_between_reproducible_and_unrepeated_sampler(sampler):
"""
将 sampler 替换成其对应的 reproducible 版本或 unrepeated 版本。如果输入是 UnrepeatedSampler 但是没找到对应的
ReproducibleSampler,

:param sampler:
:return:
"""
assert isinstance(sampler, UnrepeatedSampler) or isinstance(sampler, ReproducibleSampler), \
"The sampler must be UnrepeatedSampler or ReproducibleSampler"
if isinstance(sampler, UnrepeatedSampler):
if isinstance(sampler, UnrepeatedRandomSampler):
return re_instantiate_sampler(sampler, new_sampler_class=RandomSampler)
elif isinstance(sampler, UnrepeatedSequentialSampler):
return re_instantiate_sampler(sampler, new_sampler_class=SequentialSampler)
elif isinstance(sampler, UnrepeatedSortedSampler):
return re_instantiate_sampler(sampler, new_sampler_class=SortedSampler)
raise TypeError(f"{sampler.__class__} has no unrepeated version.")
else:
if isinstance(sampler, RandomSampler):
return re_instantiate_sampler(sampler, new_sampler_class=UnrepeatedRandomSampler)
elif isinstance(sampler, SequentialSampler):
return re_instantiate_sampler(sampler, new_sampler_class=UnrepeatedSequentialSampler)
elif isinstance(sampler, SortedSampler):
return re_instantiate_sampler(sampler, new_sampler_class=UnrepeatedSortedSampler)
raise TypeError(f"{sampler.__class__} has no reproducible version.")


def re_instantiate_sampler(sampler, new_sampler_class=None):
all_attributes = vars(sampler)
if new_sampler_class is not None:
return new_sampler_class(**all_attributes)
return type(sampler)(**all_attributes)

+ 10
- 0
fastNLP/core/utils/exceptions.py View File

@@ -0,0 +1,10 @@

class EarlyStopException(BaseException):
r"""
用于EarlyStop时从Trainer训练循环中跳出。

"""

def __init__(self, msg):
super(EarlyStopException, self).__init__(msg)
self.msg = msg

+ 1
- 3
fastNLP/core/utils/rich_progress.py View File

@@ -94,9 +94,6 @@ class FRichProgress(Progress, metaclass=Singleton):
self.print = self.console.print
self.log = self.console.log

# start new
self.start()
self.console.show_cursor(show=True)
return self

def set_transient(self, transient: bool = True):
@@ -154,6 +151,7 @@ class FRichProgress(Progress, metaclass=Singleton):
super().start()
self.console.show_cursor(show=True)


if (sys.stdin and sys.stdin.isatty()) and get_global_rank() == 0:
f_rich_progress = FRichProgress().new_progess(
"[progress.description]{task.description}",


+ 1
- 6
tests/core/callbacks/test_utils.py View File

@@ -12,32 +12,27 @@ def test_get_monitor_value():
with Capturing() as output:
monitor, value = _get_monitor_value(monitor='f1', real_monitor=None, res=res)
assert monitor == 'f1' and value==0.2
assert 'We can not find' not in output[0]

# 测试可以匹配,且选择更靠前的
res = {'acc#f1': 0.2, 'acc#rec': 0.3, 'add#f':0.4}
with Capturing() as output:
monitor, value = _get_monitor_value(monitor='f1', real_monitor=None, res=res)
assert monitor=='acc#f1' and value==0.2
assert 'We can not find' in output[0]

# 测试monitor匹配不上,使用real_monitor
res = {'acc#f1': 0.2, 'acc#rec': 0.3, 'add#f':0.4}
with Capturing() as output:
monitor, value = _get_monitor_value(monitor='acc#f', real_monitor='acc#rec', res=res)
monitor, value = _get_monitor_value(monitor='acc', real_monitor='acc#rec', res=res)
assert monitor=='acc#rec' and value==0.3
assert 'We can not find' not in output[0]

# 测试monitor/real_monitor匹配不上, 重新选择
res = {'acc#f1': 0.2, 'acc#rec': 0.3, 'add#f':0.4}
with Capturing() as output:
monitor, value = _get_monitor_value(monitor='acc#f', real_monitor='acc#r', res=res)
assert monitor=='acc#f1' and value==0.2
assert 'We can not find' in output[0]

# 测试partial的位置
res = {"acc#acc": 0.52, "loss#loss": 2}
with Capturing() as output:
monitor, value = _get_monitor_value(monitor='-loss', real_monitor=None, res=res)
assert monitor=='loss#loss' and value==2
assert 'We can not find' in output[0]

+ 2
- 2
tests/core/drivers/paddle_driver/test_single_device.py View File

@@ -10,7 +10,7 @@ from paddle.io import DataLoader, BatchSampler

from fastNLP.core.drivers.paddle_driver.single_device import PaddleSingleDriver
from fastNLP.core.samplers.reproducible_sampler import RandomSampler
from fastNLP.core.samplers import ReproducibleBatchSampler
from fastNLP.core.samplers import RandomBatchSampler
from tests.helpers.models.paddle_model import PaddleNormalModel_Classification
from tests.helpers.datasets.paddle_data import PaddleDataset_MNIST, PaddleRandomDataset
from fastNLP.core import synchronize_safe_rm
@@ -153,7 +153,7 @@ class TestSingleDeviceFunction:

@pytest.mark.parametrize(
"dist_sampler",
["dist", ReproducibleBatchSampler(BatchSampler(PaddleDataset_MNIST("train")), 32, False), RandomSampler(PaddleDataset_MNIST("train"))]
["dist", RandomBatchSampler(BatchSampler(PaddleDataset_MNIST("train")), 32, False), RandomSampler(PaddleDataset_MNIST("train"))]
)
@pytest.mark.parametrize(
"reproducible",


+ 6
- 31
tests/core/drivers/torch_driver/test_dist_utils.py View File

@@ -7,38 +7,10 @@ import numpy as np
# print(isinstance((1,), tuple))
# exit()

from fastNLP.core.drivers.torch_driver.dist_utils import fastnlp_torch_all_gather, convert_to_tensors, fastnlp_torch_broadcast_object
from fastNLP.core.drivers.torch_driver.dist_utils import fastnlp_torch_all_gather, fastnlp_torch_broadcast_object
from tests.helpers.utils import re_run_current_cmd_for_torch, magic_argv_env_context



def test_convert_to_tensors():
local_rank = 0
obj = {
'tensor': torch.full(size=(2,), fill_value=local_rank),
'numpy': np.full(shape=(1,), fill_value=local_rank),
'bool': local_rank % 2 == 0,
'float': local_rank + 0.1,
'int': local_rank,
'dict': {
'rank': local_rank
},
'list': [local_rank] * 2,
'str': 'xxx'
}
data = convert_to_tensors(obj)
assert len(data) == len(obj)
assert (data['tensor'] == obj['tensor']).sum() == 2
for name in ['list', 'str']:
assert len(data[name])==2 and isinstance(data[name][0], torch.Tensor) and \
isinstance(data[name][1], torch.Tensor) and data[name][1].ndim==1

for name in ['numpy', 'bool', 'float', 'int']:
assert isinstance(data[name][0], torch.Tensor) and data[name][0].numel()==1

assert isinstance(data['dict']['rank'][0], torch.Tensor) and data[name][0].numel() == 1


@magic_argv_env_context
def test_fastnlp_torch_all_gather():
os.environ['MASTER_ADDR'] = '127.0.0.1'
@@ -66,7 +38,7 @@ def test_fastnlp_torch_all_gather():
'tensors': [torch.full(size=(2,), fill_value=local_rank).cuda(),
torch.full(size=(2,), fill_value=local_rank).cuda()]
}
data = fastnlp_torch_all_gather(obj, device=torch.cuda.current_device())
data = fastnlp_torch_all_gather(obj)
world_size = int(os.environ['WORLD_SIZE'])
assert len(data) == world_size
for i in range(world_size):
@@ -81,10 +53,12 @@ def test_fastnlp_torch_all_gather():
assert data[i]['tensors'][0][0] == i

for obj in [1, True, 'xxx']:
data = fastnlp_torch_all_gather(obj, device=torch.cuda.current_device())
data = fastnlp_torch_all_gather(obj)
assert len(data)==world_size
assert data[0]==data[1]

dist.destroy_process_group()

@magic_argv_env_context
def test_fastnlp_torch_broadcast_object():
os.environ['MASTER_ADDR'] = '127.0.0.1'
@@ -130,3 +104,4 @@ def test_fastnlp_torch_broadcast_object():
for obj in [int(os.environ['LOCAL_RANK']), bool(os.environ['LOCAL_RANK']=='1'), os.environ['LOCAL_RANK']]:
data = fastnlp_torch_broadcast_object(obj, src=0, device=torch.cuda.current_device())
assert int(data)==0
dist.destroy_process_group()

+ 1
- 1
tests/core/drivers/torch_driver/test_torch_replace_sampler.py View File

@@ -30,7 +30,7 @@ class SequenceDataSet:


def check_replace_sampler(driver):
# dist_sampler 可以选择的有['dist', 'unrepeatdist', None]或者是ReproducibleSampler,ReproducibleBatchSampler
# dist_sampler 可以选择的有['dist', 'unrepeatdist', None]或者是ReproducibleSampler,RandomBatchSampler
# reproducible 是 True 和 False

# 需要 check 返回的 sampler 和 dataloader 都不同了


+ 9
- 9
tests/core/samplers/test_reproducible_batch_sampler.py View File

@@ -4,7 +4,7 @@ import numpy as np
import pytest
from itertools import chain

from fastNLP.core.samplers import ReproducibleBatchSampler, BucketedBatchSampler
from fastNLP.core.samplers import RandomBatchSampler, BucketedBatchSampler
from fastNLP.core.drivers.torch_driver.utils import replace_batch_sampler
from tests.helpers.datasets.torch_data import TorchNormalDataset

@@ -18,7 +18,7 @@ class TestReproducibleBatchSampler:
before_batch_size = 7
dataset = TorchNormalDataset(num_of_data=100)
dataloader = DataLoader(dataset, batch_size=before_batch_size)
re_batchsampler = ReproducibleBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
dataloader = replace_batch_sampler(dataloader, re_batchsampler)

forward_steps = 3
@@ -28,15 +28,15 @@ class TestReproducibleBatchSampler:

# 1. 保存状态
_get_re_batchsampler = dataloader.batch_sampler
assert isinstance(_get_re_batchsampler, ReproducibleBatchSampler)
assert isinstance(_get_re_batchsampler, RandomBatchSampler)
state = _get_re_batchsampler.state_dict()
assert state == {"index_list": array("I", list(range(100))), "data_idx": forward_steps*before_batch_size,
"sampler_type": "ReproducibleBatchSampler"}
"sampler_type": "RandomBatchSampler"}

# 2. 断点重训,重新生成一个 dataloader;
# 不改变 batch_size;
dataloader = DataLoader(dataset, batch_size=before_batch_size)
re_batchsampler = ReproducibleBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
re_batchsampler.load_state_dict(state)
dataloader = replace_batch_sampler(dataloader, re_batchsampler)

@@ -53,7 +53,7 @@ class TestReproducibleBatchSampler:
# 改变 batch_size;
after_batch_size = 3
dataloader = DataLoader(dataset, batch_size=after_batch_size)
re_batchsampler = ReproducibleBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
re_batchsampler.load_state_dict(state)
dataloader = replace_batch_sampler(dataloader, re_batchsampler)

@@ -99,7 +99,7 @@ class TestReproducibleBatchSampler:
dataset = TorchNormalDataset(num_of_data=100)
# 开启 shuffle,来检验断点重训后的第二轮的 index list 是不是重新生成的;
dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True)
re_batchsampler = ReproducibleBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
dataloader = replace_batch_sampler(dataloader, re_batchsampler)

# 将一轮的所有数据保存下来,看是否恢复的是正确的;
@@ -111,13 +111,13 @@ class TestReproducibleBatchSampler:

# 1. 保存状态
_get_re_batchsampler = dataloader.batch_sampler
assert isinstance(_get_re_batchsampler, ReproducibleBatchSampler)
assert isinstance(_get_re_batchsampler, RandomBatchSampler)
state = _get_re_batchsampler.state_dict()

# 2. 断点重训,重新生成一个 dataloader;
# 不改变 batch_size;
dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True)
re_batchsampler = ReproducibleBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False)
re_batchsampler.load_state_dict(state)
dataloader = replace_batch_sampler(dataloader, re_batchsampler)



+ 431
- 107
tests/core/samplers/test_reproducible_sampler.py View File

@@ -1,18 +1,14 @@
import unittest

from itertools import product
import numpy as np
import pytest

from functools import partial
from array import array
from itertools import chain

from fastNLP.core.samplers.reproducible_sampler import RandomSampler
from fastNLP.core.drivers.torch_driver.utils import replace_batch_sampler
from fastNLP.core.samplers.reproducible_sampler import RandomSampler, SortedSampler, SequentialSampler
from tests.helpers.datasets.torch_data import TorchNormalDataset



class TestRandomSamplerYh(unittest.TestCase):
class TestRandomSamplerYh:
def test_init(self):
# 测试能否正确初始化
dataset = TorchNormalDataset(num_of_data=100)
@@ -24,7 +20,7 @@ class TestRandomSamplerYh(unittest.TestCase):
dataset = TorchNormalDataset(num_of_data=100)
sampler = RandomSampler(dataset)
for i in sampler:
with self.assertRaises(AssertionError):
with pytest.raises(AssertionError):
sampler.set_distributed(1, 0)
break

@@ -37,39 +33,39 @@ class TestRandomSamplerYh(unittest.TestCase):
dataset = TorchNormalDataset(num_of_data=100)
sampler = RandomSampler(dataset, shuffle=False)
sampler.set_distributed(num_replicas=2, rank=0, pad=False)
self.assertEqual(len(sampler), 50)
assert len(sampler)==50
count = 0
for i in sampler:
self.assertEqual(i%2, 0)
assert i%2==0
count += 1
self.assertEqual(count, 50)
assert count == 50

sampler.set_distributed(num_replicas=2, rank=1, pad=False)
self.assertEqual(len(sampler), 50)
assert len(sampler)==50
count = 0
for i in sampler:
self.assertEqual(i%2, 1)
assert i%2==1
count += 1
self.assertEqual(count, 50)
assert count==50

dataset = TorchNormalDataset(num_of_data=101)
sampler = RandomSampler(dataset, shuffle=False)
sampler.set_distributed(num_replicas=2, rank=0, pad=True)
self.assertEqual(len(sampler), 51)
assert len(sampler)==51
count = 0
for i in sampler:
self.assertEqual(i%2, 0)
assert i%2==0
count += 1
self.assertEqual(count, 51)
assert count == 51

sampler.set_distributed(num_replicas=2, rank=1, pad=True)
self.assertEqual(len(sampler), 51)
assert len(sampler) == 51
count = 0
for i in sampler:
if i!=0:
self.assertEqual(i%2, 1)
assert i%2==1
count += 1
self.assertEqual(count, 51)
assert count == 51

def test_state_dict_check_length(self):
dataset = TorchNormalDataset(num_of_data=100)
@@ -77,7 +73,7 @@ class TestRandomSamplerYh(unittest.TestCase):
states = sampler.state_dict()

new_ds = TorchNormalDataset(num_of_data=10)
with self.assertRaises(AssertionError):
with pytest.raises(AssertionError):
new_sampler = RandomSampler(new_ds)
new_sampler.load_state_dict(states)

@@ -85,99 +81,107 @@ class TestRandomSamplerYh(unittest.TestCase):
new_sampler = RandomSampler(new_ds)
new_sampler.load_state_dict(states)

def test_state_dict(self):
@pytest.mark.parametrize('pad', [True, False])
@pytest.mark.parametrize('pre_shuffle', [True, False])
@pytest.mark.parametrize('post_shuffle', [True, False])
@pytest.mark.parametrize('num_consumed_samples', [0]+np.random.randint(1, 100, size=3).tolist())
def test_state_dict(self, pad, pre_shuffle, post_shuffle, num_consumed_samples):
num_samples = 100
dataset = TorchNormalDataset(num_of_data=num_samples)
# 测试使用 前后shuffle不一致的load操作
lst = [0]+np.random.randint(1, num_samples, size=3).tolist()
for pre_shuffle, post_shuffle, num_consumed_samples in product([True, False], [True, False],
lst):
with self.subTest(pre_shuffle=pre_shuffle, post_shuffle=post_shuffle, num_consumed_samples=num_consumed_samples):
sampler = RandomSampler(dataset, shuffle=pre_shuffle)
sampler.set_epoch(0)
already_numbers = set()
if num_consumed_samples>0:
for i, j in enumerate(sampler, start=1):
already_numbers.add(j)
if i == num_consumed_samples:
break
self.assertEqual(len(already_numbers), num_consumed_samples)

states = sampler.state_dict()

new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
new_sampler.load_state_dict(states)
new_sampler.set_epoch(0)
for i in new_sampler:
self.assertNotIn(i, already_numbers)

# 测试切换成多卡也没有问题
other_rank_number = set()
for rank in range(3):
new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
new_sampler.load_state_dict(states)
new_sampler.set_distributed(num_replicas=3, rank=rank, pad=False)
new_sampler.set_epoch(0)
count = 0
for i in new_sampler:
self.assertNotIn(i, other_rank_number)
other_rank_number.add(i)
self.assertNotIn(i, already_numbers)
count += 1

def test_state_dict_2(self):
sampler = RandomSampler(dataset, shuffle=pre_shuffle)
sampler.set_epoch(0)
already_numbers = set()
if num_consumed_samples>0:
for i, j in enumerate(sampler, start=1):
already_numbers.add(j)
if i == num_consumed_samples:
break
assert len(already_numbers) == num_consumed_samples

states = sampler.state_dict()

new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
new_sampler.load_state_dict(states)
new_sampler.set_epoch(0)
for i in new_sampler:
assert i not in already_numbers

# 测试切换成多卡也没有问题
other_rank_number = set()
for rank in range(3):
new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
new_sampler.load_state_dict(states)
new_sampler.set_distributed(num_replicas=3, rank=rank, pad=pad)
new_sampler.set_epoch(0)
count = 0
seen = 0
seen_in_other_rank = 0
for i in new_sampler:
seen_in_other_rank += int(i in other_rank_number)
other_rank_number.add(i)
seen += int(i in already_numbers)
count += 1
assert seen <= 1 if pad else seen == 0
assert seen_in_other_rank<=1 # 因为pad可能重复

@pytest.mark.parametrize('pad', [True, False])
@pytest.mark.parametrize('pre_shuffle', [True, False])
@pytest.mark.parametrize('post_shuffle', [True, False])
@pytest.mark.parametrize('num_consumed_samples', [0]+np.random.randint(1, 100//2, size=3).tolist())
def test_state_dict_2(self, pad, pre_shuffle, post_shuffle, num_consumed_samples):
# 测试一下从多卡切换到单卡,或者切换到不同卡数量的多卡
num_samples = 100
dataset = TorchNormalDataset(num_of_data=num_samples)
# 测试使用 前后shuffle不一致的load操作
lst = [0]+np.random.randint(1, num_samples//2, size=3).tolist()
# lst = [30]
for pre_shuffle, post_shuffle, num_consumed_samples in product([True, False], [True, False],
lst):
with self.subTest(pre_shuffle=pre_shuffle, post_shuffle=post_shuffle, num_consumed_samples=num_consumed_samples):
already_numbers = set()
sampler = RandomSampler(dataset, shuffle=pre_shuffle, seed=0)
sampler.set_distributed(num_replicas=2, rank=0)
sampler.set_epoch(0)
if num_consumed_samples>0:
for i, j in enumerate(sampler, start=1):
already_numbers.add(j)
if i == num_consumed_samples:
break
sampler = RandomSampler(dataset, shuffle=pre_shuffle, seed=0)
sampler.set_epoch(0)
sampler.set_distributed(num_replicas=2, rank=1)
if num_consumed_samples>0:
for i, j in enumerate(sampler, start=1):
already_numbers.add(j)
if i == num_consumed_samples:
break
self.assertEqual(len(already_numbers), num_consumed_samples*2)

states = sampler.state_dict()

new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
new_sampler.load_state_dict(states)
new_sampler.set_epoch(0)
for i in new_sampler:
self.assertNotIn(i, already_numbers)

# 测试切换成多卡也没有问题
other_rank_number = set()
for rank in range(3):
new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
new_sampler.load_state_dict(states)
new_sampler.set_epoch(0)
new_sampler.set_distributed(num_replicas=3, rank=rank, pad=False)
count = 0
for i in new_sampler:
self.assertNotIn(i, other_rank_number)
other_rank_number.add(i)
self.assertNotIn(i, already_numbers)
count += 1


class TestRandomSampler(unittest.TestCase):
already_numbers = set()
sampler = RandomSampler(dataset, shuffle=pre_shuffle, seed=0)
sampler.set_distributed(num_replicas=2, rank=0)
sampler.set_epoch(0)
if num_consumed_samples>0:
for i, j in enumerate(sampler, start=1):
already_numbers.add(j)
if i == num_consumed_samples:
break
sampler = RandomSampler(dataset, shuffle=pre_shuffle, seed=0)
sampler.set_epoch(0)
sampler.set_distributed(num_replicas=2, rank=1)
if num_consumed_samples>0:
for i, j in enumerate(sampler, start=1):
already_numbers.add(j)
if i == num_consumed_samples:
break
assert len(already_numbers) == num_consumed_samples*2

states = sampler.state_dict()

new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
new_sampler.load_state_dict(states)
new_sampler.set_epoch(0)
for i in new_sampler:
assert i not in already_numbers

# 测试切换成多卡也没有问题
other_rank_number = set()
for rank in range(3):
new_sampler = RandomSampler(dataset, shuffle=post_shuffle)
new_sampler.load_state_dict(states)
new_sampler.set_epoch(0)
new_sampler.set_distributed(num_replicas=3, rank=rank, pad=pad)
count = 0
seen = 0
seen_in_other_rank = 0
for i in new_sampler:
seen_in_other_rank += int(i in other_rank_number)
other_rank_number.add(i)
seen += int(i in already_numbers)
count += 1
assert seen <= 1 if pad else seen == 0
assert seen_in_other_rank<=1 # 因为pad可能重复


class TestRandomSampler:
# 测试单卡;
def test_seed_work_when_shuffle_is_true(self):
data_length = 100
@@ -360,4 +364,324 @@ class TestRandomSampler(unittest.TestCase):
...


class DatasetWithVaryLength:
def __init__(self, num_of_data=100, reverse=False):
self.data = np.arange(num_of_data)
if reverse:
self.data = self.data[::-1]

def __getitem__(self, item):
return self.data[item]

def __len__(self):
return len(self.data)


class TestSortedSampler:
def test_single(self):
num_of_data = 100
data = DatasetWithVaryLength(num_of_data)
sampler = SortedSampler(data, length=data.data)
indexes = list(sampler)
assert indexes==list(range(num_of_data-1, -1, -1))

@pytest.mark.parametrize('pad', [True, False])
@pytest.mark.parametrize('num_replica', [2, 3])
@pytest.mark.parametrize('num_of_data', [2, 3, 4, 100])
def test_multi(self, pad, num_replica, num_of_data):
data = DatasetWithVaryLength(num_of_data=num_of_data)
samplers = []
for i in range(num_replica):
sampler = SortedSampler(dataset=data, length=data.data)
sampler.set_distributed(num_replica, rank=i, pad=pad)
samplers.append(sampler)

# 保证顺序是没乱的
already_seen_index = set()
for sampler in samplers:
larger_count = 0 # 这里为 0 就可以,因为最后补充的index一定是比较大的数。
prev_index = float('inf')
cur_set = set()
seen_in_other_rank = 0
for index in sampler:
seen_in_other_rank += int(index in already_seen_index) # 不同的卡不交叉
cur_set.add(index)
larger_count += int(index <= prev_index)
prev_index = index
assert larger_count+1 >= len(sampler) # 除了最后一个可能乱掉,其它都必须要保持这个顺序
assert seen_in_other_rank <= 1 if pad else seen_in_other_rank == 0
already_seen_index.update(cur_set)

indexes = list(chain(*samplers))
indexes = set(indexes)
if pad:
assert indexes == set(range(num_of_data))
else:
assert len(indexes) <= num_of_data

@pytest.mark.parametrize('pad', [True, False])
@pytest.mark.parametrize('num_consumed_samples', [0]+np.random.randint(1, 100, size=3).tolist())
def test_state_dict(self, pad, num_consumed_samples):
num_samples = 100
dataset = DatasetWithVaryLength(num_of_data=num_samples)
# 测试使用 前后shuffle不一致的load操作
sampler = SortedSampler(dataset, length=dataset.data)
sampler.set_epoch(0)
already_numbers = set()
if num_consumed_samples>0:
for i, j in enumerate(sampler, start=1):
if already_numbers:
assert j<max(already_numbers)
already_numbers.add(j)
if i == num_consumed_samples:
break
assert len(already_numbers) == num_consumed_samples

states = sampler.state_dict()

new_sampler = SortedSampler(dataset, length=dataset.data)
new_sampler.load_state_dict(states)
new_sampler.set_epoch(0)
for i in new_sampler:
if already_numbers:
assert i < max(already_numbers)
assert i not in already_numbers

# 测试切换成多卡也没有问题
other_rank_number = set()
for rank in range(3):
new_sampler = SortedSampler(dataset, length=dataset.data)
new_sampler.load_state_dict(states)
new_sampler.set_distributed(num_replicas=3, rank=rank, pad=pad)
new_sampler.set_epoch(0)
count = 0
seen = 0
seen_in_other_rank = 0
smaller = 0
for i in new_sampler:
if already_numbers:
smaller += int(i >= max(already_numbers))
seen_in_other_rank += int(i in other_rank_number)
other_rank_number.add(i)
seen += int(i in already_numbers)
count += 1
assert seen <= 1 if pad else seen == 0
assert seen_in_other_rank<=1 # 因为pad可能重复
assert smaller<=1 if pad else smaller==0

@pytest.mark.parametrize('pad', [True, False])
@pytest.mark.parametrize('num_consumed_samples', [0]+np.random.randint(1, 100//2, size=3).tolist())
def test_state_dict_2(self, pad, num_consumed_samples):
# 测试一下从多卡切换到单卡,或者切换到不同卡数量的多卡
num_samples = 100
dataset = DatasetWithVaryLength(num_of_data=num_samples)
# 测试使用 前后shuffle不一致的load操作
# lst = [30]
already_numbers = set()
sampler = SortedSampler(dataset, length=dataset.data)
sampler.set_distributed(num_replicas=2, rank=0)
sampler.set_epoch(0)
if num_consumed_samples>0:
for i, j in enumerate(sampler, start=1):
if already_numbers:
assert j<=max(already_numbers)
already_numbers.add(j)
if i == num_consumed_samples:
break
sampler = SortedSampler(dataset, length=dataset.data)
sampler.set_epoch(0)
sampler.set_distributed(num_replicas=2, rank=1)
if num_consumed_samples>0:
for i, j in enumerate(sampler, start=1):
already_numbers.add(j)
if i == num_consumed_samples:
break
assert len(already_numbers) == num_consumed_samples*2

states = sampler.state_dict()

new_sampler = SortedSampler(dataset, length=dataset.data)
new_sampler.load_state_dict(states)
new_sampler.set_epoch(0)
for i in new_sampler:
if already_numbers:
assert i < max(already_numbers)
assert i not in already_numbers

# 测试切换成多卡也没有问题
other_rank_number = set()
for rank in range(3):
new_sampler = SortedSampler(dataset, length=dataset.data)
new_sampler.load_state_dict(states)
new_sampler.set_epoch(0)
new_sampler.set_distributed(num_replicas=3, rank=rank, pad=pad)
count = 0
seen = 0
seen_in_other_rank = 0
smaller = 0
for i in new_sampler:
if already_numbers:
smaller += int(i>=max(already_numbers))
seen_in_other_rank += int(i in other_rank_number)
other_rank_number.add(i)
seen += int(i in already_numbers)
count += 1
assert seen <= 1 if pad else seen == 0
assert seen_in_other_rank<=1 # 因为pad可能重复
assert smaller <= 1 if pad else smaller == 0


class TestSequentialSampler:
def test_single(self):
num_of_data = 100
data = DatasetWithVaryLength(num_of_data)
sampler = SequentialSampler(data)
indexes = list(sampler)
assert indexes==list(range(num_of_data))

@pytest.mark.parametrize('pad', [True, False])
@pytest.mark.parametrize('num_replica', [2, 3])
@pytest.mark.parametrize('num_of_data', [2, 3, 4, 100])
def test_multi(self, pad, num_replica, num_of_data):
data = DatasetWithVaryLength(num_of_data=num_of_data)
samplers = []
for i in range(num_replica):
sampler = SequentialSampler(dataset=data)
sampler.set_distributed(num_replica, rank=i, pad=pad)
samplers.append(sampler)

# 保证顺序是没乱的
already_seen_index = set()
for idx, sampler in enumerate(samplers):
larger_count = 1
prev_index = float('inf')
cur_set = set()
seen_in_other_rank = 0
for index in sampler:
seen_in_other_rank += int(index in already_seen_index) # 不同的卡不交叉
cur_set.add(index)
larger_count += int(index >= prev_index)
prev_index = index
assert larger_count+1 >= len(sampler) # 除了最后一个可能乱掉,其它都必须要保持这个顺序
assert seen_in_other_rank <= idx if pad else seen_in_other_rank == 0
already_seen_index.update(cur_set)

indexes = list(chain(*samplers))
indexes = set(indexes)
if pad:
assert indexes == set(range(num_of_data))
else:
assert len(indexes) <= num_of_data

@pytest.mark.parametrize('pad', [True, False])
@pytest.mark.parametrize('num_consumed_samples', [0]+np.random.randint(1, 100, size=3).tolist())
def test_state_dict(self, pad, num_consumed_samples):
num_samples = 100
dataset = DatasetWithVaryLength(num_of_data=num_samples)
# 测试使用 前后shuffle不一致的load操作
sampler = SequentialSampler(dataset=dataset)
sampler.set_epoch(0)
already_numbers = set()
if num_consumed_samples>0:
for i, j in enumerate(sampler, start=1):
if already_numbers:
assert j>max(already_numbers)
already_numbers.add(j)
if i == num_consumed_samples:
break
assert len(already_numbers) == num_consumed_samples

states = sampler.state_dict()

new_sampler = SequentialSampler(dataset=dataset)
new_sampler.load_state_dict(states)
new_sampler.set_epoch(0)
for i in new_sampler:
if already_numbers:
assert i > max(already_numbers)
assert i not in already_numbers

# 测试切换成多卡也没有问题
other_rank_number = set()
for rank in range(3):
new_sampler = SequentialSampler(dataset=dataset)
new_sampler.load_state_dict(states)
new_sampler.set_distributed(num_replicas=3, rank=rank, pad=pad)
new_sampler.set_epoch(0)
count = 0
seen = 0
seen_in_other_rank = 0
smaller = 0
for i in new_sampler:
if already_numbers:
smaller += int(i <= max(already_numbers))
seen_in_other_rank += int(i in other_rank_number)
other_rank_number.add(i)
seen += int(i in already_numbers)
count += 1
assert seen <= 1 if pad else seen == 0
assert seen_in_other_rank<=rank # 因为pad可能重复
assert smaller<=1 if pad else smaller==0

@pytest.mark.parametrize('pad', [True, False])
@pytest.mark.parametrize('num_consumed_samples', [0]+np.random.randint(1, 100//2, size=3).tolist())
def test_state_dict_2(self, pad, num_consumed_samples):
# 测试一下从多卡切换到单卡,或者切换到不同卡数量的多卡
num_samples = 100
dataset = DatasetWithVaryLength(num_of_data=num_samples)
# 测试使用 前后shuffle不一致的load操作
# lst = [30]
already_numbers = set()
sampler = SequentialSampler(dataset=dataset)
sampler.set_distributed(num_replicas=2, rank=0)
sampler.set_epoch(0)
if num_consumed_samples>0:
for i, j in enumerate(sampler, start=1):
if already_numbers:
assert j>max(already_numbers)
already_numbers.add(j)
if i == num_consumed_samples:
break
sampler = SequentialSampler(dataset=dataset)
sampler.set_epoch(0)
sampler.set_distributed(num_replicas=2, rank=1)
if num_consumed_samples>0:
for i, j in enumerate(sampler, start=1):
already_numbers.add(j)
if i == num_consumed_samples:
break
assert len(already_numbers) == num_consumed_samples*2

states = sampler.state_dict()

new_sampler = SequentialSampler(dataset=dataset)
new_sampler.load_state_dict(states)
new_sampler.set_epoch(0)
for i in new_sampler:
if already_numbers:
assert i > max(already_numbers)
assert i not in already_numbers

# 测试切换成多卡也没有问题
other_rank_number = set()
for rank in range(3):
new_sampler = SequentialSampler(dataset=dataset)
new_sampler.load_state_dict(states)
new_sampler.set_epoch(0)
new_sampler.set_distributed(num_replicas=3, rank=rank, pad=pad)
count = 0
seen = 0
seen_in_other_rank = 0
smaller = 0
for i in new_sampler:
if already_numbers:
smaller += int(i<max(already_numbers))
seen_in_other_rank += int(i in other_rank_number)
other_rank_number.add(i)
seen += int(i in already_numbers)
count += 1
assert seen <= 1 if pad else seen == 0
assert seen_in_other_rank<=1 # 因为pad可能重复
assert smaller <= rank if pad else smaller == 0



+ 49
- 9
tests/core/samplers/test_unrepeated_sampler.py View File

@@ -2,7 +2,7 @@ from itertools import chain

import pytest

from fastNLP.core.samplers import UnrepeatedSampler, UnrepeatedSortedSampler
from fastNLP.core.samplers import UnrepeatedRandomSampler, UnrepeatedSortedSampler, UnrepeatedSequentialSampler


class DatasetWithVaryLength:
@@ -21,7 +21,7 @@ class TestUnrepeatedSampler:
def test_single(self, shuffle):
num_of_data = 100
data = DatasetWithVaryLength(num_of_data)
sampler = UnrepeatedSampler(data, shuffle)
sampler = UnrepeatedRandomSampler(data, shuffle)
indexes = set(sampler)
assert indexes==set(range(num_of_data))

@@ -32,17 +32,18 @@ class TestUnrepeatedSampler:
data = DatasetWithVaryLength(num_of_data=num_of_data)
samplers = []
for i in range(num_replica):
sampler = UnrepeatedSampler(dataset=data, shuffle=shuffle)
sampler = UnrepeatedRandomSampler(dataset=data, shuffle=shuffle)
sampler.set_distributed(num_replica, rank=i)
samplers.append(sampler)

indexes = set(chain(*samplers))
indexes = list(chain(*samplers))
assert len(indexes) == num_of_data
indexes = set(indexes)
assert indexes==set(range(num_of_data))


class TestUnrepeatedSortedSampler:
@pytest.mark.parametrize('shuffle', [True, False])
def test_single(self, shuffle):
def test_single(self):
num_of_data = 100
data = DatasetWithVaryLength(num_of_data)
sampler = UnrepeatedSortedSampler(data, length=data.data)
@@ -51,8 +52,7 @@ class TestUnrepeatedSortedSampler:

@pytest.mark.parametrize('num_replica', [2, 3])
@pytest.mark.parametrize('num_of_data', [2, 3, 4, 100])
@pytest.mark.parametrize('shuffle', [False, True])
def test_multi(self, num_replica, num_of_data, shuffle):
def test_multi(self, num_replica, num_of_data):
data = DatasetWithVaryLength(num_of_data=num_of_data)
samplers = []
for i in range(num_replica):
@@ -60,5 +60,45 @@ class TestUnrepeatedSortedSampler:
sampler.set_distributed(num_replica, rank=i)
samplers.append(sampler)

indexes = set(chain(*samplers))
# 保证顺序是没乱的
for sampler in samplers:
prev_index = float('inf')
for index in sampler:
assert index <= prev_index
prev_index = index

indexes = list(chain(*samplers))
assert len(indexes) == num_of_data # 不同卡之间没有交叉
indexes = set(indexes)
assert indexes==set(range(num_of_data))


class TestUnrepeatedSequentialSampler:
def test_single(self):
num_of_data = 100
data = DatasetWithVaryLength(num_of_data)
sampler = UnrepeatedSequentialSampler(data, length=data.data)
indexes = list(sampler)
assert indexes==list(range(num_of_data))

@pytest.mark.parametrize('num_replica', [2, 3])
@pytest.mark.parametrize('num_of_data', [2, 3, 4, 100])
def test_multi(self, num_replica, num_of_data):
data = DatasetWithVaryLength(num_of_data=num_of_data)
samplers = []
for i in range(num_replica):
sampler = UnrepeatedSequentialSampler(dataset=data, length=data.data)
sampler.set_distributed(num_replica, rank=i)
samplers.append(sampler)

# 保证顺序是没乱的
for sampler in samplers:
prev_index = float('-inf')
for index in sampler:
assert index>=prev_index
prev_index = index

indexes = list(chain(*samplers))
assert len(indexes) == num_of_data
indexes = set(indexes)
assert indexes == set(range(num_of_data))

Loading…
Cancel
Save