Browse Source

torch ddp 的测试用例

tags/v1.0.0alpha
x54-729 3 years ago
parent
commit
f319b5bce1
1 changed files with 788 additions and 0 deletions
  1. +788
    -0
      tests/core/drivers/torch_driver/test_ddp.py

+ 788
- 0
tests/core/drivers/torch_driver/test_ddp.py View File

@@ -0,0 +1,788 @@
import pytest
import os
from pathlib import Path

os.environ["FASTNLP_BACKEND"] = "torch"
from fastNLP.core.drivers.torch_driver.ddp import TorchDDPDriver
from fastNLP.core.samplers import (
RandomSampler,
UnrepeatedSampler,
BucketedBatchSampler,
UnrepeatedRandomSampler,
UnrepeatedSequentialSampler,
)
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
from tests.helpers.datasets.torch_data import TorchNormalDataset, TorchArgMaxDataset
from tests.helpers.utils import magic_argv_env_context
from fastNLP.core import rank_zero_rm

import torch
import torch.distributed as dist
from torch.utils.data import DataLoader, BatchSampler

def generate_driver(num_labels, feature_dimension, device=[0,1], fp16=False, output_from_new_proc="only_error"):
torch_model = TorchNormalModel_Classification_1(num_labels, feature_dimension)
torch_opt = torch.optim.Adam(params=torch_model.parameters(), lr=0.01)
device = [torch.device(i) for i in device]
driver = TorchDDPDriver(
model=torch_model,
parallel_device=device,
fp16=fp16,
output_from_new_proc=output_from_new_proc
)
driver.set_optimizers(torch_opt)
driver.setup()

return driver

def dataloader_with_bucketedbatchsampler(dataset, length, batch_size, shuffle, drop_last):
"""
建立一个 batch_sampler 为 BucketedBatchSampler 的 dataloader
"""
dataloader = DataLoader(
dataset=dataset,
batch_sampler=BucketedBatchSampler(
dataset,
length,
batch_size,
shuffle=shuffle,
drop_last=drop_last,
),
)

return dataloader

def dataloader_with_randomsampler(dataset, batch_size, shuffle, drop_last, seed=0, unrepeated=False):
"""
建立一个 sampler 为 RandomSampler 的 dataloader
"""
if unrepeated:
sampler = UnrepeatedRandomSampler(dataset, shuffle, seed)
else:
sampler = RandomSampler(dataset, shuffle, seed=seed)
dataloader = DataLoader(
dataset,
sampler=sampler,
drop_last=drop_last,
batch_size=batch_size
)
return dataloader

############################################################################
#
# 测试 TorchDDPDriver 的一些函数
#
############################################################################

class TestDDPDriverFunction:
"""
测试 TorchDDPDriver 一些简单函数的测试类,基本都是测试能否运行、是否存在 import 错误等问题
"""

@classmethod
def setup_class(cls):
cls.driver = generate_driver(10, 10)

@magic_argv_env_context
def test_multi_drivers(self):
"""
测试使用了多个 TorchDDPDriver 的情况。
"""
driver2 = generate_driver(20, 10)
with pytest.raises(RuntimeError):
# 设备设置不同,应该报错
driver3 = generate_driver(20, 3, device=[0,1,2])
assert False
dist.barrier()

@magic_argv_env_context
def test_move_data_to_device(self):
"""
这个函数仅调用了torch_move_data_to_device,测试例在tests/core/utils/test_torch_utils.py中
就不重复测试了
"""
self.driver.move_data_to_device(torch.rand((32, 64)))

dist.barrier()

@magic_argv_env_context
def test_is_distributed(self):
"""
测试 is_distributed 函数
"""
assert self.driver.is_distributed() == True
dist.barrier()

@magic_argv_env_context
def test_get_no_sync_context(self):
"""
测试 get_no_sync_context 函数
"""
res = self.driver.get_model_no_sync_context()
dist.barrier()

@magic_argv_env_context
def test_is_global_zero(self):
"""
测试 is_global_zero 函数
"""
self.driver.is_global_zero()
dist.barrier()

@magic_argv_env_context
def test_unwrap_model(self):
"""
测试 unwrap_model 函数
"""
self.driver.unwrap_model()
dist.barrier()

@magic_argv_env_context
def test_get_local_rank(self):
"""
测试 get_local_rank 函数
"""
self.driver.get_local_rank()
dist.barrier()

@magic_argv_env_context
def test_all_gather(self):
"""
测试 all_gather 函数
详细的测试在 test_dist_utils.py 中完成
"""
obj = {
"rank": self.driver.global_rank
}
obj_list = self.driver.all_gather(obj, group=None)
for i, res in enumerate(obj_list):
assert res["rank"] == i

@magic_argv_env_context
@pytest.mark.parametrize("src_rank", ([0, 1]))
def test_broadcast_object(self, src_rank):
"""
测试 broadcast_object 函数
详细的函数在 test_dist_utils.py 中完成
"""
if self.driver.global_rank == src_rank:
obj = {
"rank": self.driver.global_rank
}
else:
obj = None
res = self.driver.broadcast_object(obj, src=src_rank)
assert res["rank"] == src_rank

############################################################################
#
# 测试 set_dist_repro_dataloader 函数
#
############################################################################

class TestSetDistReproDataloader:

@classmethod
def setup_class(cls):
cls.device = [0, 1]
cls.driver = generate_driver(10, 10, device=cls.device)

def setup_method(self):
self.dataset = TorchNormalDataset(40)

"""
传入的 `dist` 参数为具体的 ReproducibleSampler 或 ReproducibleBatchSampler 的情况
此时对应 driver.load 中的情况
"""

@magic_argv_env_context
@pytest.mark.parametrize("shuffle", ([True, False]))
def test_with_dist_batch_sampler(self, shuffle):
"""
测试 set_dist_repro_dataloader 中 dist 为 BucketedBatchSampler 时的表现
此时应该将 batch_sampler 替换为 dist 对应的 BucketedBatchSampler
"""
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=not shuffle)
batch_sampler = BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle)
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, batch_sampler, False)

assert not (replaced_loader is dataloader)
assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler)
assert replaced_loader.batch_sampler is batch_sampler
self.check_distributed_sampler(replaced_loader.batch_sampler)
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle)
dist.barrier()

@magic_argv_env_context
@pytest.mark.parametrize("shuffle", ([True, False]))
def test_with_dist_sampler(self, shuffle):
"""
测试 set_dist_repro_dataloader 中 dist 为 RandomSampler 时的表现
此时应该将 batch_sampler.sampler 替换为 dist 对应的 RandomSampler
"""
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=not shuffle)
sampler = RandomSampler(self.dataset, shuffle=shuffle)
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, sampler, False)

assert not (replaced_loader is dataloader)
assert isinstance(replaced_loader.batch_sampler, BatchSampler)
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler)
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler)
assert replaced_loader.batch_sampler.sampler is sampler
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler)
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle)

dist.barrier()
"""
传入的参数 `dist` 为 None 的情况,这种情况出现在 trainer 和 evaluator 的初始化过程中,用户指定了 `use_dist_sampler`
参数为 False。此时函数会根据 `reproducible` 的设置进行不同的处理。
当 `reproducible` 为 False 时,需要根据 dataloader 的 batch_sampler 或 sampler 是否为 Reproducible 来决定
是否重新实例化 dataloader
"""

@magic_argv_env_context
def test_with_dist_none_reproducible_true(self):
"""
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 True 时的表现
当用户在 driver 之外初始化了分布式环境时,fastnlp 不支持进行断点重训,此时应该报错
"""
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=True)
with pytest.raises(RuntimeError):
# 应当抛出 RuntimeError
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, True)

dist.barrier()

@magic_argv_env_context
# @pytest.mark.parametrize("shuffle", ([True, False]))
@pytest.mark.parametrize("shuffle", ([True, False]))
def test_with_dist_none_reproducible_false_dataloader_reproducible_batch_sampler(self, shuffle):
"""
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 False 、dataloader 有 BucketedBatchSampler
时的表现
此时传入的 dataloader 的 batch_sampler 应该已经执行了 set_distributed,产生一个新的 dataloader,其 batch_sampler
和原 dataloader 相同
"""
dataloader = dataloader_with_bucketedbatchsampler(self.dataset, self.dataset._data, 4, shuffle, False)
dataloader.batch_sampler.set_distributed(
num_replicas=self.driver.world_size,
rank=self.driver.global_rank,
pad=True
)
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False)

assert not (replaced_loader is dataloader)
assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler)
assert replaced_loader.batch_sampler.batch_size == 4
self.check_distributed_sampler(dataloader.batch_sampler)
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle)

dist.barrier()

@magic_argv_env_context
@pytest.mark.parametrize("shuffle", ([True, False]))
def test_with_dist_none_reproducible_false_dataloader_reproducible_sampler(self, shuffle):
"""
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 False 、dataloader 有 RandomSampler 时的表现
此时传入的 dataloader 的 batch_sampler.sampler 应该已经执行了 set_distributed,产生一个新的 dataloader,其
batch_sampler.sampler 和原 dataloader 相同
"""
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=False)
dataloader.batch_sampler.sampler.set_distributed(
num_replicas=self.driver.world_size,
rank=self.driver.global_rank
)
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False)

assert not (replaced_loader is dataloader)
assert isinstance(replaced_loader.batch_sampler, BatchSampler)
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler)
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler)
assert not (replaced_loader.batch_sampler.sampler is dataloader.batch_sampler.sampler)
assert replaced_loader.batch_sampler.batch_size == 4
assert replaced_loader.batch_sampler.drop_last == False
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler)
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle)
dist.barrier()

@magic_argv_env_context
@pytest.mark.parametrize("shuffle", ([True, False]))
def test_with_dist_none_reproducible_false_dataloader_normal(self, shuffle):
"""
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 False 、dataloader 为一般情况时的表现
此时直接返回原来的 dataloader,不做任何处理。
"""
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle)
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False)

assert replaced_loader is dataloader
dist.barrier()

"""
传入的参数 `dist` 为 'dist' 的情况,这种情况出现在 trainer 的初始化过程中,用户指定了 `use_dist_sampler` 参数
为 True。此时函数会根据 dataloader 的 batch_sampler 或 sampler 是否为 Reproducible 来决定如何重新实例化 dataloader
"""

@magic_argv_env_context
@pytest.mark.parametrize("shuffle", ([True, False]))
def test_with_dist_dist_dataloader_reproducible_batch_sampler(self, shuffle):
"""
测试 set_dist_repro_dataloader 中 dist 为 'dist'、dataloader.batch_sampler 为 ReproducibleBatchSampler
的表现
此时应该返回一个新的 dataloader,其batch_sampler 和原 dataloader 相同,且应该正确地设置了分布式相关的属性
"""
dataloader = DataLoader(
dataset=self.dataset,
batch_sampler=BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle)
)
dataloader = dataloader_with_bucketedbatchsampler(self.dataset, self.dataset._data, 4, shuffle, False)
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False)

assert not (replaced_loader is dataloader)
assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler)
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler)
assert replaced_loader.batch_sampler.batch_size == 4
assert replaced_loader.drop_last == dataloader.drop_last
self.check_distributed_sampler(replaced_loader.batch_sampler)
dist.barrier()

@magic_argv_env_context
@pytest.mark.parametrize("shuffle", ([True, False]))
def test_with_dist_dist_dataloader_reproducible_sampler(self, shuffle):
"""
测试 set_dist_repro_dataloader 中 dist 为 'dist'、dataloader.batch_sampler.sampler 为 ReproducibleSampler
的表现
此时应该返回一个新的 dataloader,其 batch_sampler.sampler 和原 dataloader 相同,且应该正确地设置了分布式相关
的属性
"""
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=False)
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False)

assert not (replaced_loader is dataloader)
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler)
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler)
assert not (replaced_loader.batch_sampler.sampler is dataloader.batch_sampler.sampler)
assert replaced_loader.batch_sampler.batch_size == 4
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler)
dist.barrier()

@magic_argv_env_context
@pytest.mark.parametrize("shuffle", ([True, False]))
def test_with_dist_dist_dataloader_normal(self, shuffle):
"""
测试 set_dist_repro_dataloader 中 dist 为 'dist'、dataloader 为一般情况的表现
此时应该返回一个新的 dataloader,并替换其 batch_sampler.sampler 为 RandomSampler,且应该正确设置了分布式相关
的属性
"""
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle)
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False)

assert not (replaced_loader is dataloader)
assert isinstance(replaced_loader.batch_sampler, BatchSampler)
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler)
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler)
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler)
dist.barrier()

"""
传入的参数 `dist` 为 'unrepeatdist' 的情况,这种情况出现在 evaluator 的初始化过程中,用户指定了 `use_dist_sampler` 参数
为 True。此时函数会根据 dataloader 的 sampler 是否为 Unrepeated 和 Reproducible 来决定如何重新实例化 dataloader
"""

@magic_argv_env_context
@pytest.mark.parametrize("shuffle", ([True, False]))
def test_with_dist_unrepeat_dataloader_reproducible_sampler(self, shuffle):
"""
测试 set_dist_repro_dataloader 中 dist 为 'unrepeatdist'、dataloader.batch_sampler.sampler 为 ReproducibleSampler
的表现
此时应该返回一个新的 dataloader,且将原来的 Sampler 替换为 UnrepeatedRandomSampler,且正确地设置了分布式相关
的属性
"""
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=False)
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False)

assert not (replaced_loader is dataloader)
assert isinstance(replaced_loader.batch_sampler, BatchSampler)
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler)
assert isinstance(replaced_loader.batch_sampler.sampler, UnrepeatedRandomSampler)
assert replaced_loader.batch_sampler.batch_size == 4
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler)
dist.barrier()

@magic_argv_env_context
@pytest.mark.parametrize("shuffle", ([True, False]))
def test_with_dist_unrepeat_dataloader_unrepreated_sampler(self, shuffle):
"""
测试 set_dist_repro_dataloader 中 dist 为 'unrepeatdist'、dataloader.batch_sampler.sampler 为 UnrepeatedSampler
的表现
此时应该返回一个新的 dataloader,且重新实例化了原来的 Sampler
"""
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=True)
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False)

assert not (replaced_loader is dataloader)
assert isinstance(replaced_loader.batch_sampler, BatchSampler)
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler)
assert isinstance(replaced_loader.batch_sampler.sampler, UnrepeatedRandomSampler)
assert not (replaced_loader.batch_sampler.sampler is dataloader.batch_sampler.sampler)
assert replaced_loader.batch_sampler.batch_size == 4
assert replaced_loader.drop_last == dataloader.drop_last
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler)
dist.barrier()

@magic_argv_env_context
@pytest.mark.parametrize("shuffle", ([True, False]))
def test_with_dist_unrepeat_dataloader_normal(self, shuffle):
"""
测试 set_dist_repro_dataloader 中 dist 为 'unrepeatdist'、dataloader 为一般情况的表现
此时应该返回一个新的 dataloader,且将 sampler 替换为 UnrepeatedSequentialSampler,并正确地设置了分布式相关
的属性
"""
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle)
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False)

assert not (replaced_loader is dataloader)
assert isinstance(replaced_loader.batch_sampler, BatchSampler)
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler)
assert isinstance(replaced_loader.batch_sampler.sampler, UnrepeatedSequentialSampler)
assert replaced_loader.batch_sampler.batch_size == 4
assert replaced_loader.drop_last == dataloader.drop_last
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler)
dist.barrier()

def check_distributed_sampler(self, sampler):
"""
测试替换得到的 sampler 或 batch_sampler 的分布式设置是否正确
"""
assert sampler.num_replicas == dist.get_world_size()
assert sampler.rank == dist.get_rank()
if not isinstance(sampler, UnrepeatedSampler):
assert sampler.pad == True

def check_set_dist_repro_dataloader(self, dataloader, replaced_loader, shuffle):
"""
测试多卡下 set_dist_repro_dataloader 函数的执行结果是否正确
"""
# 迭代两个 batch
num_replicas = len(self.device)
num_consumed_batches = 2
already_seen_idx = set()
for idx, batch in enumerate(replaced_loader):
if idx >= num_consumed_batches:
break
already_seen_idx.update(batch)
dist.barrier()
if isinstance(replaced_loader.batch_sampler, BucketedBatchSampler):
sampler_states = replaced_loader.batch_sampler.state_dict()
else:
sampler_states = replaced_loader.batch_sampler.sampler.state_dict()

# 重新加载,应该可以输出剩下的内容,且对于 TorchNormalDataset 来说,排序后应该是一个 range
left_idxes = set()
if isinstance(replaced_loader.batch_sampler, BucketedBatchSampler):
batch_size = replaced_loader.batch_sampler.batch_size
sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size * num_replicas
# 重新改造 dataloader
new_loader = dataloader_with_bucketedbatchsampler(
replaced_loader.dataset,
length=replaced_loader.dataset._data,
batch_size=batch_size,
shuffle=shuffle,
drop_last=False,
)
new_loader.batch_sampler.set_distributed(
num_replicas=self.driver.world_size,
rank=self.driver.global_rank,
pad=True
)
new_loader.batch_sampler.load_state_dict(sampler_states)
else:
batch_size = replaced_loader.batch_sampler.batch_size
sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size * num_replicas
# 重新构造 dataloader
new_loader = dataloader_with_randomsampler(replaced_loader.dataset, batch_size, shuffle, drop_last=False)
new_loader.batch_sampler.sampler.set_distributed(
num_replicas=self.driver.world_size,
rank=self.driver.global_rank
)
new_loader.batch_sampler.sampler.load_state_dict(sampler_states)
for idx, batch in enumerate(new_loader):
left_idxes.update(batch)

assert len(left_idxes) + len(already_seen_idx) == len(self.dataset) / num_replicas
assert len(left_idxes | already_seen_idx) == len(self.dataset) / num_replicas


############################################################################
#
# 测试 save 和 load 相关的功能
#
############################################################################
class TestSaveLoad:
"""
测试多卡情况下 save 和 load 相关函数的表现
"""

@classmethod
def setup_class(cls):
# 不在这里 setup 的话会报错
cls.driver = generate_driver(10, 10)

def setup_method(self):
self.dataset = TorchArgMaxDataset(10, 20)

@magic_argv_env_context
@pytest.mark.parametrize("only_state_dict", ([True, False]))
def test_save_and_load_model(self, only_state_dict):
"""
测试 save_model 和 load_model 函数
"""
try:
path = "model"

dataloader = DataLoader(self.dataset, batch_size=2)
self.driver1, self.driver2 = generate_driver(10, 10), generate_driver(10, 10)

self.driver1.save_model(path, only_state_dict)

# 同步
dist.barrier()
self.driver2.load_model(path, only_state_dict)

for idx, batch in enumerate(dataloader):
batch = self.driver1.move_data_to_device(batch)
res1 = self.driver1.model(
batch,
fastnlp_fn=self.driver1.model.module.model.evaluate_step,
# Driver.model -> DataParallel.module -> _FleetWrappingModel.model
fastnlp_signature_fn=None,
wo_auto_param_call=False,
)
res2 = self.driver2.model(
batch,
fastnlp_fn=self.driver2.model.module.model.evaluate_step,
fastnlp_signature_fn=None,
wo_auto_param_call=False,
)

assert torch.equal(res1["preds"], res2["preds"])
finally:
rank_zero_rm(path)

@magic_argv_env_context
@pytest.mark.parametrize("only_state_dict", ([True, False]))
@pytest.mark.parametrize("fp16", ([True, False]))
@pytest.mark.parametrize("device", ([[0,1]]))
def test_save_and_load_with_bucketedbatchsampler(self, device, only_state_dict, fp16):
"""
测试save和load函数,主要测试 dataloader 被替换了 sampler 之后的情况
"""

try:
path = "model.ckp"
num_replicas = len(device)

self.driver1, self.driver2 = generate_driver(10, 10, device=device, fp16=fp16), \
generate_driver(10, 10, device=device, fp16=False)
dataloader = dataloader_with_bucketedbatchsampler(
self.dataset,
length=[10 for i in range(len(self.dataset))],
batch_size=4,
shuffle=True,
drop_last=False
)
dataloader.batch_sampler.set_distributed(
num_replicas=self.driver1.world_size,
rank=self.driver1.global_rank,
pad=True
)
num_consumed_batches = 2

already_seen_x_set = set()
already_seen_y_set = set()
for idx, batch in enumerate(dataloader):
if idx >= num_consumed_batches:
break
already_seen_x_set.update(batch["x"])
already_seen_y_set.update(batch["y"])

# 同步
dist.barrier()

# 保存状态
sampler_states = dataloader.batch_sampler.state_dict()
save_states = {"num_consumed_batches": num_consumed_batches}
self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True)
# 加载
# 更改 batch_size
dataloader = dataloader_with_bucketedbatchsampler(
self.dataset,
length=[10 for i in range(len(self.dataset))],
batch_size=2,
shuffle=True,
drop_last=False
)
dataloader.batch_sampler.set_distributed(
num_replicas=self.driver2.world_size,
rank=self.driver2.global_rank,
pad=True
)
load_states = self.driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True)
replaced_loader = load_states.pop("dataloader")
# 1. 检查 optimizer 的状态
# TODO optimizer 的 state_dict 总是为空

# 2. 检查 batch_sampler 是否被正确地加载和替换
assert not (replaced_loader is dataloader)
assert replaced_loader.batch_sampler is dataloader.batch_sampler
assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler)
assert replaced_loader.batch_sampler.seed == sampler_states["seed"]
assert replaced_loader.batch_sampler.num_consumed_samples == num_consumed_batches * 4 * num_replicas

# 3. 检查 fp16 是否被加载
if fp16:
assert isinstance(self.driver2.grad_scaler, torch.cuda.amp.GradScaler)

# 4. 检查 model 的参数是否正确
# 5. 检查 batch_idx
start_batch = load_states.pop('batch_idx_in_epoch')
assert start_batch == 2 * num_consumed_batches
left_x_batches = set()
left_y_batches = set()
for idx, batch in enumerate(replaced_loader):

left_x_batches.update(batch["x"])
left_y_batches.update(batch["y"])
res1 = self.driver1.model(
batch,
fastnlp_fn=self.driver1.model.module.model.evaluate_step,
# Driver.model -> DataParallel.module -> _FleetWrappingModel.model
fastnlp_signature_fn=None,
wo_auto_param_call=False,
)
res2 = self.driver2.model(
batch,
fastnlp_fn=self.driver2.model.module.model.evaluate_step,
fastnlp_signature_fn=None,
wo_auto_param_call=False,
)
assert torch.equal(res1["preds"], res2["preds"])

assert len(left_x_batches) + len(already_seen_x_set) == len(self.dataset) / num_replicas
assert len(left_x_batches | already_seen_x_set) == len(self.dataset) / num_replicas
assert len(left_y_batches) + len(already_seen_y_set) == len(self.dataset) / num_replicas
assert len(left_y_batches | already_seen_y_set) == len(self.dataset) / num_replicas
finally:
rank_zero_rm(path)

@magic_argv_env_context
@pytest.mark.parametrize("only_state_dict", ([True, False]))
@pytest.mark.parametrize("fp16", ([True, False]))
@pytest.mark.parametrize("device", ([[0,1]]))
def test_save_and_load_with_randomsampler(self, device, only_state_dict, fp16):
"""
测试save和load函数,主要测试 dataloader 被替换了 batch_sampler 的情况
"""

try:
path = "model.ckp"

num_replicas = len(device)

self.driver1 = generate_driver(10, 10, device=device, fp16=fp16)
self.driver2 = generate_driver(10, 10, device=device, fp16=False)

dataloader = dataloader_with_randomsampler(self.dataset, 4, True, False, unrepeated=False)
dataloader.batch_sampler.sampler.set_distributed(
num_replicas=self.driver1.world_size,
rank=self.driver1.global_rank,
pad=True
)
num_consumed_batches = 2

already_seen_x_set = set()
already_seen_y_set = set()
for idx, batch in enumerate(dataloader):
if idx >= num_consumed_batches:
break
already_seen_x_set.update(batch["x"])
already_seen_y_set.update(batch["y"])

# 同步
dist.barrier()

# 保存状态
sampler_states = dataloader.batch_sampler.sampler.state_dict()
save_states = {"num_consumed_batches": num_consumed_batches}
if only_state_dict:
self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True)
else:
self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[torch.ones((16, 10))])
# 加载
# 更改 batch_size
dataloader = dataloader_with_randomsampler(self.dataset, 2, True, False, unrepeated=False)
dataloader.batch_sampler.sampler.set_distributed(
num_replicas=self.driver2.world_size,
rank=self.driver2.global_rank,
pad=True
)
load_states = self.driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True)
replaced_loader = load_states.pop("dataloader")

# 1. 检查 optimizer 的状态
# TODO optimizer 的 state_dict 总是为空

# 2. 检查 sampler 是否被正确地加载和替换
assert not (replaced_loader is dataloader)
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler)
assert replaced_loader.batch_sampler.sampler.seed == sampler_states["seed"]
assert replaced_loader.batch_sampler.sampler.epoch == sampler_states["epoch"]
assert replaced_loader.batch_sampler.sampler.num_consumed_samples == 4 * num_consumed_batches * num_replicas
assert len(replaced_loader.batch_sampler.sampler.dataset) == sampler_states["length"]
assert replaced_loader.batch_sampler.sampler.shuffle == sampler_states["shuffle"]
# 3. 检查 fp16 是否被加载
if fp16:
assert isinstance(self.driver2.grad_scaler, torch.cuda.amp.GradScaler)

# 4. 检查 model 的参数是否正确
# 5. 检查 batch_idx
start_batch = load_states.pop('batch_idx_in_epoch')
assert start_batch == 2 * num_consumed_batches
left_x_batches = set()
left_y_batches = set()
for idx, batch in enumerate(replaced_loader):

left_x_batches.update(batch["x"])
left_y_batches.update(batch["y"])
res1 = self.driver1.model(
batch,
fastnlp_fn=self.driver1.model.module.model.evaluate_step,
# Driver.model -> DataParallel.module -> _FleetWrappingModel.model
fastnlp_signature_fn=None,
wo_auto_param_call=False,
)
res2 = self.driver2.model(
batch,
fastnlp_fn=self.driver2.model.module.model.evaluate_step,
fastnlp_signature_fn=None,
wo_auto_param_call=False,
)
assert torch.equal(res1["preds"], res2["preds"])

assert len(left_x_batches) + len(already_seen_x_set) == len(self.dataset) / num_replicas
assert len(left_x_batches | already_seen_x_set) == len(self.dataset) / num_replicas
assert len(left_y_batches) + len(already_seen_y_set) == len(self.dataset) / num_replicas
assert len(left_y_batches | already_seen_y_set) == len(self.dataset) / num_replicas

finally:
rank_zero_rm(path)

Loading…
Cancel
Save