diff --git a/tests/core/drivers/torch_driver/test_ddp.py b/tests/core/drivers/torch_driver/test_ddp.py new file mode 100644 index 00000000..0e91fe77 --- /dev/null +++ b/tests/core/drivers/torch_driver/test_ddp.py @@ -0,0 +1,788 @@ +import pytest +import os +from pathlib import Path + +os.environ["FASTNLP_BACKEND"] = "torch" +from fastNLP.core.drivers.torch_driver.ddp import TorchDDPDriver +from fastNLP.core.samplers import ( + RandomSampler, + UnrepeatedSampler, + BucketedBatchSampler, + UnrepeatedRandomSampler, + UnrepeatedSequentialSampler, +) +from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 +from tests.helpers.datasets.torch_data import TorchNormalDataset, TorchArgMaxDataset +from tests.helpers.utils import magic_argv_env_context +from fastNLP.core import rank_zero_rm + +import torch +import torch.distributed as dist +from torch.utils.data import DataLoader, BatchSampler + +def generate_driver(num_labels, feature_dimension, device=[0,1], fp16=False, output_from_new_proc="only_error"): + torch_model = TorchNormalModel_Classification_1(num_labels, feature_dimension) + torch_opt = torch.optim.Adam(params=torch_model.parameters(), lr=0.01) + device = [torch.device(i) for i in device] + driver = TorchDDPDriver( + model=torch_model, + parallel_device=device, + fp16=fp16, + output_from_new_proc=output_from_new_proc + ) + driver.set_optimizers(torch_opt) + driver.setup() + + return driver + +def dataloader_with_bucketedbatchsampler(dataset, length, batch_size, shuffle, drop_last): + """ + 建立一个 batch_sampler 为 BucketedBatchSampler 的 dataloader + """ + dataloader = DataLoader( + dataset=dataset, + batch_sampler=BucketedBatchSampler( + dataset, + length, + batch_size, + shuffle=shuffle, + drop_last=drop_last, + ), + ) + + return dataloader + +def dataloader_with_randomsampler(dataset, batch_size, shuffle, drop_last, seed=0, unrepeated=False): + """ + 建立一个 sampler 为 RandomSampler 的 dataloader + """ + if unrepeated: + sampler = UnrepeatedRandomSampler(dataset, shuffle, seed) + else: + sampler = RandomSampler(dataset, shuffle, seed=seed) + dataloader = DataLoader( + dataset, + sampler=sampler, + drop_last=drop_last, + batch_size=batch_size + ) + return dataloader + +############################################################################ +# +# 测试 TorchDDPDriver 的一些函数 +# +############################################################################ + +class TestDDPDriverFunction: + """ + 测试 TorchDDPDriver 一些简单函数的测试类,基本都是测试能否运行、是否存在 import 错误等问题 + """ + + @classmethod + def setup_class(cls): + cls.driver = generate_driver(10, 10) + + @magic_argv_env_context + def test_multi_drivers(self): + """ + 测试使用了多个 TorchDDPDriver 的情况。 + """ + + driver2 = generate_driver(20, 10) + + with pytest.raises(RuntimeError): + # 设备设置不同,应该报错 + driver3 = generate_driver(20, 3, device=[0,1,2]) + assert False + dist.barrier() + + @magic_argv_env_context + def test_move_data_to_device(self): + """ + 这个函数仅调用了torch_move_data_to_device,测试例在tests/core/utils/test_torch_utils.py中 + 就不重复测试了 + """ + self.driver.move_data_to_device(torch.rand((32, 64))) + + dist.barrier() + + @magic_argv_env_context + def test_is_distributed(self): + """ + 测试 is_distributed 函数 + """ + assert self.driver.is_distributed() == True + dist.barrier() + + @magic_argv_env_context + def test_get_no_sync_context(self): + """ + 测试 get_no_sync_context 函数 + """ + res = self.driver.get_model_no_sync_context() + dist.barrier() + + @magic_argv_env_context + def test_is_global_zero(self): + """ + 测试 is_global_zero 函数 + """ + self.driver.is_global_zero() + dist.barrier() + + @magic_argv_env_context + def test_unwrap_model(self): + """ + 测试 unwrap_model 函数 + """ + self.driver.unwrap_model() + dist.barrier() + + @magic_argv_env_context + def test_get_local_rank(self): + """ + 测试 get_local_rank 函数 + """ + self.driver.get_local_rank() + dist.barrier() + + @magic_argv_env_context + def test_all_gather(self): + """ + 测试 all_gather 函数 + 详细的测试在 test_dist_utils.py 中完成 + """ + obj = { + "rank": self.driver.global_rank + } + obj_list = self.driver.all_gather(obj, group=None) + for i, res in enumerate(obj_list): + assert res["rank"] == i + + @magic_argv_env_context + @pytest.mark.parametrize("src_rank", ([0, 1])) + def test_broadcast_object(self, src_rank): + """ + 测试 broadcast_object 函数 + 详细的函数在 test_dist_utils.py 中完成 + """ + if self.driver.global_rank == src_rank: + obj = { + "rank": self.driver.global_rank + } + else: + obj = None + res = self.driver.broadcast_object(obj, src=src_rank) + assert res["rank"] == src_rank + +############################################################################ +# +# 测试 set_dist_repro_dataloader 函数 +# +############################################################################ + +class TestSetDistReproDataloader: + + @classmethod + def setup_class(cls): + cls.device = [0, 1] + cls.driver = generate_driver(10, 10, device=cls.device) + + def setup_method(self): + self.dataset = TorchNormalDataset(40) + + """ + 传入的 `dist` 参数为具体的 ReproducibleSampler 或 ReproducibleBatchSampler 的情况 + 此时对应 driver.load 中的情况 + """ + + @magic_argv_env_context + @pytest.mark.parametrize("shuffle", ([True, False])) + def test_with_dist_batch_sampler(self, shuffle): + """ + 测试 set_dist_repro_dataloader 中 dist 为 BucketedBatchSampler 时的表现 + 此时应该将 batch_sampler 替换为 dist 对应的 BucketedBatchSampler + """ + dataloader = DataLoader(self.dataset, batch_size=4, shuffle=not shuffle) + batch_sampler = BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle) + replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, batch_sampler, False) + + assert not (replaced_loader is dataloader) + assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler) + assert replaced_loader.batch_sampler is batch_sampler + self.check_distributed_sampler(replaced_loader.batch_sampler) + self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) + + dist.barrier() + + @magic_argv_env_context + @pytest.mark.parametrize("shuffle", ([True, False])) + def test_with_dist_sampler(self, shuffle): + """ + 测试 set_dist_repro_dataloader 中 dist 为 RandomSampler 时的表现 + 此时应该将 batch_sampler.sampler 替换为 dist 对应的 RandomSampler + """ + dataloader = DataLoader(self.dataset, batch_size=4, shuffle=not shuffle) + sampler = RandomSampler(self.dataset, shuffle=shuffle) + replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, sampler, False) + + assert not (replaced_loader is dataloader) + assert isinstance(replaced_loader.batch_sampler, BatchSampler) + assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) + assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) + assert replaced_loader.batch_sampler.sampler is sampler + assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size + self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) + self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) + + dist.barrier() + + """ + 传入的参数 `dist` 为 None 的情况,这种情况出现在 trainer 和 evaluator 的初始化过程中,用户指定了 `use_dist_sampler` + 参数为 False。此时函数会根据 `reproducible` 的设置进行不同的处理。 + 当 `reproducible` 为 False 时,需要根据 dataloader 的 batch_sampler 或 sampler 是否为 Reproducible 来决定 + 是否重新实例化 dataloader + """ + + @magic_argv_env_context + def test_with_dist_none_reproducible_true(self): + """ + 测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 True 时的表现 + 当用户在 driver 之外初始化了分布式环境时,fastnlp 不支持进行断点重训,此时应该报错 + """ + dataloader = DataLoader(self.dataset, batch_size=4, shuffle=True) + with pytest.raises(RuntimeError): + # 应当抛出 RuntimeError + replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, True) + + dist.barrier() + + @magic_argv_env_context + # @pytest.mark.parametrize("shuffle", ([True, False])) + @pytest.mark.parametrize("shuffle", ([True, False])) + def test_with_dist_none_reproducible_false_dataloader_reproducible_batch_sampler(self, shuffle): + """ + 测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 False 、dataloader 有 BucketedBatchSampler + 时的表现 + 此时传入的 dataloader 的 batch_sampler 应该已经执行了 set_distributed,产生一个新的 dataloader,其 batch_sampler + 和原 dataloader 相同 + """ + dataloader = dataloader_with_bucketedbatchsampler(self.dataset, self.dataset._data, 4, shuffle, False) + dataloader.batch_sampler.set_distributed( + num_replicas=self.driver.world_size, + rank=self.driver.global_rank, + pad=True + ) + replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False) + + assert not (replaced_loader is dataloader) + assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler) + assert replaced_loader.batch_sampler.batch_size == 4 + self.check_distributed_sampler(dataloader.batch_sampler) + self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) + + dist.barrier() + + @magic_argv_env_context + @pytest.mark.parametrize("shuffle", ([True, False])) + def test_with_dist_none_reproducible_false_dataloader_reproducible_sampler(self, shuffle): + """ + 测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 False 、dataloader 有 RandomSampler 时的表现 + 此时传入的 dataloader 的 batch_sampler.sampler 应该已经执行了 set_distributed,产生一个新的 dataloader,其 + batch_sampler.sampler 和原 dataloader 相同 + """ + dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=False) + dataloader.batch_sampler.sampler.set_distributed( + num_replicas=self.driver.world_size, + rank=self.driver.global_rank + ) + replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False) + + assert not (replaced_loader is dataloader) + assert isinstance(replaced_loader.batch_sampler, BatchSampler) + assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) + assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) + assert not (replaced_loader.batch_sampler.sampler is dataloader.batch_sampler.sampler) + assert replaced_loader.batch_sampler.batch_size == 4 + assert replaced_loader.batch_sampler.drop_last == False + self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) + self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) + + dist.barrier() + + @magic_argv_env_context + @pytest.mark.parametrize("shuffle", ([True, False])) + def test_with_dist_none_reproducible_false_dataloader_normal(self, shuffle): + """ + 测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 False 、dataloader 为一般情况时的表现 + 此时直接返回原来的 dataloader,不做任何处理。 + """ + dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle) + replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False) + + assert replaced_loader is dataloader + dist.barrier() + + """ + 传入的参数 `dist` 为 'dist' 的情况,这种情况出现在 trainer 的初始化过程中,用户指定了 `use_dist_sampler` 参数 + 为 True。此时函数会根据 dataloader 的 batch_sampler 或 sampler 是否为 Reproducible 来决定如何重新实例化 dataloader + """ + + @magic_argv_env_context + @pytest.mark.parametrize("shuffle", ([True, False])) + def test_with_dist_dist_dataloader_reproducible_batch_sampler(self, shuffle): + """ + 测试 set_dist_repro_dataloader 中 dist 为 'dist'、dataloader.batch_sampler 为 ReproducibleBatchSampler + 的表现 + 此时应该返回一个新的 dataloader,其batch_sampler 和原 dataloader 相同,且应该正确地设置了分布式相关的属性 + """ + dataloader = DataLoader( + dataset=self.dataset, + batch_sampler=BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle) + ) + dataloader = dataloader_with_bucketedbatchsampler(self.dataset, self.dataset._data, 4, shuffle, False) + replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False) + + assert not (replaced_loader is dataloader) + assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler) + assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) + assert replaced_loader.batch_sampler.batch_size == 4 + assert replaced_loader.drop_last == dataloader.drop_last + self.check_distributed_sampler(replaced_loader.batch_sampler) + dist.barrier() + + @magic_argv_env_context + @pytest.mark.parametrize("shuffle", ([True, False])) + def test_with_dist_dist_dataloader_reproducible_sampler(self, shuffle): + """ + 测试 set_dist_repro_dataloader 中 dist 为 'dist'、dataloader.batch_sampler.sampler 为 ReproducibleSampler + 的表现 + 此时应该返回一个新的 dataloader,其 batch_sampler.sampler 和原 dataloader 相同,且应该正确地设置了分布式相关 + 的属性 + """ + dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=False) + replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False) + + assert not (replaced_loader is dataloader) + assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) + assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) + assert not (replaced_loader.batch_sampler.sampler is dataloader.batch_sampler.sampler) + assert replaced_loader.batch_sampler.batch_size == 4 + assert replaced_loader.batch_sampler.sampler.shuffle == shuffle + self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) + dist.barrier() + + @magic_argv_env_context + @pytest.mark.parametrize("shuffle", ([True, False])) + def test_with_dist_dist_dataloader_normal(self, shuffle): + """ + 测试 set_dist_repro_dataloader 中 dist 为 'dist'、dataloader 为一般情况的表现 + 此时应该返回一个新的 dataloader,并替换其 batch_sampler.sampler 为 RandomSampler,且应该正确设置了分布式相关 + 的属性 + """ + dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle) + replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False) + + assert not (replaced_loader is dataloader) + assert isinstance(replaced_loader.batch_sampler, BatchSampler) + assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) + assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) + assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size + assert replaced_loader.batch_sampler.sampler.shuffle == shuffle + self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) + dist.barrier() + + """ + 传入的参数 `dist` 为 'unrepeatdist' 的情况,这种情况出现在 evaluator 的初始化过程中,用户指定了 `use_dist_sampler` 参数 + 为 True。此时函数会根据 dataloader 的 sampler 是否为 Unrepeated 和 Reproducible 来决定如何重新实例化 dataloader + """ + + @magic_argv_env_context + @pytest.mark.parametrize("shuffle", ([True, False])) + def test_with_dist_unrepeat_dataloader_reproducible_sampler(self, shuffle): + """ + 测试 set_dist_repro_dataloader 中 dist 为 'unrepeatdist'、dataloader.batch_sampler.sampler 为 ReproducibleSampler + 的表现 + 此时应该返回一个新的 dataloader,且将原来的 Sampler 替换为 UnrepeatedRandomSampler,且正确地设置了分布式相关 + 的属性 + """ + dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=False) + replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) + + assert not (replaced_loader is dataloader) + assert isinstance(replaced_loader.batch_sampler, BatchSampler) + assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) + assert isinstance(replaced_loader.batch_sampler.sampler, UnrepeatedRandomSampler) + assert replaced_loader.batch_sampler.batch_size == 4 + assert replaced_loader.batch_sampler.sampler.shuffle == shuffle + self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) + dist.barrier() + + @magic_argv_env_context + @pytest.mark.parametrize("shuffle", ([True, False])) + def test_with_dist_unrepeat_dataloader_unrepreated_sampler(self, shuffle): + """ + 测试 set_dist_repro_dataloader 中 dist 为 'unrepeatdist'、dataloader.batch_sampler.sampler 为 UnrepeatedSampler + 的表现 + 此时应该返回一个新的 dataloader,且重新实例化了原来的 Sampler + """ + dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=True) + replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) + + assert not (replaced_loader is dataloader) + assert isinstance(replaced_loader.batch_sampler, BatchSampler) + assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) + assert isinstance(replaced_loader.batch_sampler.sampler, UnrepeatedRandomSampler) + assert not (replaced_loader.batch_sampler.sampler is dataloader.batch_sampler.sampler) + assert replaced_loader.batch_sampler.batch_size == 4 + assert replaced_loader.drop_last == dataloader.drop_last + self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) + dist.barrier() + + @magic_argv_env_context + @pytest.mark.parametrize("shuffle", ([True, False])) + def test_with_dist_unrepeat_dataloader_normal(self, shuffle): + """ + 测试 set_dist_repro_dataloader 中 dist 为 'unrepeatdist'、dataloader 为一般情况的表现 + 此时应该返回一个新的 dataloader,且将 sampler 替换为 UnrepeatedSequentialSampler,并正确地设置了分布式相关 + 的属性 + """ + dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle) + replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) + + assert not (replaced_loader is dataloader) + assert isinstance(replaced_loader.batch_sampler, BatchSampler) + assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) + assert isinstance(replaced_loader.batch_sampler.sampler, UnrepeatedSequentialSampler) + assert replaced_loader.batch_sampler.batch_size == 4 + assert replaced_loader.drop_last == dataloader.drop_last + self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) + dist.barrier() + + def check_distributed_sampler(self, sampler): + """ + 测试替换得到的 sampler 或 batch_sampler 的分布式设置是否正确 + """ + assert sampler.num_replicas == dist.get_world_size() + assert sampler.rank == dist.get_rank() + if not isinstance(sampler, UnrepeatedSampler): + assert sampler.pad == True + + def check_set_dist_repro_dataloader(self, dataloader, replaced_loader, shuffle): + """ + 测试多卡下 set_dist_repro_dataloader 函数的执行结果是否正确 + """ + # 迭代两个 batch + num_replicas = len(self.device) + num_consumed_batches = 2 + already_seen_idx = set() + for idx, batch in enumerate(replaced_loader): + if idx >= num_consumed_batches: + break + already_seen_idx.update(batch) + dist.barrier() + if isinstance(replaced_loader.batch_sampler, BucketedBatchSampler): + sampler_states = replaced_loader.batch_sampler.state_dict() + else: + sampler_states = replaced_loader.batch_sampler.sampler.state_dict() + + # 重新加载,应该可以输出剩下的内容,且对于 TorchNormalDataset 来说,排序后应该是一个 range + left_idxes = set() + if isinstance(replaced_loader.batch_sampler, BucketedBatchSampler): + batch_size = replaced_loader.batch_sampler.batch_size + sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size * num_replicas + # 重新改造 dataloader + new_loader = dataloader_with_bucketedbatchsampler( + replaced_loader.dataset, + length=replaced_loader.dataset._data, + batch_size=batch_size, + shuffle=shuffle, + drop_last=False, + ) + new_loader.batch_sampler.set_distributed( + num_replicas=self.driver.world_size, + rank=self.driver.global_rank, + pad=True + ) + new_loader.batch_sampler.load_state_dict(sampler_states) + else: + batch_size = replaced_loader.batch_sampler.batch_size + sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size * num_replicas + # 重新构造 dataloader + new_loader = dataloader_with_randomsampler(replaced_loader.dataset, batch_size, shuffle, drop_last=False) + new_loader.batch_sampler.sampler.set_distributed( + num_replicas=self.driver.world_size, + rank=self.driver.global_rank + ) + new_loader.batch_sampler.sampler.load_state_dict(sampler_states) + for idx, batch in enumerate(new_loader): + left_idxes.update(batch) + + assert len(left_idxes) + len(already_seen_idx) == len(self.dataset) / num_replicas + assert len(left_idxes | already_seen_idx) == len(self.dataset) / num_replicas + + +############################################################################ +# +# 测试 save 和 load 相关的功能 +# +############################################################################ +class TestSaveLoad: + """ + 测试多卡情况下 save 和 load 相关函数的表现 + """ + + @classmethod + def setup_class(cls): + # 不在这里 setup 的话会报错 + cls.driver = generate_driver(10, 10) + + def setup_method(self): + self.dataset = TorchArgMaxDataset(10, 20) + + @magic_argv_env_context + @pytest.mark.parametrize("only_state_dict", ([True, False])) + def test_save_and_load_model(self, only_state_dict): + """ + 测试 save_model 和 load_model 函数 + """ + try: + path = "model" + + dataloader = DataLoader(self.dataset, batch_size=2) + self.driver1, self.driver2 = generate_driver(10, 10), generate_driver(10, 10) + + self.driver1.save_model(path, only_state_dict) + + # 同步 + dist.barrier() + self.driver2.load_model(path, only_state_dict) + + for idx, batch in enumerate(dataloader): + batch = self.driver1.move_data_to_device(batch) + res1 = self.driver1.model( + batch, + fastnlp_fn=self.driver1.model.module.model.evaluate_step, + # Driver.model -> DataParallel.module -> _FleetWrappingModel.model + fastnlp_signature_fn=None, + wo_auto_param_call=False, + ) + res2 = self.driver2.model( + batch, + fastnlp_fn=self.driver2.model.module.model.evaluate_step, + fastnlp_signature_fn=None, + wo_auto_param_call=False, + ) + + assert torch.equal(res1["preds"], res2["preds"]) + finally: + rank_zero_rm(path) + + @magic_argv_env_context + @pytest.mark.parametrize("only_state_dict", ([True, False])) + @pytest.mark.parametrize("fp16", ([True, False])) + @pytest.mark.parametrize("device", ([[0,1]])) + def test_save_and_load_with_bucketedbatchsampler(self, device, only_state_dict, fp16): + """ + 测试save和load函数,主要测试 dataloader 被替换了 sampler 之后的情况 + """ + + try: + path = "model.ckp" + num_replicas = len(device) + + self.driver1, self.driver2 = generate_driver(10, 10, device=device, fp16=fp16), \ + generate_driver(10, 10, device=device, fp16=False) + dataloader = dataloader_with_bucketedbatchsampler( + self.dataset, + length=[10 for i in range(len(self.dataset))], + batch_size=4, + shuffle=True, + drop_last=False + ) + dataloader.batch_sampler.set_distributed( + num_replicas=self.driver1.world_size, + rank=self.driver1.global_rank, + pad=True + ) + num_consumed_batches = 2 + + already_seen_x_set = set() + already_seen_y_set = set() + for idx, batch in enumerate(dataloader): + if idx >= num_consumed_batches: + break + already_seen_x_set.update(batch["x"]) + already_seen_y_set.update(batch["y"]) + + # 同步 + dist.barrier() + + # 保存状态 + sampler_states = dataloader.batch_sampler.state_dict() + save_states = {"num_consumed_batches": num_consumed_batches} + self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) + # 加载 + # 更改 batch_size + dataloader = dataloader_with_bucketedbatchsampler( + self.dataset, + length=[10 for i in range(len(self.dataset))], + batch_size=2, + shuffle=True, + drop_last=False + ) + dataloader.batch_sampler.set_distributed( + num_replicas=self.driver2.world_size, + rank=self.driver2.global_rank, + pad=True + ) + load_states = self.driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) + replaced_loader = load_states.pop("dataloader") + # 1. 检查 optimizer 的状态 + # TODO optimizer 的 state_dict 总是为空 + + # 2. 检查 batch_sampler 是否被正确地加载和替换 + assert not (replaced_loader is dataloader) + assert replaced_loader.batch_sampler is dataloader.batch_sampler + assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler) + assert replaced_loader.batch_sampler.seed == sampler_states["seed"] + assert replaced_loader.batch_sampler.num_consumed_samples == num_consumed_batches * 4 * num_replicas + + # 3. 检查 fp16 是否被加载 + if fp16: + assert isinstance(self.driver2.grad_scaler, torch.cuda.amp.GradScaler) + + # 4. 检查 model 的参数是否正确 + # 5. 检查 batch_idx + start_batch = load_states.pop('batch_idx_in_epoch') + assert start_batch == 2 * num_consumed_batches + left_x_batches = set() + left_y_batches = set() + for idx, batch in enumerate(replaced_loader): + + left_x_batches.update(batch["x"]) + left_y_batches.update(batch["y"]) + res1 = self.driver1.model( + batch, + fastnlp_fn=self.driver1.model.module.model.evaluate_step, + # Driver.model -> DataParallel.module -> _FleetWrappingModel.model + fastnlp_signature_fn=None, + wo_auto_param_call=False, + ) + res2 = self.driver2.model( + batch, + fastnlp_fn=self.driver2.model.module.model.evaluate_step, + fastnlp_signature_fn=None, + wo_auto_param_call=False, + ) + assert torch.equal(res1["preds"], res2["preds"]) + + assert len(left_x_batches) + len(already_seen_x_set) == len(self.dataset) / num_replicas + assert len(left_x_batches | already_seen_x_set) == len(self.dataset) / num_replicas + assert len(left_y_batches) + len(already_seen_y_set) == len(self.dataset) / num_replicas + assert len(left_y_batches | already_seen_y_set) == len(self.dataset) / num_replicas + finally: + rank_zero_rm(path) + + @magic_argv_env_context + @pytest.mark.parametrize("only_state_dict", ([True, False])) + @pytest.mark.parametrize("fp16", ([True, False])) + @pytest.mark.parametrize("device", ([[0,1]])) + def test_save_and_load_with_randomsampler(self, device, only_state_dict, fp16): + """ + 测试save和load函数,主要测试 dataloader 被替换了 batch_sampler 的情况 + """ + + try: + path = "model.ckp" + + num_replicas = len(device) + + self.driver1 = generate_driver(10, 10, device=device, fp16=fp16) + self.driver2 = generate_driver(10, 10, device=device, fp16=False) + + dataloader = dataloader_with_randomsampler(self.dataset, 4, True, False, unrepeated=False) + dataloader.batch_sampler.sampler.set_distributed( + num_replicas=self.driver1.world_size, + rank=self.driver1.global_rank, + pad=True + ) + num_consumed_batches = 2 + + already_seen_x_set = set() + already_seen_y_set = set() + for idx, batch in enumerate(dataloader): + if idx >= num_consumed_batches: + break + already_seen_x_set.update(batch["x"]) + already_seen_y_set.update(batch["y"]) + + # 同步 + dist.barrier() + + # 保存状态 + sampler_states = dataloader.batch_sampler.sampler.state_dict() + save_states = {"num_consumed_batches": num_consumed_batches} + if only_state_dict: + self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) + else: + self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[torch.ones((16, 10))]) + # 加载 + # 更改 batch_size + dataloader = dataloader_with_randomsampler(self.dataset, 2, True, False, unrepeated=False) + dataloader.batch_sampler.sampler.set_distributed( + num_replicas=self.driver2.world_size, + rank=self.driver2.global_rank, + pad=True + ) + load_states = self.driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) + replaced_loader = load_states.pop("dataloader") + + # 1. 检查 optimizer 的状态 + # TODO optimizer 的 state_dict 总是为空 + + # 2. 检查 sampler 是否被正确地加载和替换 + assert not (replaced_loader is dataloader) + assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) + assert replaced_loader.batch_sampler.sampler.seed == sampler_states["seed"] + assert replaced_loader.batch_sampler.sampler.epoch == sampler_states["epoch"] + assert replaced_loader.batch_sampler.sampler.num_consumed_samples == 4 * num_consumed_batches * num_replicas + assert len(replaced_loader.batch_sampler.sampler.dataset) == sampler_states["length"] + assert replaced_loader.batch_sampler.sampler.shuffle == sampler_states["shuffle"] + # 3. 检查 fp16 是否被加载 + if fp16: + assert isinstance(self.driver2.grad_scaler, torch.cuda.amp.GradScaler) + + # 4. 检查 model 的参数是否正确 + # 5. 检查 batch_idx + start_batch = load_states.pop('batch_idx_in_epoch') + assert start_batch == 2 * num_consumed_batches + left_x_batches = set() + left_y_batches = set() + for idx, batch in enumerate(replaced_loader): + + left_x_batches.update(batch["x"]) + left_y_batches.update(batch["y"]) + res1 = self.driver1.model( + batch, + fastnlp_fn=self.driver1.model.module.model.evaluate_step, + # Driver.model -> DataParallel.module -> _FleetWrappingModel.model + fastnlp_signature_fn=None, + wo_auto_param_call=False, + ) + res2 = self.driver2.model( + batch, + fastnlp_fn=self.driver2.model.module.model.evaluate_step, + fastnlp_signature_fn=None, + wo_auto_param_call=False, + ) + assert torch.equal(res1["preds"], res2["preds"]) + + assert len(left_x_batches) + len(already_seen_x_set) == len(self.dataset) / num_replicas + assert len(left_x_batches | already_seen_x_set) == len(self.dataset) / num_replicas + assert len(left_y_batches) + len(already_seen_y_set) == len(self.dataset) / num_replicas + assert len(left_y_batches | already_seen_y_set) == len(self.dataset) / num_replicas + + finally: + rank_zero_rm(path) \ No newline at end of file