update README.mdtags/v0.4.10
@@ -1,22 +1,28 @@ | |||
# text_classification任务模型复现 | |||
这里使用fastNLP复现以下模型: | |||
char_cnn :论文链接[Character-level Convolutional Networks for Text Classification](https://arxiv.org/pdf/1509.01626v3.pdf) | |||
dpcnn:论文链接[Deep Pyramid Convolutional Neural Networks for TextCategorization](https://ai.tencent.com/ailab/media/publications/ACL3-Brady.pdf) | |||
HAN:论文链接[Hierarchical Attention Networks for Document Classification](https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf) | |||
LSTM+self_attention:论文链接[A Structured Self-attentive Sentence Embedding](<https://arxiv.org/pdf/1703.03130.pdf>) | |||
AWD-LSTM:论文链接[Regularizing and Optimizing LSTM Language Models](<https://arxiv.org/pdf/1708.02182.pdf>) | |||
#待补充 | |||
awd_lstm: | |||
lstm_self_attention(BCN?): | |||
awd-sltm: | |||
# 数据集及复现结果汇总 | |||
使用fastNLP复现的结果vs论文汇报结果(/前为fastNLP实现,后面为论文报道,-表示论文没有在该数据集上列出结果) | |||
model name | yelp_p | sst-2|IMDB| | |||
:---: | :---: | :---: | :---: | |||
char_cnn | 93.80/95.12 | - |- | | |||
dpcnn | 95.50/97.36 | - |- | | |||
HAN |- | - |-| | |||
BCN| - |- |-| | |||
awd-lstm| - |- |-| | |||
model name | yelp_p | yelp_f | sst-2|IMDB | |||
:---: | :---: | :---: | :---: |----- | |||
char_cnn | 93.80/95.12 | - | - |- | |||
dpcnn | 95.50/97.36 | - | - |- | |||
HAN |- | - | - |- | |||
LSTM| 95.74/- |- |- |88.52/- | |||
AWD-LSTM| 95.96/- |- |- |88.91/- | |||
LSTM+self_attention| 96.34/- | - | - |89.53/- | |||
@@ -8,9 +8,7 @@ os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
import torch.nn as nn | |||
from data.SSTLoader import SSTLoader | |||
from data.IMDBLoader import IMDBLoader | |||
from data.yelpLoader import yelpLoader | |||
from fastNLP.modules.encoder.embedding import StaticEmbedding | |||
from model.awd_lstm import AWDLSTMSentiment | |||
@@ -35,24 +33,15 @@ class Config(): | |||
task_name = "IMDB" | |||
datapath={"train":"IMDB_data/train.csv", "test":"IMDB_data/test.csv"} | |||
load_model_path="./result_IMDB/best_BiLSTM_SELF_ATTENTION_acc_2019-07-07-04-16-51" | |||
save_model_path="./result_IMDB_test/" | |||
opt=Config | |||
opt=Config() | |||
# load data | |||
dataloaders = { | |||
"IMDB":IMDBLoader(), | |||
"YELP":yelpLoader(), | |||
"SST-5":SSTLoader(subtree=True,fine_grained=True), | |||
"SST-3":SSTLoader(subtree=True,fine_grained=False) | |||
} | |||
if opt.task_name not in ["IMDB", "YELP", "SST-5", "SST-3"]: | |||
raise ValueError("task name must in ['IMDB', 'YELP, 'SST-5', 'SST-3']") | |||
dataloader = dataloaders[opt.task_name] | |||
# load data | |||
dataloader=IMDBLoader() | |||
datainfo=dataloader.process(opt.datapath) | |||
# print(datainfo.datasets["train"]) | |||
# print(datainfo) | |||
@@ -71,32 +60,10 @@ optimizer= Adam([param for param in model.parameters() if param.requires_grad==T | |||
def train(datainfo, model, optimizer, loss, metrics, opt): | |||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
metrics=metrics, dev_data=datainfo.datasets['dev'], device=0, check_code_level=-1, | |||
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1, | |||
n_epochs=opt.train_epoch, save_path=opt.save_model_path) | |||
trainer.train() | |||
def test(datainfo, metrics, opt): | |||
# load model | |||
model = ModelLoader.load_pytorch_model(opt.load_model_path) | |||
print("model loaded!") | |||
# Tester | |||
tester = Tester(datainfo.datasets['test'], model, metrics, batch_size=4, device=0) | |||
acc = tester.test() | |||
print("acc=",acc) | |||
parser = argparse.ArgumentParser() | |||
parser.add_argument('--mode', required=True, dest="mode",help='set the model\'s model') | |||
args = parser.parse_args() | |||
if args.mode == 'train': | |||
if __name__ == "__main__": | |||
train(datainfo, model, optimizer, loss, metrics, opt) | |||
elif args.mode == 'test': | |||
test(datainfo, metrics, opt) | |||
else: | |||
print('no mode specified for model!') | |||
parser.print_help() |
@@ -6,9 +6,7 @@ os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
import torch.nn as nn | |||
from data.SSTLoader import SSTLoader | |||
from data.IMDBLoader import IMDBLoader | |||
from data.yelpLoader import yelpLoader | |||
from fastNLP.modules.encoder.embedding import StaticEmbedding | |||
from model.lstm import BiLSTMSentiment | |||
@@ -32,24 +30,15 @@ class Config(): | |||
task_name = "IMDB" | |||
datapath={"train":"IMDB_data/train.csv", "test":"IMDB_data/test.csv"} | |||
load_model_path="./result_IMDB/best_BiLSTM_SELF_ATTENTION_acc_2019-07-07-04-16-51" | |||
save_model_path="./result_IMDB_test/" | |||
opt=Config | |||
opt=Config() | |||
# load data | |||
dataloaders = { | |||
"IMDB":IMDBLoader(), | |||
"YELP":yelpLoader(), | |||
"SST-5":SSTLoader(subtree=True,fine_grained=True), | |||
"SST-3":SSTLoader(subtree=True,fine_grained=False) | |||
} | |||
if opt.task_name not in ["IMDB", "YELP", "SST-5", "SST-3"]: | |||
raise ValueError("task name must in ['IMDB', 'YELP, 'SST-5', 'SST-3']") | |||
dataloader = dataloaders[opt.task_name] | |||
# load data | |||
dataloader=IMDBLoader() | |||
datainfo=dataloader.process(opt.datapath) | |||
# print(datainfo.datasets["train"]) | |||
# print(datainfo) | |||
@@ -68,32 +57,10 @@ optimizer= Adam([param for param in model.parameters() if param.requires_grad==T | |||
def train(datainfo, model, optimizer, loss, metrics, opt): | |||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
metrics=metrics, dev_data=datainfo.datasets['dev'], device=0, check_code_level=-1, | |||
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1, | |||
n_epochs=opt.train_epoch, save_path=opt.save_model_path) | |||
trainer.train() | |||
def test(datainfo, metrics, opt): | |||
# load model | |||
model = ModelLoader.load_pytorch_model(opt.load_model_path) | |||
print("model loaded!") | |||
# Tester | |||
tester = Tester(datainfo.datasets['test'], model, metrics, batch_size=4, device=0) | |||
acc = tester.test() | |||
print("acc=",acc) | |||
parser = argparse.ArgumentParser() | |||
parser.add_argument('--mode', required=True, dest="mode",help='set the model\'s model') | |||
args = parser.parse_args() | |||
if args.mode == 'train': | |||
train(datainfo, model, optimizer, loss, metrics, opt) | |||
elif args.mode == 'test': | |||
test(datainfo, metrics, opt) | |||
else: | |||
print('no mode specified for model!') | |||
parser.print_help() | |||
if __name__ == "__main__": | |||
train(datainfo, model, optimizer, loss, metrics, opt) |
@@ -6,9 +6,7 @@ os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
import torch.nn as nn | |||
from data.SSTLoader import SSTLoader | |||
from data.IMDBLoader import IMDBLoader | |||
from data.yelpLoader import yelpLoader | |||
from fastNLP.modules.encoder.embedding import StaticEmbedding | |||
from model.lstm_self_attention import BiLSTM_SELF_ATTENTION | |||
@@ -34,24 +32,15 @@ class Config(): | |||
task_name = "IMDB" | |||
datapath={"train":"IMDB_data/train.csv", "test":"IMDB_data/test.csv"} | |||
load_model_path="./result_IMDB/best_BiLSTM_SELF_ATTENTION_acc_2019-07-07-04-16-51" | |||
save_model_path="./result_IMDB_test/" | |||
opt=Config | |||
opt=Config() | |||
# load data | |||
dataloaders = { | |||
"IMDB":IMDBLoader(), | |||
"YELP":yelpLoader(), | |||
"SST-5":SSTLoader(subtree=True,fine_grained=True), | |||
"SST-3":SSTLoader(subtree=True,fine_grained=False) | |||
} | |||
if opt.task_name not in ["IMDB", "YELP", "SST-5", "SST-3"]: | |||
raise ValueError("task name must in ['IMDB', 'YELP, 'SST-5', 'SST-3']") | |||
dataloader = dataloaders[opt.task_name] | |||
# load data | |||
dataloader=IMDBLoader() | |||
datainfo=dataloader.process(opt.datapath) | |||
# print(datainfo.datasets["train"]) | |||
# print(datainfo) | |||
@@ -70,32 +59,10 @@ optimizer= Adam([param for param in model.parameters() if param.requires_grad==T | |||
def train(datainfo, model, optimizer, loss, metrics, opt): | |||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
metrics=metrics, dev_data=datainfo.datasets['dev'], device=0, check_code_level=-1, | |||
metrics=metrics, dev_data=datainfo.datasets['test'], device=0, check_code_level=-1, | |||
n_epochs=opt.train_epoch, save_path=opt.save_model_path) | |||
trainer.train() | |||
def test(datainfo, metrics, opt): | |||
# load model | |||
model = ModelLoader.load_pytorch_model(opt.load_model_path) | |||
print("model loaded!") | |||
# Tester | |||
tester = Tester(datainfo.datasets['test'], model, metrics, batch_size=4, device=0) | |||
acc = tester.test() | |||
print("acc=",acc) | |||
parser = argparse.ArgumentParser() | |||
parser.add_argument('--mode', required=True, dest="mode",help='set the model\'s model') | |||
args = parser.parse_args() | |||
if args.mode == 'train': | |||
if __name__ == "__main__": | |||
train(datainfo, model, optimizer, loss, metrics, opt) | |||
elif args.mode == 'test': | |||
test(datainfo, metrics, opt) | |||
else: | |||
print('no mode specified for model!') | |||
parser.print_help() |