@@ -5,10 +5,8 @@ from ..base_loader import DataInfo, DataSetLoader | |||
from ...core.vocabulary import VocabularyOption, Vocabulary | |||
from ...core.dataset import DataSet | |||
from ...core.instance import Instance | |||
from ..embed_loader import EmbeddingOption, EmbedLoader | |||
from ..utils import check_dataloader_paths, get_tokenizer | |||
spacy.prefer_gpu() | |||
sptk = spacy.load('en') | |||
class SSTLoader(DataSetLoader): | |||
URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip' | |||
@@ -37,6 +35,7 @@ class SSTLoader(DataSetLoader): | |||
tag_v['0'] = tag_v['1'] | |||
tag_v['4'] = tag_v['3'] | |||
self.tag_v = tag_v | |||
self.tokenizer = get_tokenizer() | |||
def _load(self, path): | |||
""" | |||
@@ -55,29 +54,37 @@ class SSTLoader(DataSetLoader): | |||
ds.append(Instance(words=words, target=tag)) | |||
return ds | |||
@staticmethod | |||
def _get_one(data, subtree): | |||
def _get_one(self, data, subtree): | |||
tree = Tree.fromstring(data) | |||
if subtree: | |||
return [([x.text for x in sptk.tokenizer(' '.join(t.leaves()))], t.label()) for t in tree.subtrees() ] | |||
return [([x.text for x in sptk.tokenizer(' '.join(tree.leaves()))], tree.label())] | |||
return [([x.text for x in self.tokenizer(' '.join(t.leaves()))], t.label()) for t in tree.subtrees() ] | |||
return [([x.text for x in self.tokenizer(' '.join(tree.leaves()))], tree.label())] | |||
def process(self, | |||
paths, | |||
train_ds: Iterable[str] = None, | |||
paths, train_subtree=True, | |||
src_vocab_op: VocabularyOption = None, | |||
tgt_vocab_op: VocabularyOption = None, | |||
src_embed_op: EmbeddingOption = None): | |||
tgt_vocab_op: VocabularyOption = None,): | |||
paths = check_dataloader_paths(paths) | |||
input_name, target_name = 'words', 'target' | |||
src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op) | |||
tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op) | |||
info = DataInfo(datasets=self.load(paths)) | |||
_train_ds = [info.datasets[name] | |||
for name in train_ds] if train_ds else info.datasets.values() | |||
src_vocab.from_dataset(*_train_ds, field_name=input_name) | |||
tgt_vocab.from_dataset(*_train_ds, field_name=target_name) | |||
info = DataInfo() | |||
origin_subtree = self.subtree | |||
self.subtree = train_subtree | |||
info.datasets['train'] = self._load(paths['train']) | |||
self.subtree = origin_subtree | |||
for n, p in paths.items(): | |||
if n != 'train': | |||
info.datasets[n] = self._load(p) | |||
src_vocab.from_dataset( | |||
info.datasets['train'], | |||
field_name=input_name, | |||
no_create_entry_dataset=[ds for n, ds in info.datasets.items() if n != 'train']) | |||
tgt_vocab.from_dataset(info.datasets['train'], field_name=target_name) | |||
src_vocab.index_dataset( | |||
*info.datasets.values(), | |||
field_name=input_name, new_field_name=input_name) | |||
@@ -89,10 +96,5 @@ class SSTLoader(DataSetLoader): | |||
target_name: tgt_vocab | |||
} | |||
if src_embed_op is not None: | |||
src_embed_op.vocab = src_vocab | |||
init_emb = EmbedLoader.load_with_vocab(**src_embed_op) | |||
info.embeddings[input_name] = init_emb | |||
return info | |||
@@ -0,0 +1,69 @@ | |||
import os | |||
from typing import Union, Dict | |||
def check_dataloader_paths(paths:Union[str, Dict[str, str]])->Dict[str, str]: | |||
""" | |||
检查传入dataloader的文件的合法性。如果为合法路径,将返回至少包含'train'这个key的dict。类似于下面的结果 | |||
{ | |||
'train': '/some/path/to/', # 一定包含,建词表应该在这上面建立,剩下的其它文件应该只需要处理并index。 | |||
'test': 'xxx' # 可能有,也可能没有 | |||
... | |||
} | |||
如果paths为不合法的,将直接进行raise相应的错误 | |||
:param paths: 路径. 可以为一个文件路径(则认为该文件就是train的文件); 可以为一个文件目录,将在该目录下寻找train(文件名 | |||
中包含train这个字段), test.txt, dev.txt; 可以为一个dict, 则key是用户自定义的某个文件的名称,value是这个文件的路径。 | |||
:return: | |||
""" | |||
if isinstance(paths, str): | |||
if os.path.isfile(paths): | |||
return {'train': paths} | |||
elif os.path.isdir(paths): | |||
filenames = os.listdir(paths) | |||
files = {} | |||
for filename in filenames: | |||
path_pair = None | |||
if 'train' in filename: | |||
path_pair = ('train', filename) | |||
if 'dev' in filename: | |||
if path_pair: | |||
raise Exception("File:{} in {} contains bot `{}` and `dev`.".format(filename, paths, path_pair[0])) | |||
path_pair = ('dev', filename) | |||
if 'test' in filename: | |||
if path_pair: | |||
raise Exception("File:{} in {} contains bot `{}` and `test`.".format(filename, paths, path_pair[0])) | |||
path_pair = ('test', filename) | |||
if path_pair: | |||
files[path_pair[0]] = os.path.join(paths, path_pair[1]) | |||
return files | |||
else: | |||
raise FileNotFoundError(f"{paths} is not a valid file path.") | |||
elif isinstance(paths, dict): | |||
if paths: | |||
if 'train' not in paths: | |||
raise KeyError("You have to include `train` in your dict.") | |||
for key, value in paths.items(): | |||
if isinstance(key, str) and isinstance(value, str): | |||
if not os.path.isfile(value): | |||
raise TypeError(f"{value} is not a valid file.") | |||
else: | |||
raise TypeError("All keys and values in paths should be str.") | |||
return paths | |||
else: | |||
raise ValueError("Empty paths is not allowed.") | |||
else: | |||
raise TypeError(f"paths only supports str and dict. not {type(paths)}.") | |||
def get_tokenizer(): | |||
try: | |||
import spacy | |||
spacy.prefer_gpu() | |||
en = spacy.load('en') | |||
print('use spacy tokenizer') | |||
return lambda x: [w.text for w in en.tokenizer(x)] | |||
except Exception as e: | |||
print('use raw tokenizer') | |||
return lambda x: x.split() |
@@ -6,7 +6,7 @@ paper: [Star-Transformer](https://arxiv.org/abs/1902.09113) | |||
|Pos Tagging|CTB 9.0|-|ACC 92.31| | |||
|Pos Tagging|CONLL 2012|-|ACC 96.51| | |||
|Named Entity Recognition|CONLL 2012|-|F1 85.66| | |||
|Text Classification|SST|-|49.18| | |||
|Text Classification|SST|-|51.2| | |||
|Natural Language Inference|SNLI|-|83.76| | |||
## Usage | |||
@@ -0,0 +1,105 @@ | |||
import argparse | |||
import torch | |||
import os | |||
from fastNLP.core import Trainer, Tester, Adam, AccuracyMetric, Const | |||
from fastNLP.modules.encoder.embedding import StaticEmbedding | |||
from reproduction.matching.data.MatchingDataLoader import QNLILoader, RTELoader, SNLILoader, MNLILoader | |||
from reproduction.matching.model.cntn import CNTNModel | |||
# define hyper-parameters | |||
argument = argparse.ArgumentParser() | |||
argument.add_argument('--embedding', choices=['glove', 'word2vec'], default='glove') | |||
argument.add_argument('--batch-size-per-gpu', type=int, default=256) | |||
argument.add_argument('--n-epochs', type=int, default=200) | |||
argument.add_argument('--lr', type=float, default=1e-5) | |||
argument.add_argument('--seq-len-type', choices=['mask', 'seq_len'], default='mask') | |||
argument.add_argument('--save-dir', type=str, default=None) | |||
argument.add_argument('--cntn-depth', type=int, default=1) | |||
argument.add_argument('--cntn-ns', type=int, default=200) | |||
argument.add_argument('--cntn-k-top', type=int, default=10) | |||
argument.add_argument('--cntn-r', type=int, default=5) | |||
argument.add_argument('--dataset', choices=['qnli', 'rte', 'snli', 'mnli'], default='qnli') | |||
argument.add_argument('--max-len', type=int, default=50) | |||
arg = argument.parse_args() | |||
# dataset dict | |||
dev_dict = { | |||
'qnli': 'dev', | |||
'rte': 'dev', | |||
'snli': 'dev', | |||
'mnli': 'dev_matched', | |||
} | |||
test_dict = { | |||
'qnli': 'dev', | |||
'rte': 'dev', | |||
'snli': 'test', | |||
'mnli': 'dev_matched', | |||
} | |||
# set num_labels | |||
if arg.dataset == 'qnli' or arg.dataset == 'rte': | |||
num_labels = 2 | |||
else: | |||
num_labels = 3 | |||
# load data set | |||
if arg.dataset == 'qnli': | |||
data_info = QNLILoader().process( | |||
paths='path/to/qnli/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None, | |||
get_index=True, concat=False, auto_pad_length=arg.max_len) | |||
elif arg.dataset == 'rte': | |||
data_info = RTELoader().process( | |||
paths='path/to/rte/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None, | |||
get_index=True, concat=False, auto_pad_length=arg.max_len) | |||
elif arg.dataset == 'snli': | |||
data_info = SNLILoader().process( | |||
paths='path/to/snli/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None, | |||
get_index=True, concat=False, auto_pad_length=arg.max_len) | |||
elif arg.dataset == 'mnli': | |||
data_info = MNLILoader().process( | |||
paths='path/to/mnli/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None, | |||
get_index=True, concat=False, auto_pad_length=arg.max_len) | |||
else: | |||
raise ValueError(f'now we only support [qnli,rte,snli,mnli] dataset for cntn model!') | |||
# load embedding | |||
if arg.embedding == 'word2vec': | |||
embedding = StaticEmbedding(data_info.vocabs[Const.INPUT], model_dir_or_name='en-word2vec-300', requires_grad=True) | |||
elif arg.embedding == 'glove': | |||
embedding = StaticEmbedding(data_info.vocabs[Const.INPUT], model_dir_or_name='en-glove-840b-300', | |||
requires_grad=True) | |||
else: | |||
raise ValueError(f'now we only support word2vec or glove embedding for cntn model!') | |||
# define model | |||
model = CNTNModel(embedding, ns=arg.cntn_ns, k_top=arg.cntn_k_top, num_labels=num_labels, depth=arg.cntn_depth, | |||
r=arg.cntn_r) | |||
print(model) | |||
# define trainer | |||
trainer = Trainer(train_data=data_info.datasets['train'], model=model, | |||
optimizer=Adam(lr=arg.lr, model_params=model.parameters()), | |||
batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu, | |||
n_epochs=arg.n_epochs, print_every=-1, | |||
dev_data=data_info.datasets[dev_dict[arg.dataset]], | |||
metrics=AccuracyMetric(), metric_key='acc', | |||
device=[i for i in range(torch.cuda.device_count())], | |||
check_code_level=-1) | |||
# train model | |||
trainer.train(load_best_model=True) | |||
# define tester | |||
tester = Tester( | |||
data=data_info.datasets[test_dict[arg.dataset]], | |||
model=model, | |||
metrics=AccuracyMetric(), | |||
batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu, | |||
device=[i for i in range(torch.cuda.device_count())] | |||
) | |||
# test model | |||
tester.test() |
@@ -0,0 +1,120 @@ | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
import numpy as np | |||
from torch.nn import CrossEntropyLoss | |||
from fastNLP.models import BaseModel | |||
from fastNLP.modules.encoder.embedding import TokenEmbedding | |||
from fastNLP.core.const import Const | |||
class DynamicKMaxPooling(nn.Module): | |||
""" | |||
:param k_top: Fixed number of pooling output features for the topmost convolutional layer. | |||
:param l: Number of convolutional layers. | |||
""" | |||
def __init__(self, k_top, l): | |||
super(DynamicKMaxPooling, self).__init__() | |||
self.k_top = k_top | |||
self.L = l | |||
def forward(self, x, l): | |||
""" | |||
:param x: Input sequence. | |||
:param l: Current convolutional layers. | |||
""" | |||
s = x.size()[3] | |||
k_ll = ((self.L - l) / self.L) * s | |||
k_l = int(round(max(self.k_top, np.ceil(k_ll)))) | |||
out = F.adaptive_max_pool2d(x, (x.size()[2], k_l)) | |||
return out | |||
class CNTNModel(BaseModel): | |||
""" | |||
使用CNN进行问答匹配的模型 | |||
'Qiu, Xipeng, and Xuanjing Huang. | |||
Convolutional neural tensor network architecture for community-based question answering. | |||
Twenty-Fourth International Joint Conference on Artificial Intelligence. 2015.' | |||
:param init_embedding: Embedding. | |||
:param ns: Sentence embedding size. | |||
:param k_top: Fixed number of pooling output features for the topmost convolutional layer. | |||
:param num_labels: Number of labels. | |||
:param depth: Number of convolutional layers. | |||
:param r: Number of weight tensor slices. | |||
:param drop_rate: Dropout rate. | |||
""" | |||
def __init__(self, init_embedding: TokenEmbedding, ns=200, k_top=10, num_labels=2, depth=2, r=5, | |||
dropout_rate=0.3): | |||
super(CNTNModel, self).__init__() | |||
self.embedding = init_embedding | |||
self.depth = depth | |||
self.kmaxpooling = DynamicKMaxPooling(k_top, depth) | |||
self.conv_q = nn.ModuleList() | |||
self.conv_a = nn.ModuleList() | |||
width = self.embedding.embed_size | |||
for i in range(depth): | |||
self.conv_q.append(nn.Sequential( | |||
nn.Dropout(p=dropout_rate), | |||
nn.Conv2d( | |||
in_channels=1, | |||
out_channels=width // 2, | |||
kernel_size=(width, 3), | |||
padding=(0, 2)) | |||
)) | |||
self.conv_a.append(nn.Sequential( | |||
nn.Dropout(p=dropout_rate), | |||
nn.Conv2d( | |||
in_channels=1, | |||
out_channels=width // 2, | |||
kernel_size=(width, 3), | |||
padding=(0, 2)) | |||
)) | |||
width = width // 2 | |||
self.fc_q = nn.Sequential(nn.Dropout(p=dropout_rate), nn.Linear(width * k_top, ns)) | |||
self.fc_a = nn.Sequential(nn.Dropout(p=dropout_rate), nn.Linear(width * k_top, ns)) | |||
self.weight_M = nn.Bilinear(ns, ns, r) | |||
self.weight_V = nn.Linear(2 * ns, r) | |||
self.weight_u = nn.Sequential(nn.Dropout(p=dropout_rate), nn.Linear(r, num_labels)) | |||
def forward(self, words1, words2, seq_len1, seq_len2, target=None): | |||
""" | |||
:param words1: [batch, seq_len, emb_size] Question. | |||
:param words2: [batch, seq_len, emb_size] Answer. | |||
:param seq_len1: [batch] | |||
:param seq_len2: [batch] | |||
:param target: [batch] Glod labels. | |||
:return: | |||
""" | |||
in_q = self.embedding(words1) | |||
in_a = self.embedding(words2) | |||
in_q = in_q.permute(0, 2, 1).unsqueeze(1) | |||
in_a = in_a.permute(0, 2, 1).unsqueeze(1) | |||
for i in range(self.depth): | |||
in_q = F.relu(self.conv_q[i](in_q)) | |||
in_q = in_q.squeeze().unsqueeze(1) | |||
in_q = self.kmaxpooling(in_q, i + 1) | |||
in_a = F.relu(self.conv_a[i](in_a)) | |||
in_a = in_a.squeeze().unsqueeze(1) | |||
in_a = self.kmaxpooling(in_a, i + 1) | |||
in_q = self.fc_q(in_q.view(in_q.size(0), -1)) | |||
in_a = self.fc_q(in_a.view(in_a.size(0), -1)) | |||
score = torch.tanh(self.weight_u(self.weight_M(in_q, in_a) + self.weight_V(torch.cat((in_q, in_a), -1)))) | |||
if target is not None: | |||
loss_fct = CrossEntropyLoss() | |||
loss = loss_fct(score, target) | |||
return {Const.LOSS: loss, Const.OUTPUT: score} | |||
else: | |||
return {Const.OUTPUT: score} | |||
def predict(self, **kwargs): | |||
return self.forward(**kwargs) |
@@ -8,16 +8,23 @@ from fastNLP.core.const import Const as C | |||
class IDCNN(nn.Module): | |||
def __init__(self, init_embed, char_embed, | |||
def __init__(self, | |||
init_embed, | |||
char_embed, | |||
num_cls, | |||
repeats, num_layers, num_filters, kernel_size, | |||
use_crf=False, use_projection=False, block_loss=False, | |||
input_dropout=0.3, hidden_dropout=0.2, inner_dropout=0.0): | |||
super(IDCNN, self).__init__() | |||
self.word_embeddings = Embedding(init_embed) | |||
self.char_embeddings = Embedding(char_embed) | |||
embedding_size = self.word_embeddings.embedding_dim + \ | |||
self.char_embeddings.embedding_dim | |||
if char_embed is None: | |||
self.char_embeddings = None | |||
embedding_size = self.word_embeddings.embedding_dim | |||
else: | |||
self.char_embeddings = Embedding(char_embed) | |||
embedding_size = self.word_embeddings.embedding_dim + \ | |||
self.char_embeddings.embedding_dim | |||
self.conv0 = nn.Sequential( | |||
nn.Conv1d(in_channels=embedding_size, | |||
@@ -31,7 +38,7 @@ class IDCNN(nn.Module): | |||
block = [] | |||
for layer_i in range(num_layers): | |||
dilated = 2 ** layer_i | |||
dilated = 2 ** layer_i if layer_i+1 < num_layers else 1 | |||
block.append(nn.Conv1d( | |||
in_channels=num_filters, | |||
out_channels=num_filters, | |||
@@ -67,11 +74,24 @@ class IDCNN(nn.Module): | |||
self.crf = ConditionalRandomField( | |||
num_tags=num_cls) if use_crf else None | |||
self.block_loss = block_loss | |||
self.reset_parameters() | |||
def forward(self, words, chars, seq_len, target=None): | |||
e1 = self.word_embeddings(words) | |||
e2 = self.char_embeddings(chars) | |||
x = torch.cat((e1, e2), dim=-1) # b,l,h | |||
def reset_parameters(self): | |||
for m in self.modules(): | |||
if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Linear)): | |||
nn.init.xavier_normal_(m.weight, gain=1) | |||
if m.bias is not None: | |||
nn.init.normal_(m.bias, mean=0, std=0.01) | |||
def forward(self, words, seq_len, target=None, chars=None): | |||
if self.char_embeddings is None: | |||
x = self.word_embeddings(words) | |||
else: | |||
if chars is None: | |||
raise ValueError('must provide chars for model with char embedding') | |||
e1 = self.word_embeddings(words) | |||
e2 = self.char_embeddings(chars) | |||
x = torch.cat((e1, e2), dim=-1) # b,l,h | |||
mask = seq_len_to_mask(seq_len) | |||
x = x.transpose(1, 2) # b,h,l | |||
@@ -84,21 +104,24 @@ class IDCNN(nn.Module): | |||
def compute_loss(y, t, mask): | |||
if self.crf is not None and target is not None: | |||
loss = self.crf(y, t, mask) | |||
loss = self.crf(y.transpose(1, 2), t, mask) | |||
else: | |||
t.masked_fill_(mask == 0, -100) | |||
loss = F.cross_entropy(y, t, ignore_index=-100) | |||
return loss | |||
if self.block_loss: | |||
losses = [compute_loss(o, target, mask) for o in output] | |||
loss = sum(losses) | |||
if target is not None: | |||
if self.block_loss: | |||
losses = [compute_loss(o, target, mask) for o in output] | |||
loss = sum(losses) | |||
else: | |||
loss = compute_loss(output[-1], target, mask) | |||
else: | |||
loss = compute_loss(output[-1], target, mask) | |||
loss = None | |||
scores = output[-1] | |||
if self.crf is not None: | |||
pred = self.crf.viterbi_decode(scores, target, mask) | |||
pred, _ = self.crf.viterbi_decode(scores.transpose(1, 2), mask) | |||
else: | |||
pred = scores.max(1)[1] * mask.long() | |||
@@ -107,5 +130,13 @@ class IDCNN(nn.Module): | |||
C.OUTPUT: pred, | |||
} | |||
def predict(self, words, chars, seq_len): | |||
return self.forward(words, chars, seq_len)[C.OUTPUT] | |||
def predict(self, words, seq_len, chars=None): | |||
res = self.forward( | |||
words=words, | |||
seq_len=seq_len, | |||
chars=chars, | |||
target=None | |||
)[C.OUTPUT] | |||
return { | |||
C.OUTPUT: res | |||
} |
@@ -0,0 +1,99 @@ | |||
from reproduction.seqence_labelling.ner.data.OntoNoteLoader import OntoNoteNERDataLoader | |||
from fastNLP.core.callback import FitlogCallback, LRScheduler | |||
from fastNLP import GradientClipCallback | |||
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR | |||
from torch.optim import SGD, Adam | |||
from fastNLP import Const | |||
from fastNLP import RandomSampler, BucketSampler | |||
from fastNLP import SpanFPreRecMetric | |||
from fastNLP import Trainer | |||
from reproduction.seqence_labelling.ner.model.dilated_cnn import IDCNN | |||
from fastNLP.core.utils import Option | |||
from fastNLP.modules.encoder.embedding import CNNCharEmbedding, StaticEmbedding | |||
from fastNLP.core.utils import cache_results | |||
import sys | |||
import torch.cuda | |||
import os | |||
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | |||
encoding_type = 'bioes' | |||
def get_path(path): | |||
return os.path.join(os.environ['HOME'], path) | |||
data_path = get_path('workdir/datasets/ontonotes-v4') | |||
ops = Option( | |||
batch_size=128, | |||
num_epochs=100, | |||
lr=3e-4, | |||
repeats=3, | |||
num_layers=3, | |||
num_filters=400, | |||
use_crf=True, | |||
gradient_clip=5, | |||
) | |||
@cache_results('ontonotes-cache') | |||
def load_data(): | |||
data = OntoNoteNERDataLoader(encoding_type=encoding_type).process(data_path, | |||
lower=True) | |||
# char_embed = CNNCharEmbedding(vocab=data.vocabs['cap_words'], embed_size=30, char_emb_size=30, filter_nums=[30], | |||
# kernel_sizes=[3]) | |||
word_embed = StaticEmbedding(vocab=data.vocabs[Const.INPUT], | |||
model_dir_or_name='en-glove-840b-300', | |||
requires_grad=True) | |||
return data, [word_embed] | |||
data, embeds = load_data() | |||
print(data.datasets['train'][0]) | |||
print(list(data.vocabs.keys())) | |||
for ds in data.datasets.values(): | |||
ds.rename_field('cap_words', 'chars') | |||
ds.set_input('chars') | |||
word_embed = embeds[0] | |||
char_embed = CNNCharEmbedding(data.vocabs['cap_words']) | |||
# for ds in data.datasets: | |||
# ds.rename_field('') | |||
print(data.vocabs[Const.TARGET].word2idx) | |||
model = IDCNN(init_embed=word_embed, | |||
char_embed=char_embed, | |||
num_cls=len(data.vocabs[Const.TARGET]), | |||
repeats=ops.repeats, | |||
num_layers=ops.num_layers, | |||
num_filters=ops.num_filters, | |||
kernel_size=3, | |||
use_crf=ops.use_crf, use_projection=True, | |||
block_loss=True, | |||
input_dropout=0.33, hidden_dropout=0.2, inner_dropout=0.2) | |||
print(model) | |||
callbacks = [GradientClipCallback(clip_value=ops.gradient_clip, clip_type='norm'),] | |||
optimizer = Adam(model.parameters(), lr=ops.lr, weight_decay=0) | |||
# scheduler = LRScheduler(LambdaLR(optimizer, lr_lambda=lambda epoch: 1 / (1 + 0.05 * epoch))) | |||
# callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 15))) | |||
# optimizer = SWATS(model.parameters(), verbose=True) | |||
# optimizer = Adam(model.parameters(), lr=0.005) | |||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |||
trainer = Trainer(train_data=data.datasets['train'], model=model, optimizer=optimizer, | |||
sampler=BucketSampler(num_buckets=50, batch_size=ops.batch_size), | |||
device=device, dev_data=data.datasets['dev'], batch_size=ops.batch_size, | |||
metrics=SpanFPreRecMetric( | |||
tag_vocab=data.vocabs[Const.TARGET], encoding_type=encoding_type), | |||
check_code_level=-1, | |||
callbacks=callbacks, num_workers=2, n_epochs=ops.num_epochs) | |||
trainer.train() |
@@ -5,7 +5,8 @@ from fastNLP.core.vocabulary import VocabularyOption, Vocabulary | |||
from fastNLP import DataSet | |||
from fastNLP import Instance | |||
from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader | |||
import csv | |||
from typing import Union, Dict | |||
class SSTLoader(DataSetLoader): | |||
URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip' | |||
@@ -97,3 +98,90 @@ class SSTLoader(DataSetLoader): | |||
return info | |||
class sst2Loader(DataSetLoader): | |||
''' | |||
数据来源"SST":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8', | |||
''' | |||
def __init__(self): | |||
super(sst2Loader, self).__init__() | |||
def _load(self, path: str) -> DataSet: | |||
ds = DataSet() | |||
all_count=0 | |||
csv_reader = csv.reader(open(path, encoding='utf-8'),delimiter='\t') | |||
skip_row = 0 | |||
for idx,row in enumerate(csv_reader): | |||
if idx<=skip_row: | |||
continue | |||
target = row[1] | |||
words = row[0].split() | |||
ds.append(Instance(words=words,target=target)) | |||
all_count+=1 | |||
print("all count:", all_count) | |||
return ds | |||
def process(self, | |||
paths: Union[str, Dict[str, str]], | |||
src_vocab_opt: VocabularyOption = None, | |||
tgt_vocab_opt: VocabularyOption = None, | |||
src_embed_opt: EmbeddingOption = None, | |||
char_level_op=False): | |||
paths = check_dataloader_paths(paths) | |||
datasets = {} | |||
info = DataInfo() | |||
for name, path in paths.items(): | |||
dataset = self.load(path) | |||
datasets[name] = dataset | |||
def wordtochar(words): | |||
chars=[] | |||
for word in words: | |||
word=word.lower() | |||
for char in word: | |||
chars.append(char) | |||
return chars | |||
input_name, target_name = 'words', 'target' | |||
info.vocabs={} | |||
# 就分隔为char形式 | |||
if char_level_op: | |||
for dataset in datasets.values(): | |||
dataset.apply_field(wordtochar, field_name="words", new_field_name='chars') | |||
src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt) | |||
src_vocab.from_dataset(datasets['train'], field_name='words') | |||
src_vocab.index_dataset(*datasets.values(), field_name='words') | |||
tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt) | |||
tgt_vocab.from_dataset(datasets['train'], field_name='target') | |||
tgt_vocab.index_dataset(*datasets.values(), field_name='target') | |||
info.vocabs = { | |||
"words": src_vocab, | |||
"target": tgt_vocab | |||
} | |||
info.datasets = datasets | |||
if src_embed_opt is not None: | |||
embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab) | |||
info.embeddings['words'] = embed | |||
return info | |||
if __name__=="__main__": | |||
datapath = {"train": "/remote-home/ygwang/workspace/GLUE/SST-2/train.tsv", | |||
"dev": "/remote-home/ygwang/workspace/GLUE/SST-2/dev.tsv"} | |||
datainfo=sst2Loader().process(datapath,char_level_op=True) | |||
#print(datainfo.datasets["train"]) | |||
len_count = 0 | |||
for instance in datainfo.datasets["train"]: | |||
len_count += len(instance["chars"]) | |||
ave_len = len_count / len(datainfo.datasets["train"]) | |||
print(ave_len) |
@@ -8,19 +8,7 @@ from fastNLP.io.base_loader import DataInfo,DataSetLoader | |||
from fastNLP.io.embed_loader import EmbeddingOption | |||
from fastNLP.io.file_reader import _read_json | |||
from typing import Union, Dict | |||
from reproduction.utils import check_dataloader_paths | |||
def get_tokenizer(): | |||
try: | |||
import spacy | |||
en = spacy.load('en') | |||
print('use spacy tokenizer') | |||
return lambda x: [w.text for w in en.tokenizer(x)] | |||
except Exception as e: | |||
print('use raw tokenizer') | |||
return lambda x: x.split() | |||
from reproduction.utils import check_dataloader_paths, get_tokenizer | |||
def clean_str(sentence, tokenizer, char_lower=False): | |||
""" | |||
@@ -118,7 +106,7 @@ class yelpLoader(DataSetLoader): | |||
print("all count:",all_count) | |||
return ds | |||
''' | |||
def _load(self, path): | |||
ds = DataSet() | |||
csv_reader=csv.reader(open(path,encoding='utf-8')) | |||
@@ -128,7 +116,7 @@ class yelpLoader(DataSetLoader): | |||
all_count+=1 | |||
if len(row)==2: | |||
target=self.tag_v[row[0]+".0"] | |||
words=clean_str(row[1],self.tokenizer,self.lower) | |||
words = clean_str(row[1], self.tokenizer, self.lower) | |||
if len(words)!=0: | |||
ds.append(Instance(words=words,target=target)) | |||
real_count += 1 | |||
@@ -1,4 +1,3 @@ | |||
import torch | |||
import torch.nn as nn | |||
from fastNLP.modules.utils import get_embeddings | |||
@@ -11,13 +10,11 @@ class DPCNN(nn.Module): | |||
super().__init__() | |||
self.region_embed = RegionEmbedding( | |||
init_embed, out_dim=n_filters, kernel_sizes=[1, 3, 5]) | |||
embed_dim = self.region_embed.embedding_dim | |||
self.conv_list = nn.ModuleList() | |||
for i in range(n_layers): | |||
self.conv_list.append(nn.Sequential( | |||
nn.ReLU(), | |||
nn.Conv1d(n_filters, n_filters, kernel_size, | |||
padding=kernel_size//2), | |||
nn.Conv1d(n_filters, n_filters, kernel_size, | |||
@@ -27,12 +24,10 @@ class DPCNN(nn.Module): | |||
self.embed_drop = nn.Dropout(embed_dropout) | |||
self.classfier = nn.Sequential( | |||
nn.Dropout(cls_dropout), | |||
nn.Linear(n_filters, num_cls), | |||
) | |||
self.reset_parameters() | |||
def reset_parameters(self): | |||
for m in self.modules(): | |||
if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Linear)): | |||
@@ -40,7 +35,6 @@ class DPCNN(nn.Module): | |||
if m.bias is not None: | |||
nn.init.normal_(m.bias, mean=0, std=0.01) | |||
def forward(self, words, seq_len=None): | |||
words = words.long() | |||
# get region embeddings | |||
@@ -58,20 +52,18 @@ class DPCNN(nn.Module): | |||
x = self.classfier(x) | |||
return {C.OUTPUT: x} | |||
def predict(self, words, seq_len=None): | |||
x = self.forward(words, seq_len)[C.OUTPUT] | |||
return {C.OUTPUT: torch.argmax(x, 1)} | |||
class RegionEmbedding(nn.Module): | |||
def __init__(self, init_embed, out_dim=300, kernel_sizes=None): | |||
super().__init__() | |||
if kernel_sizes is None: | |||
kernel_sizes = [5, 9] | |||
assert isinstance( | |||
kernel_sizes, list), 'kernel_sizes should be List(int)' | |||
self.embed = get_embeddings(init_embed) | |||
try: | |||
embed_dim = self.embed.embedding_dim | |||
@@ -103,4 +95,3 @@ if __name__ == '__main__': | |||
model = DPCNN((10000, 300), 20) | |||
y = model(x) | |||
print(y.size(), y.mean(1), y.std(1)) | |||
@@ -9,6 +9,7 @@ from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
from fastNLP.modules.encoder.embedding import StaticEmbedding, CNNCharEmbedding, StackEmbedding | |||
from reproduction.text_classification.model.dpcnn import DPCNN | |||
from data.yelpLoader import yelpLoader | |||
from fastNLP.core.sampler import BucketSampler | |||
import torch.nn as nn | |||
from fastNLP.core import LRScheduler | |||
from fastNLP.core.const import Const as C | |||
@@ -20,7 +21,6 @@ os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | |||
# hyper | |||
class Config(): | |||
@@ -29,19 +29,20 @@ class Config(): | |||
embedding_grad = True | |||
train_epoch = 30 | |||
batch_size = 100 | |||
num_classes = 2 | |||
task = "yelp_p" | |||
#datadir = '/remote-home/yfshao/workdir/datasets/SST' | |||
datadir = '/remote-home/yfshao/workdir/datasets/yelp_polarity' | |||
#datadir = 'workdir/datasets/SST' | |||
datadir = 'workdir/datasets/yelp_polarity' | |||
# datadir = 'workdir/datasets/yelp_full' | |||
#datafile = {"train": "train.txt", "dev": "dev.txt", "test": "test.txt"} | |||
datafile = {"train": "train.csv", "test": "test.csv"} | |||
lr = 1e-3 | |||
src_vocab_op = VocabularyOption() | |||
src_vocab_op = VocabularyOption(max_size=100000) | |||
embed_dropout = 0.3 | |||
cls_dropout = 0.1 | |||
weight_decay = 1e-4 | |||
weight_decay = 1e-5 | |||
def __init__(self): | |||
self.datadir = os.path.join(os.environ['HOME'], self.datadir) | |||
self.datapath = {k: os.path.join(self.datadir, v) | |||
for k, v in self.datafile.items()} | |||
@@ -54,6 +55,8 @@ print('RNG SEED: {}'.format(ops.seed)) | |||
# 1.task相关信息:利用dataloader载入dataInfo | |||
#datainfo=SSTLoader(fine_grained=True).process(paths=ops.datapath, train_ds=['train']) | |||
@cache_results(ops.model_dir_or_name+'-data-cache') | |||
def load_data(): | |||
datainfo = yelpLoader(fine_grained=True, lower=True).process( | |||
@@ -62,31 +65,23 @@ def load_data(): | |||
ds.apply_field(len, C.INPUT, C.INPUT_LEN) | |||
ds.set_input(C.INPUT, C.INPUT_LEN) | |||
ds.set_target(C.TARGET) | |||
return datainfo | |||
embedding = StaticEmbedding( | |||
datainfo.vocabs['words'], model_dir_or_name='en-glove-840b-300', requires_grad=ops.embedding_grad, | |||
normalize=False | |||
) | |||
return datainfo, embedding | |||
datainfo = load_data() | |||
datainfo, embedding = load_data() | |||
# 2.或直接复用fastNLP的模型 | |||
vocab = datainfo.vocabs['words'] | |||
# embedding = StackEmbedding([StaticEmbedding(vocab), CNNCharEmbedding(vocab, 100)]) | |||
#embedding = StaticEmbedding(vocab) | |||
embedding = StaticEmbedding( | |||
vocab, model_dir_or_name='en-word2vec-300', requires_grad=ops.embedding_grad, | |||
normalize=False | |||
) | |||
print(len(datainfo.datasets['train'])) | |||
print(len(datainfo.datasets['test'])) | |||
print(datainfo) | |||
print(datainfo.datasets['train'][0]) | |||
print(len(vocab)) | |||
print(len(datainfo.vocabs['target'])) | |||
model = DPCNN(init_embed=embedding, num_cls=ops.num_classes, | |||
model = DPCNN(init_embed=embedding, num_cls=len(datainfo.vocabs[C.TARGET]), | |||
embed_dropout=ops.embed_dropout, cls_dropout=ops.cls_dropout) | |||
print(model) | |||
@@ -97,11 +92,11 @@ optimizer = SGD([param for param in model.parameters() if param.requires_grad == | |||
lr=ops.lr, momentum=0.9, weight_decay=ops.weight_decay) | |||
callbacks = [] | |||
callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 5))) | |||
# callbacks.append | |||
# LRScheduler(LambdaLR(optimizer, lambda epoch: ops.lr if epoch < | |||
# ops.train_epoch * 0.8 else ops.lr * 0.1)) | |||
# ) | |||
# callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 5))) | |||
callbacks.append( | |||
LRScheduler(LambdaLR(optimizer, lambda epoch: ops.lr if epoch < | |||
ops.train_epoch * 0.8 else ops.lr * 0.1)) | |||
) | |||
# callbacks.append( | |||
# FitlogCallback(data=datainfo.datasets, verbose=1) | |||
@@ -113,6 +108,7 @@ print(device) | |||
# 4.定义train方法 | |||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
sampler=BucketSampler(num_buckets=50, batch_size=ops.batch_size), | |||
metrics=[metric], | |||
dev_data=datainfo.datasets['test'], device=device, | |||
check_code_level=-1, batch_size=ops.batch_size, callbacks=callbacks, | |||
@@ -122,4 +118,3 @@ trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=l | |||
if __name__ == "__main__": | |||
print(trainer.train()) | |||
@@ -57,4 +57,13 @@ def check_dataloader_paths(paths:Union[str, Dict[str, str]])->Dict[str, str]: | |||
else: | |||
raise TypeError(f"paths only supports str and dict. not {type(paths)}.") | |||
def get_tokenizer(): | |||
try: | |||
import spacy | |||
spacy.prefer_gpu() | |||
en = spacy.load('en') | |||
print('use spacy tokenizer') | |||
return lambda x: [w.text for w in en.tokenizer(x)] | |||
except Exception as e: | |||
print('use raw tokenizer') | |||
return lambda x: x.split() |