diff --git a/fastNLP/io/data_loader/sst.py b/fastNLP/io/data_loader/sst.py index 021a79b7..8d0d005f 100644 --- a/fastNLP/io/data_loader/sst.py +++ b/fastNLP/io/data_loader/sst.py @@ -5,10 +5,8 @@ from ..base_loader import DataInfo, DataSetLoader from ...core.vocabulary import VocabularyOption, Vocabulary from ...core.dataset import DataSet from ...core.instance import Instance -from ..embed_loader import EmbeddingOption, EmbedLoader +from ..utils import check_dataloader_paths, get_tokenizer -spacy.prefer_gpu() -sptk = spacy.load('en') class SSTLoader(DataSetLoader): URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip' @@ -37,6 +35,7 @@ class SSTLoader(DataSetLoader): tag_v['0'] = tag_v['1'] tag_v['4'] = tag_v['3'] self.tag_v = tag_v + self.tokenizer = get_tokenizer() def _load(self, path): """ @@ -55,29 +54,37 @@ class SSTLoader(DataSetLoader): ds.append(Instance(words=words, target=tag)) return ds - @staticmethod - def _get_one(data, subtree): + def _get_one(self, data, subtree): tree = Tree.fromstring(data) if subtree: - return [([x.text for x in sptk.tokenizer(' '.join(t.leaves()))], t.label()) for t in tree.subtrees() ] - return [([x.text for x in sptk.tokenizer(' '.join(tree.leaves()))], tree.label())] + return [([x.text for x in self.tokenizer(' '.join(t.leaves()))], t.label()) for t in tree.subtrees() ] + return [([x.text for x in self.tokenizer(' '.join(tree.leaves()))], tree.label())] def process(self, - paths, - train_ds: Iterable[str] = None, + paths, train_subtree=True, src_vocab_op: VocabularyOption = None, - tgt_vocab_op: VocabularyOption = None, - src_embed_op: EmbeddingOption = None): + tgt_vocab_op: VocabularyOption = None,): + paths = check_dataloader_paths(paths) input_name, target_name = 'words', 'target' src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op) tgt_vocab = Vocabulary(unknown=None, padding=None) \ if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op) - info = DataInfo(datasets=self.load(paths)) - _train_ds = [info.datasets[name] - for name in train_ds] if train_ds else info.datasets.values() - src_vocab.from_dataset(*_train_ds, field_name=input_name) - tgt_vocab.from_dataset(*_train_ds, field_name=target_name) + info = DataInfo() + origin_subtree = self.subtree + self.subtree = train_subtree + info.datasets['train'] = self._load(paths['train']) + self.subtree = origin_subtree + for n, p in paths.items(): + if n != 'train': + info.datasets[n] = self._load(p) + + src_vocab.from_dataset( + info.datasets['train'], + field_name=input_name, + no_create_entry_dataset=[ds for n, ds in info.datasets.items() if n != 'train']) + tgt_vocab.from_dataset(info.datasets['train'], field_name=target_name) + src_vocab.index_dataset( *info.datasets.values(), field_name=input_name, new_field_name=input_name) @@ -89,10 +96,5 @@ class SSTLoader(DataSetLoader): target_name: tgt_vocab } - if src_embed_op is not None: - src_embed_op.vocab = src_vocab - init_emb = EmbedLoader.load_with_vocab(**src_embed_op) - info.embeddings[input_name] = init_emb - return info diff --git a/fastNLP/io/utils.py b/fastNLP/io/utils.py new file mode 100644 index 00000000..a7d2de85 --- /dev/null +++ b/fastNLP/io/utils.py @@ -0,0 +1,69 @@ +import os + +from typing import Union, Dict + + +def check_dataloader_paths(paths:Union[str, Dict[str, str]])->Dict[str, str]: + """ + 检查传入dataloader的文件的合法性。如果为合法路径,将返回至少包含'train'这个key的dict。类似于下面的结果 + { + 'train': '/some/path/to/', # 一定包含,建词表应该在这上面建立,剩下的其它文件应该只需要处理并index。 + 'test': 'xxx' # 可能有,也可能没有 + ... + } + 如果paths为不合法的,将直接进行raise相应的错误 + + :param paths: 路径. 可以为一个文件路径(则认为该文件就是train的文件); 可以为一个文件目录,将在该目录下寻找train(文件名 + 中包含train这个字段), test.txt, dev.txt; 可以为一个dict, 则key是用户自定义的某个文件的名称,value是这个文件的路径。 + :return: + """ + if isinstance(paths, str): + if os.path.isfile(paths): + return {'train': paths} + elif os.path.isdir(paths): + filenames = os.listdir(paths) + files = {} + for filename in filenames: + path_pair = None + if 'train' in filename: + path_pair = ('train', filename) + if 'dev' in filename: + if path_pair: + raise Exception("File:{} in {} contains bot `{}` and `dev`.".format(filename, paths, path_pair[0])) + path_pair = ('dev', filename) + if 'test' in filename: + if path_pair: + raise Exception("File:{} in {} contains bot `{}` and `test`.".format(filename, paths, path_pair[0])) + path_pair = ('test', filename) + if path_pair: + files[path_pair[0]] = os.path.join(paths, path_pair[1]) + return files + else: + raise FileNotFoundError(f"{paths} is not a valid file path.") + + elif isinstance(paths, dict): + if paths: + if 'train' not in paths: + raise KeyError("You have to include `train` in your dict.") + for key, value in paths.items(): + if isinstance(key, str) and isinstance(value, str): + if not os.path.isfile(value): + raise TypeError(f"{value} is not a valid file.") + else: + raise TypeError("All keys and values in paths should be str.") + return paths + else: + raise ValueError("Empty paths is not allowed.") + else: + raise TypeError(f"paths only supports str and dict. not {type(paths)}.") + +def get_tokenizer(): + try: + import spacy + spacy.prefer_gpu() + en = spacy.load('en') + print('use spacy tokenizer') + return lambda x: [w.text for w in en.tokenizer(x)] + except Exception as e: + print('use raw tokenizer') + return lambda x: x.split() diff --git a/reproduction/Star_transformer/README.md b/reproduction/Star_transformer/README.md index 37c5f1e9..d07d5536 100644 --- a/reproduction/Star_transformer/README.md +++ b/reproduction/Star_transformer/README.md @@ -6,7 +6,7 @@ paper: [Star-Transformer](https://arxiv.org/abs/1902.09113) |Pos Tagging|CTB 9.0|-|ACC 92.31| |Pos Tagging|CONLL 2012|-|ACC 96.51| |Named Entity Recognition|CONLL 2012|-|F1 85.66| -|Text Classification|SST|-|49.18| +|Text Classification|SST|-|51.2| |Natural Language Inference|SNLI|-|83.76| ## Usage diff --git a/reproduction/matching/matching_cntn.py b/reproduction/matching/matching_cntn.py new file mode 100644 index 00000000..d813164d --- /dev/null +++ b/reproduction/matching/matching_cntn.py @@ -0,0 +1,105 @@ +import argparse +import torch +import os + +from fastNLP.core import Trainer, Tester, Adam, AccuracyMetric, Const +from fastNLP.modules.encoder.embedding import StaticEmbedding + +from reproduction.matching.data.MatchingDataLoader import QNLILoader, RTELoader, SNLILoader, MNLILoader +from reproduction.matching.model.cntn import CNTNModel + +# define hyper-parameters +argument = argparse.ArgumentParser() +argument.add_argument('--embedding', choices=['glove', 'word2vec'], default='glove') +argument.add_argument('--batch-size-per-gpu', type=int, default=256) +argument.add_argument('--n-epochs', type=int, default=200) +argument.add_argument('--lr', type=float, default=1e-5) +argument.add_argument('--seq-len-type', choices=['mask', 'seq_len'], default='mask') +argument.add_argument('--save-dir', type=str, default=None) +argument.add_argument('--cntn-depth', type=int, default=1) +argument.add_argument('--cntn-ns', type=int, default=200) +argument.add_argument('--cntn-k-top', type=int, default=10) +argument.add_argument('--cntn-r', type=int, default=5) +argument.add_argument('--dataset', choices=['qnli', 'rte', 'snli', 'mnli'], default='qnli') +argument.add_argument('--max-len', type=int, default=50) +arg = argument.parse_args() + +# dataset dict +dev_dict = { + 'qnli': 'dev', + 'rte': 'dev', + 'snli': 'dev', + 'mnli': 'dev_matched', +} + +test_dict = { + 'qnli': 'dev', + 'rte': 'dev', + 'snli': 'test', + 'mnli': 'dev_matched', +} + +# set num_labels +if arg.dataset == 'qnli' or arg.dataset == 'rte': + num_labels = 2 +else: + num_labels = 3 + +# load data set +if arg.dataset == 'qnli': + data_info = QNLILoader().process( + paths='path/to/qnli/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None, + get_index=True, concat=False, auto_pad_length=arg.max_len) +elif arg.dataset == 'rte': + data_info = RTELoader().process( + paths='path/to/rte/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None, + get_index=True, concat=False, auto_pad_length=arg.max_len) +elif arg.dataset == 'snli': + data_info = SNLILoader().process( + paths='path/to/snli/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None, + get_index=True, concat=False, auto_pad_length=arg.max_len) +elif arg.dataset == 'mnli': + data_info = MNLILoader().process( + paths='path/to/mnli/data', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None, + get_index=True, concat=False, auto_pad_length=arg.max_len) +else: + raise ValueError(f'now we only support [qnli,rte,snli,mnli] dataset for cntn model!') + +# load embedding +if arg.embedding == 'word2vec': + embedding = StaticEmbedding(data_info.vocabs[Const.INPUT], model_dir_or_name='en-word2vec-300', requires_grad=True) +elif arg.embedding == 'glove': + embedding = StaticEmbedding(data_info.vocabs[Const.INPUT], model_dir_or_name='en-glove-840b-300', + requires_grad=True) +else: + raise ValueError(f'now we only support word2vec or glove embedding for cntn model!') + +# define model +model = CNTNModel(embedding, ns=arg.cntn_ns, k_top=arg.cntn_k_top, num_labels=num_labels, depth=arg.cntn_depth, + r=arg.cntn_r) +print(model) + +# define trainer +trainer = Trainer(train_data=data_info.datasets['train'], model=model, + optimizer=Adam(lr=arg.lr, model_params=model.parameters()), + batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu, + n_epochs=arg.n_epochs, print_every=-1, + dev_data=data_info.datasets[dev_dict[arg.dataset]], + metrics=AccuracyMetric(), metric_key='acc', + device=[i for i in range(torch.cuda.device_count())], + check_code_level=-1) + +# train model +trainer.train(load_best_model=True) + +# define tester +tester = Tester( + data=data_info.datasets[test_dict[arg.dataset]], + model=model, + metrics=AccuracyMetric(), + batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu, + device=[i for i in range(torch.cuda.device_count())] +) + +# test model +tester.test() diff --git a/reproduction/matching/model/cntn.py b/reproduction/matching/model/cntn.py new file mode 100644 index 00000000..0b4803fa --- /dev/null +++ b/reproduction/matching/model/cntn.py @@ -0,0 +1,120 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +import numpy as np + +from torch.nn import CrossEntropyLoss + +from fastNLP.models import BaseModel +from fastNLP.modules.encoder.embedding import TokenEmbedding +from fastNLP.core.const import Const + + +class DynamicKMaxPooling(nn.Module): + """ + :param k_top: Fixed number of pooling output features for the topmost convolutional layer. + :param l: Number of convolutional layers. + """ + + def __init__(self, k_top, l): + super(DynamicKMaxPooling, self).__init__() + self.k_top = k_top + self.L = l + + def forward(self, x, l): + """ + :param x: Input sequence. + :param l: Current convolutional layers. + """ + s = x.size()[3] + k_ll = ((self.L - l) / self.L) * s + k_l = int(round(max(self.k_top, np.ceil(k_ll)))) + out = F.adaptive_max_pool2d(x, (x.size()[2], k_l)) + return out + + +class CNTNModel(BaseModel): + """ + 使用CNN进行问答匹配的模型 + 'Qiu, Xipeng, and Xuanjing Huang. + Convolutional neural tensor network architecture for community-based question answering. + Twenty-Fourth International Joint Conference on Artificial Intelligence. 2015.' + + :param init_embedding: Embedding. + :param ns: Sentence embedding size. + :param k_top: Fixed number of pooling output features for the topmost convolutional layer. + :param num_labels: Number of labels. + :param depth: Number of convolutional layers. + :param r: Number of weight tensor slices. + :param drop_rate: Dropout rate. + """ + + def __init__(self, init_embedding: TokenEmbedding, ns=200, k_top=10, num_labels=2, depth=2, r=5, + dropout_rate=0.3): + super(CNTNModel, self).__init__() + self.embedding = init_embedding + self.depth = depth + self.kmaxpooling = DynamicKMaxPooling(k_top, depth) + self.conv_q = nn.ModuleList() + self.conv_a = nn.ModuleList() + width = self.embedding.embed_size + for i in range(depth): + self.conv_q.append(nn.Sequential( + nn.Dropout(p=dropout_rate), + nn.Conv2d( + in_channels=1, + out_channels=width // 2, + kernel_size=(width, 3), + padding=(0, 2)) + )) + self.conv_a.append(nn.Sequential( + nn.Dropout(p=dropout_rate), + nn.Conv2d( + in_channels=1, + out_channels=width // 2, + kernel_size=(width, 3), + padding=(0, 2)) + )) + width = width // 2 + + self.fc_q = nn.Sequential(nn.Dropout(p=dropout_rate), nn.Linear(width * k_top, ns)) + self.fc_a = nn.Sequential(nn.Dropout(p=dropout_rate), nn.Linear(width * k_top, ns)) + self.weight_M = nn.Bilinear(ns, ns, r) + self.weight_V = nn.Linear(2 * ns, r) + self.weight_u = nn.Sequential(nn.Dropout(p=dropout_rate), nn.Linear(r, num_labels)) + + def forward(self, words1, words2, seq_len1, seq_len2, target=None): + """ + :param words1: [batch, seq_len, emb_size] Question. + :param words2: [batch, seq_len, emb_size] Answer. + :param seq_len1: [batch] + :param seq_len2: [batch] + :param target: [batch] Glod labels. + :return: + """ + in_q = self.embedding(words1) + in_a = self.embedding(words2) + in_q = in_q.permute(0, 2, 1).unsqueeze(1) + in_a = in_a.permute(0, 2, 1).unsqueeze(1) + + for i in range(self.depth): + in_q = F.relu(self.conv_q[i](in_q)) + in_q = in_q.squeeze().unsqueeze(1) + in_q = self.kmaxpooling(in_q, i + 1) + in_a = F.relu(self.conv_a[i](in_a)) + in_a = in_a.squeeze().unsqueeze(1) + in_a = self.kmaxpooling(in_a, i + 1) + + in_q = self.fc_q(in_q.view(in_q.size(0), -1)) + in_a = self.fc_q(in_a.view(in_a.size(0), -1)) + score = torch.tanh(self.weight_u(self.weight_M(in_q, in_a) + self.weight_V(torch.cat((in_q, in_a), -1)))) + + if target is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(score, target) + return {Const.LOSS: loss, Const.OUTPUT: score} + else: + return {Const.OUTPUT: score} + + def predict(self, **kwargs): + return self.forward(**kwargs) diff --git a/reproduction/seqence_labelling/ner/model/dilated_cnn.py b/reproduction/seqence_labelling/ner/model/dilated_cnn.py index cd2fa64b..a4e02159 100644 --- a/reproduction/seqence_labelling/ner/model/dilated_cnn.py +++ b/reproduction/seqence_labelling/ner/model/dilated_cnn.py @@ -8,16 +8,23 @@ from fastNLP.core.const import Const as C class IDCNN(nn.Module): - def __init__(self, init_embed, char_embed, + def __init__(self, + init_embed, + char_embed, num_cls, repeats, num_layers, num_filters, kernel_size, use_crf=False, use_projection=False, block_loss=False, input_dropout=0.3, hidden_dropout=0.2, inner_dropout=0.0): super(IDCNN, self).__init__() self.word_embeddings = Embedding(init_embed) - self.char_embeddings = Embedding(char_embed) - embedding_size = self.word_embeddings.embedding_dim + \ - self.char_embeddings.embedding_dim + + if char_embed is None: + self.char_embeddings = None + embedding_size = self.word_embeddings.embedding_dim + else: + self.char_embeddings = Embedding(char_embed) + embedding_size = self.word_embeddings.embedding_dim + \ + self.char_embeddings.embedding_dim self.conv0 = nn.Sequential( nn.Conv1d(in_channels=embedding_size, @@ -31,7 +38,7 @@ class IDCNN(nn.Module): block = [] for layer_i in range(num_layers): - dilated = 2 ** layer_i + dilated = 2 ** layer_i if layer_i+1 < num_layers else 1 block.append(nn.Conv1d( in_channels=num_filters, out_channels=num_filters, @@ -67,11 +74,24 @@ class IDCNN(nn.Module): self.crf = ConditionalRandomField( num_tags=num_cls) if use_crf else None self.block_loss = block_loss + self.reset_parameters() - def forward(self, words, chars, seq_len, target=None): - e1 = self.word_embeddings(words) - e2 = self.char_embeddings(chars) - x = torch.cat((e1, e2), dim=-1) # b,l,h + def reset_parameters(self): + for m in self.modules(): + if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Linear)): + nn.init.xavier_normal_(m.weight, gain=1) + if m.bias is not None: + nn.init.normal_(m.bias, mean=0, std=0.01) + + def forward(self, words, seq_len, target=None, chars=None): + if self.char_embeddings is None: + x = self.word_embeddings(words) + else: + if chars is None: + raise ValueError('must provide chars for model with char embedding') + e1 = self.word_embeddings(words) + e2 = self.char_embeddings(chars) + x = torch.cat((e1, e2), dim=-1) # b,l,h mask = seq_len_to_mask(seq_len) x = x.transpose(1, 2) # b,h,l @@ -84,21 +104,24 @@ class IDCNN(nn.Module): def compute_loss(y, t, mask): if self.crf is not None and target is not None: - loss = self.crf(y, t, mask) + loss = self.crf(y.transpose(1, 2), t, mask) else: t.masked_fill_(mask == 0, -100) loss = F.cross_entropy(y, t, ignore_index=-100) return loss - if self.block_loss: - losses = [compute_loss(o, target, mask) for o in output] - loss = sum(losses) + if target is not None: + if self.block_loss: + losses = [compute_loss(o, target, mask) for o in output] + loss = sum(losses) + else: + loss = compute_loss(output[-1], target, mask) else: - loss = compute_loss(output[-1], target, mask) + loss = None scores = output[-1] if self.crf is not None: - pred = self.crf.viterbi_decode(scores, target, mask) + pred, _ = self.crf.viterbi_decode(scores.transpose(1, 2), mask) else: pred = scores.max(1)[1] * mask.long() @@ -107,5 +130,13 @@ class IDCNN(nn.Module): C.OUTPUT: pred, } - def predict(self, words, chars, seq_len): - return self.forward(words, chars, seq_len)[C.OUTPUT] + def predict(self, words, seq_len, chars=None): + res = self.forward( + words=words, + seq_len=seq_len, + chars=chars, + target=None + )[C.OUTPUT] + return { + C.OUTPUT: res + } diff --git a/reproduction/seqence_labelling/ner/train_idcnn.py b/reproduction/seqence_labelling/ner/train_idcnn.py new file mode 100644 index 00000000..1781c763 --- /dev/null +++ b/reproduction/seqence_labelling/ner/train_idcnn.py @@ -0,0 +1,99 @@ +from reproduction.seqence_labelling.ner.data.OntoNoteLoader import OntoNoteNERDataLoader +from fastNLP.core.callback import FitlogCallback, LRScheduler +from fastNLP import GradientClipCallback +from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR +from torch.optim import SGD, Adam +from fastNLP import Const +from fastNLP import RandomSampler, BucketSampler +from fastNLP import SpanFPreRecMetric +from fastNLP import Trainer +from reproduction.seqence_labelling.ner.model.dilated_cnn import IDCNN +from fastNLP.core.utils import Option +from fastNLP.modules.encoder.embedding import CNNCharEmbedding, StaticEmbedding +from fastNLP.core.utils import cache_results +import sys +import torch.cuda +import os +os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' +os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' +os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" + +encoding_type = 'bioes' + + +def get_path(path): + return os.path.join(os.environ['HOME'], path) + +data_path = get_path('workdir/datasets/ontonotes-v4') + +ops = Option( + batch_size=128, + num_epochs=100, + lr=3e-4, + repeats=3, + num_layers=3, + num_filters=400, + use_crf=True, + gradient_clip=5, +) + +@cache_results('ontonotes-cache') +def load_data(): + + data = OntoNoteNERDataLoader(encoding_type=encoding_type).process(data_path, + lower=True) + + # char_embed = CNNCharEmbedding(vocab=data.vocabs['cap_words'], embed_size=30, char_emb_size=30, filter_nums=[30], + # kernel_sizes=[3]) + + word_embed = StaticEmbedding(vocab=data.vocabs[Const.INPUT], + model_dir_or_name='en-glove-840b-300', + requires_grad=True) + return data, [word_embed] + +data, embeds = load_data() +print(data.datasets['train'][0]) +print(list(data.vocabs.keys())) + +for ds in data.datasets.values(): + ds.rename_field('cap_words', 'chars') + ds.set_input('chars') + +word_embed = embeds[0] +char_embed = CNNCharEmbedding(data.vocabs['cap_words']) +# for ds in data.datasets: +# ds.rename_field('') + +print(data.vocabs[Const.TARGET].word2idx) + +model = IDCNN(init_embed=word_embed, + char_embed=char_embed, + num_cls=len(data.vocabs[Const.TARGET]), + repeats=ops.repeats, + num_layers=ops.num_layers, + num_filters=ops.num_filters, + kernel_size=3, + use_crf=ops.use_crf, use_projection=True, + block_loss=True, + input_dropout=0.33, hidden_dropout=0.2, inner_dropout=0.2) + +print(model) + +callbacks = [GradientClipCallback(clip_value=ops.gradient_clip, clip_type='norm'),] + +optimizer = Adam(model.parameters(), lr=ops.lr, weight_decay=0) +# scheduler = LRScheduler(LambdaLR(optimizer, lr_lambda=lambda epoch: 1 / (1 + 0.05 * epoch))) +# callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 15))) +# optimizer = SWATS(model.parameters(), verbose=True) +# optimizer = Adam(model.parameters(), lr=0.005) + +device = 'cuda:0' if torch.cuda.is_available() else 'cpu' + +trainer = Trainer(train_data=data.datasets['train'], model=model, optimizer=optimizer, + sampler=BucketSampler(num_buckets=50, batch_size=ops.batch_size), + device=device, dev_data=data.datasets['dev'], batch_size=ops.batch_size, + metrics=SpanFPreRecMetric( + tag_vocab=data.vocabs[Const.TARGET], encoding_type=encoding_type), + check_code_level=-1, + callbacks=callbacks, num_workers=2, n_epochs=ops.num_epochs) +trainer.train() diff --git a/reproduction/text_classification/data/SSTLoader.py b/reproduction/text_classification/data/SSTLoader.py index b570994e..d8403b7a 100644 --- a/reproduction/text_classification/data/SSTLoader.py +++ b/reproduction/text_classification/data/SSTLoader.py @@ -5,7 +5,8 @@ from fastNLP.core.vocabulary import VocabularyOption, Vocabulary from fastNLP import DataSet from fastNLP import Instance from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader - +import csv +from typing import Union, Dict class SSTLoader(DataSetLoader): URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip' @@ -97,3 +98,90 @@ class SSTLoader(DataSetLoader): return info +class sst2Loader(DataSetLoader): + ''' + 数据来源"SST":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8', + ''' + def __init__(self): + super(sst2Loader, self).__init__() + + def _load(self, path: str) -> DataSet: + ds = DataSet() + all_count=0 + csv_reader = csv.reader(open(path, encoding='utf-8'),delimiter='\t') + skip_row = 0 + for idx,row in enumerate(csv_reader): + if idx<=skip_row: + continue + target = row[1] + words = row[0].split() + ds.append(Instance(words=words,target=target)) + all_count+=1 + print("all count:", all_count) + return ds + + def process(self, + paths: Union[str, Dict[str, str]], + src_vocab_opt: VocabularyOption = None, + tgt_vocab_opt: VocabularyOption = None, + src_embed_opt: EmbeddingOption = None, + char_level_op=False): + + paths = check_dataloader_paths(paths) + datasets = {} + info = DataInfo() + for name, path in paths.items(): + dataset = self.load(path) + datasets[name] = dataset + + def wordtochar(words): + chars=[] + for word in words: + word=word.lower() + for char in word: + chars.append(char) + return chars + + input_name, target_name = 'words', 'target' + info.vocabs={} + + # 就分隔为char形式 + if char_level_op: + for dataset in datasets.values(): + dataset.apply_field(wordtochar, field_name="words", new_field_name='chars') + + src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt) + src_vocab.from_dataset(datasets['train'], field_name='words') + src_vocab.index_dataset(*datasets.values(), field_name='words') + + tgt_vocab = Vocabulary(unknown=None, padding=None) \ + if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt) + tgt_vocab.from_dataset(datasets['train'], field_name='target') + tgt_vocab.index_dataset(*datasets.values(), field_name='target') + + + info.vocabs = { + "words": src_vocab, + "target": tgt_vocab + } + + info.datasets = datasets + + + if src_embed_opt is not None: + embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab) + info.embeddings['words'] = embed + + return info + +if __name__=="__main__": + datapath = {"train": "/remote-home/ygwang/workspace/GLUE/SST-2/train.tsv", + "dev": "/remote-home/ygwang/workspace/GLUE/SST-2/dev.tsv"} + datainfo=sst2Loader().process(datapath,char_level_op=True) + #print(datainfo.datasets["train"]) + len_count = 0 + for instance in datainfo.datasets["train"]: + len_count += len(instance["chars"]) + + ave_len = len_count / len(datainfo.datasets["train"]) + print(ave_len) \ No newline at end of file diff --git a/reproduction/text_classification/data/yelpLoader.py b/reproduction/text_classification/data/yelpLoader.py index 280e8be0..c5c91f17 100644 --- a/reproduction/text_classification/data/yelpLoader.py +++ b/reproduction/text_classification/data/yelpLoader.py @@ -8,19 +8,7 @@ from fastNLP.io.base_loader import DataInfo,DataSetLoader from fastNLP.io.embed_loader import EmbeddingOption from fastNLP.io.file_reader import _read_json from typing import Union, Dict -from reproduction.utils import check_dataloader_paths - - - -def get_tokenizer(): - try: - import spacy - en = spacy.load('en') - print('use spacy tokenizer') - return lambda x: [w.text for w in en.tokenizer(x)] - except Exception as e: - print('use raw tokenizer') - return lambda x: x.split() +from reproduction.utils import check_dataloader_paths, get_tokenizer def clean_str(sentence, tokenizer, char_lower=False): """ @@ -118,7 +106,7 @@ class yelpLoader(DataSetLoader): print("all count:",all_count) return ds ''' - + def _load(self, path): ds = DataSet() csv_reader=csv.reader(open(path,encoding='utf-8')) @@ -128,7 +116,7 @@ class yelpLoader(DataSetLoader): all_count+=1 if len(row)==2: target=self.tag_v[row[0]+".0"] - words=clean_str(row[1],self.tokenizer,self.lower) + words = clean_str(row[1], self.tokenizer, self.lower) if len(words)!=0: ds.append(Instance(words=words,target=target)) real_count += 1 diff --git a/reproduction/text_classification/model/dpcnn.py b/reproduction/text_classification/model/dpcnn.py index c31307bc..dafe62bc 100644 --- a/reproduction/text_classification/model/dpcnn.py +++ b/reproduction/text_classification/model/dpcnn.py @@ -1,4 +1,3 @@ - import torch import torch.nn as nn from fastNLP.modules.utils import get_embeddings @@ -11,13 +10,11 @@ class DPCNN(nn.Module): super().__init__() self.region_embed = RegionEmbedding( init_embed, out_dim=n_filters, kernel_sizes=[1, 3, 5]) - embed_dim = self.region_embed.embedding_dim self.conv_list = nn.ModuleList() for i in range(n_layers): self.conv_list.append(nn.Sequential( nn.ReLU(), - nn.Conv1d(n_filters, n_filters, kernel_size, padding=kernel_size//2), nn.Conv1d(n_filters, n_filters, kernel_size, @@ -27,12 +24,10 @@ class DPCNN(nn.Module): self.embed_drop = nn.Dropout(embed_dropout) self.classfier = nn.Sequential( nn.Dropout(cls_dropout), - nn.Linear(n_filters, num_cls), ) self.reset_parameters() - def reset_parameters(self): for m in self.modules(): if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Linear)): @@ -40,7 +35,6 @@ class DPCNN(nn.Module): if m.bias is not None: nn.init.normal_(m.bias, mean=0, std=0.01) - def forward(self, words, seq_len=None): words = words.long() # get region embeddings @@ -58,20 +52,18 @@ class DPCNN(nn.Module): x = self.classfier(x) return {C.OUTPUT: x} - def predict(self, words, seq_len=None): x = self.forward(words, seq_len)[C.OUTPUT] return {C.OUTPUT: torch.argmax(x, 1)} + class RegionEmbedding(nn.Module): def __init__(self, init_embed, out_dim=300, kernel_sizes=None): super().__init__() if kernel_sizes is None: kernel_sizes = [5, 9] - assert isinstance( kernel_sizes, list), 'kernel_sizes should be List(int)' - self.embed = get_embeddings(init_embed) try: embed_dim = self.embed.embedding_dim @@ -103,4 +95,3 @@ if __name__ == '__main__': model = DPCNN((10000, 300), 20) y = model(x) print(y.size(), y.mean(1), y.std(1)) - diff --git a/reproduction/text_classification/train_dpcnn.py b/reproduction/text_classification/train_dpcnn.py index fcfa138b..9664bf75 100644 --- a/reproduction/text_classification/train_dpcnn.py +++ b/reproduction/text_classification/train_dpcnn.py @@ -9,6 +9,7 @@ from fastNLP import CrossEntropyLoss, AccuracyMetric from fastNLP.modules.encoder.embedding import StaticEmbedding, CNNCharEmbedding, StackEmbedding from reproduction.text_classification.model.dpcnn import DPCNN from data.yelpLoader import yelpLoader +from fastNLP.core.sampler import BucketSampler import torch.nn as nn from fastNLP.core import LRScheduler from fastNLP.core.const import Const as C @@ -20,7 +21,6 @@ os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" - # hyper class Config(): @@ -29,19 +29,20 @@ class Config(): embedding_grad = True train_epoch = 30 batch_size = 100 - num_classes = 2 task = "yelp_p" - #datadir = '/remote-home/yfshao/workdir/datasets/SST' - datadir = '/remote-home/yfshao/workdir/datasets/yelp_polarity' + #datadir = 'workdir/datasets/SST' + datadir = 'workdir/datasets/yelp_polarity' + # datadir = 'workdir/datasets/yelp_full' #datafile = {"train": "train.txt", "dev": "dev.txt", "test": "test.txt"} datafile = {"train": "train.csv", "test": "test.csv"} lr = 1e-3 - src_vocab_op = VocabularyOption() + src_vocab_op = VocabularyOption(max_size=100000) embed_dropout = 0.3 cls_dropout = 0.1 - weight_decay = 1e-4 + weight_decay = 1e-5 def __init__(self): + self.datadir = os.path.join(os.environ['HOME'], self.datadir) self.datapath = {k: os.path.join(self.datadir, v) for k, v in self.datafile.items()} @@ -54,6 +55,8 @@ print('RNG SEED: {}'.format(ops.seed)) # 1.task相关信息:利用dataloader载入dataInfo #datainfo=SSTLoader(fine_grained=True).process(paths=ops.datapath, train_ds=['train']) + + @cache_results(ops.model_dir_or_name+'-data-cache') def load_data(): datainfo = yelpLoader(fine_grained=True, lower=True).process( @@ -62,31 +65,23 @@ def load_data(): ds.apply_field(len, C.INPUT, C.INPUT_LEN) ds.set_input(C.INPUT, C.INPUT_LEN) ds.set_target(C.TARGET) - return datainfo + embedding = StaticEmbedding( + datainfo.vocabs['words'], model_dir_or_name='en-glove-840b-300', requires_grad=ops.embedding_grad, + normalize=False + ) + return datainfo, embedding -datainfo = load_data() + +datainfo, embedding = load_data() # 2.或直接复用fastNLP的模型 -vocab = datainfo.vocabs['words'] # embedding = StackEmbedding([StaticEmbedding(vocab), CNNCharEmbedding(vocab, 100)]) -#embedding = StaticEmbedding(vocab) - -embedding = StaticEmbedding( - vocab, model_dir_or_name='en-word2vec-300', requires_grad=ops.embedding_grad, - normalize=False -) -print(len(datainfo.datasets['train'])) -print(len(datainfo.datasets['test'])) +print(datainfo) print(datainfo.datasets['train'][0]) - -print(len(vocab)) -print(len(datainfo.vocabs['target'])) - - -model = DPCNN(init_embed=embedding, num_cls=ops.num_classes, +model = DPCNN(init_embed=embedding, num_cls=len(datainfo.vocabs[C.TARGET]), embed_dropout=ops.embed_dropout, cls_dropout=ops.cls_dropout) print(model) @@ -97,11 +92,11 @@ optimizer = SGD([param for param in model.parameters() if param.requires_grad == lr=ops.lr, momentum=0.9, weight_decay=ops.weight_decay) callbacks = [] -callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 5))) -# callbacks.append -# LRScheduler(LambdaLR(optimizer, lambda epoch: ops.lr if epoch < -# ops.train_epoch * 0.8 else ops.lr * 0.1)) -# ) +# callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 5))) +callbacks.append( + LRScheduler(LambdaLR(optimizer, lambda epoch: ops.lr if epoch < + ops.train_epoch * 0.8 else ops.lr * 0.1)) +) # callbacks.append( # FitlogCallback(data=datainfo.datasets, verbose=1) @@ -113,6 +108,7 @@ print(device) # 4.定义train方法 trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, + sampler=BucketSampler(num_buckets=50, batch_size=ops.batch_size), metrics=[metric], dev_data=datainfo.datasets['test'], device=device, check_code_level=-1, batch_size=ops.batch_size, callbacks=callbacks, @@ -122,4 +118,3 @@ trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=l if __name__ == "__main__": print(trainer.train()) - diff --git a/reproduction/utils.py b/reproduction/utils.py index 4f0d021e..a7d2de85 100644 --- a/reproduction/utils.py +++ b/reproduction/utils.py @@ -57,4 +57,13 @@ def check_dataloader_paths(paths:Union[str, Dict[str, str]])->Dict[str, str]: else: raise TypeError(f"paths only supports str and dict. not {type(paths)}.") - +def get_tokenizer(): + try: + import spacy + spacy.prefer_gpu() + en = spacy.load('en') + print('use spacy tokenizer') + return lambda x: [w.text for w in en.tokenizer(x)] + except Exception as e: + print('use raw tokenizer') + return lambda x: x.split()