@@ -18,7 +18,7 @@ from fastNLP.api.processor import IndexerProcessor | |||
# TODO add pretrain urls | |||
model_urls = { | |||
"cws": "http://123.206.98.91:8888/download/cws_crf_1_11-457fc899.pkl", | |||
"pos": "http://123.206.98.91:8888/download/pos_tag_model_20190108-f3c60ee5.pkl", | |||
"pos": "http://123.206.98.91:8888/download/pos_tag_model_20190119-43f8b435.pkl", | |||
"parser": "http://123.206.98.91:8888/download/biaffine_parser-3a2f052c.pkl" | |||
} | |||
@@ -16,6 +16,10 @@ def chinese_word_segmentation(): | |||
def pos_tagging(): | |||
# 输入已分词序列 | |||
text = ['编者 按: 7月 12日 , 英国 航空 航天 系统 公司 公布 了 该 公司 研制 的 第一款 高科技 隐形 无人机 雷电之神 。'] | |||
text = [text[0].split()] | |||
print(text) | |||
pos = POS(device='cpu') | |||
print(pos.predict(text)) | |||
@@ -26,4 +30,4 @@ def syntactic_parsing(): | |||
if __name__ == "__main__": | |||
syntactic_parsing() | |||
pos_tagging() |
@@ -1,3 +1,11 @@ | |||
import os | |||
import torch | |||
from tensorboardX import SummaryWriter | |||
from fastNLP.io.model_io import ModelSaver, ModelLoader | |||
class Callback(object): | |||
"""An Interface for all callbacks. | |||
@@ -7,6 +15,7 @@ class Callback(object): | |||
def __init__(self): | |||
super(Callback, self).__init__() | |||
self.trainer = None # 在Trainer内部被重新赋值 | |||
def before_train(self): | |||
# before the main training loop | |||
@@ -315,6 +324,144 @@ class ControlC(Callback): | |||
raise exception # 抛出陌生Error | |||
class SmoothValue(object): | |||
def __init__(self, beta: float): | |||
self.beta, self.n, self.mov_avg = beta, 0, 0 | |||
self.smooth = None | |||
def add_value(self, val: float) -> None: | |||
"Add `val` to calculate updated smoothed value." | |||
self.n += 1 | |||
self.mov_avg = self.beta * self.mov_avg + (1 - self.beta) * val | |||
self.smooth = self.mov_avg / (1 - self.beta ** self.n) | |||
class LRFinder(Callback): | |||
def __init__(self, n_batch, start_lr=1e-6, end_lr=10): | |||
"""用第一个 epoch 找最佳的学习率,从第二个epoch开始应用它 | |||
:param n_batch: 一个epoch内的iteration数 | |||
:param start_lr: 学习率下界 | |||
:param end_lr: 学习率上界 | |||
""" | |||
super(LRFinder, self).__init__() | |||
self.start_lr, self.end_lr = start_lr, end_lr | |||
self.num_it = n_batch | |||
self.stop = False | |||
self.best_loss = 0. | |||
self.best_lr = None | |||
self.loss_history = [] | |||
self.smooth_value = SmoothValue(0.8) | |||
self.opt = None | |||
scale = (self.end_lr - self.start_lr) / self.num_it | |||
self.lr_gen = (self.start_lr + scale * (step + 1) for step in range(self.num_it)) | |||
self.find = None | |||
self.loader = ModelLoader() | |||
def before_epoch(self, cur_epoch, total_epoch): | |||
if cur_epoch == 1: | |||
self.opt = self.trainer.optimizer # pytorch optimizer | |||
self.opt.param_groups[0]["lr"] = self.start_lr | |||
# save model | |||
ModelSaver("tmp").save_pytorch(self.trainer.model, param_only=True) | |||
self.find = True | |||
def before_backward(self, loss, model): | |||
if self.find: | |||
if torch.isnan(loss) or self.stop is True: | |||
self.stop = True | |||
return | |||
loss_val = loss.detach().cpu().data | |||
self.loss_history.append(loss_val) | |||
self.smooth_value.add_value(loss_val) | |||
if self.best_loss == 0. or self.smooth_value.smooth < self.best_loss: | |||
self.best_loss = self.smooth_value.smooth | |||
self.best_lr = self.opt.param_groups[0]["lr"] | |||
def after_batch(self, *args): | |||
if self.find: | |||
lr = next(self.lr_gen, None) | |||
if lr is None or self.stop is True or self.loss_history[-1] > 4 * self.best_loss: | |||
self.stop = True | |||
return | |||
self.opt.param_groups[0]["lr"] = lr | |||
# self.loader.load_pytorch(self.trainer.model, "tmp") | |||
def after_epoch(self, cur_epoch, n_epoch, optimizer): | |||
if cur_epoch == 1: | |||
self.opt.param_groups[0]["lr"] = self.best_lr | |||
self.find = False | |||
# reset model | |||
ModelLoader().load_pytorch(self.trainer.model, "tmp") | |||
print("Model reset. \nFind best lr={}".format(self.best_lr)) | |||
class TensorboardCallback(Callback): | |||
""" | |||
接受以下一个或多个字符串作为参数: | |||
- "model" | |||
- "loss" | |||
- "metric" | |||
""" | |||
def __init__(self, *options): | |||
super(TensorboardCallback, self).__init__() | |||
args = {"model", "loss", "metric"} | |||
for opt in options: | |||
if opt not in args: | |||
raise ValueError("Unrecognized argument {}. Expect one of {}".format(opt, args)) | |||
self.options = options | |||
self._summary_writer = None | |||
self.graph_added = False | |||
def before_train(self): | |||
save_dir = self.trainer.save_path | |||
if save_dir is None: | |||
path = os.path.join("./", 'tensorboard_logs_{}'.format(self.trainer.start_time)) | |||
else: | |||
path = os.path.join(save_dir, 'tensorboard_logs_{}'.format(self.trainer.start_time)) | |||
self._summary_writer = SummaryWriter(path) | |||
def before_batch(self, batch_x, batch_y, indices): | |||
if "model" in self.options and self.graph_added is False: | |||
# tesorboardX 这里有大bug,暂时没法画模型图 | |||
# from fastNLP.core.utils import _build_args | |||
# inputs = _build_args(self.trainer.model, **batch_x) | |||
# args = tuple([value for value in inputs.values()]) | |||
# args = args[0] if len(args) == 1 else args | |||
# self._summary_writer.add_graph(self.trainer.model, torch.zeros(32, 2)) | |||
self.graph_added = True | |||
def before_backward(self, loss, model): | |||
if "loss" in self.options: | |||
self._summary_writer.add_scalar("loss", loss.item(), global_step=self.trainer.step) | |||
if "model" in self.options: | |||
for name, param in self.trainer.model.named_parameters(): | |||
if param.requires_grad: | |||
self._summary_writer.add_scalar(name + "_mean", param.mean(), global_step=self.trainer.step) | |||
# self._summary_writer.add_scalar(name + "_std", param.std(), global_step=self.trainer.step) | |||
self._summary_writer.add_scalar(name + "_grad_mean", param.grad.mean(), | |||
global_step=self.trainer.step) | |||
def after_valid(self, eval_result, metric_key, optimizer): | |||
if "metric" in self.options: | |||
for name, metric in eval_result.items(): | |||
for metric_key, metric_val in metric.items(): | |||
self._summary_writer.add_scalar("valid_{}_{}".format(name, metric_key), metric_val, | |||
global_step=self.trainer.step) | |||
def after_train(self, model): | |||
self._summary_writer.close() | |||
del self._summary_writer | |||
def on_exception(self, exception, model): | |||
if hasattr(self, "_summary_writer"): | |||
self._summary_writer.close() | |||
del self._summary_writer | |||
if __name__ == "__main__": | |||
manager = CallbackManager(env={"n_epoch": 3}, callbacks=[DummyCallback(), DummyCallback()]) | |||
manager.before_train(10, 11, 12) | |||
@@ -5,7 +5,6 @@ from datetime import timedelta | |||
import numpy as np | |||
import torch | |||
from tensorboardX import SummaryWriter | |||
from torch import nn | |||
try: | |||
@@ -34,8 +33,8 @@ from fastNLP.core.utils import get_func_signature | |||
class Trainer(object): | |||
def __init__(self, train_data, model, loss=None, metrics=None, n_epochs=3, batch_size=32, print_every=50, | |||
validate_every=-1, dev_data=None, save_path=None, optimizer=Adam(lr=0.01, weight_decay=0), | |||
check_code_level=0, metric_key=None, sampler=RandomSampler(), num_workers=0, pin_memory=False, | |||
timeout=0, use_tqdm=True, use_cuda=False, callbacks=None): | |||
check_code_level=0, metric_key=None, sampler=RandomSampler(), prefetch=False, use_tqdm=True, | |||
use_cuda=False, callbacks=None): | |||
""" | |||
:param DataSet train_data: the training data | |||
:param torch.nn.modules.module model: a PyTorch model | |||
@@ -59,12 +58,7 @@ class Trainer(object): | |||
metric_key="-PPL" # language model gets better as perplexity gets smaller | |||
:param BaseSampler sampler: method used to generate batch data. | |||
:param num_workers: int, 使用多少个进程来准备数据。默认为0, 即使用主线程生成数据。 特性处于实验阶段,谨慎使用。 | |||
如果DataSet较大,且每个batch的准备时间很短,使用多进程可能并不能提速。 | |||
:param pin_memory: bool, 默认为False. 当设置为True时,会使用锁页内存,可能导致内存占用变多。如果内存比较充足, | |||
可以考虑设置为True进行加速, 当pin_memory为True时,默认使用non_blocking=True的方式将数据从cpu移动到gpu。 | |||
:param timeout: float, 大于0的数,只有在num_workers>0时才有用。超过该时间仍然没有获取到一个batch则报错,可以用于 | |||
检测是否出现了batch产生阻塞的情况。 | |||
:param prefetch: bool, 是否使用额外的进程对产生batch数据。 | |||
:param bool use_tqdm: whether to use tqdm to show train progress. | |||
:param callbacks: List[Callback]. 用于在train过程中起调节作用的回调函数。比如early stop,negative sampling等可以 | |||
通过callback机制实现。 | |||
@@ -126,9 +120,7 @@ class Trainer(object): | |||
self.best_dev_step = None | |||
self.best_dev_perf = None | |||
self.sampler = sampler | |||
self.num_workers = num_workers | |||
self.pin_memory = pin_memory | |||
self.timeout = timeout | |||
self.prefetch = prefetch | |||
self.callback_manager = CallbackManager(env={"trainer": self}, callbacks=callbacks) | |||
if isinstance(optimizer, torch.optim.Optimizer): | |||
@@ -195,21 +187,9 @@ class Trainer(object): | |||
self._model_device = self.model.parameters().__next__().device | |||
self._mode(self.model, is_test=False) | |||
self.start_time = str(datetime.now().strftime('%Y-%m-%d %H-%M-%S')) | |||
self.start_time = str(datetime.now().strftime('%Y-%m-%d-%H-%M-%S')) | |||
start_time = time.time() | |||
print("training epochs started " + self.start_time, flush=True) | |||
if self.save_path is None: | |||
class psudoSW: | |||
def __getattr__(self, item): | |||
def pass_func(*args, **kwargs): | |||
pass | |||
return pass_func | |||
self._summary_writer = psudoSW() | |||
else: | |||
path = os.path.join(self.save_path, 'tensorboard_logs_{}'.format(self.start_time)) | |||
self._summary_writer = SummaryWriter(path) | |||
try: | |||
self.callback_manager.before_train() | |||
@@ -232,8 +212,7 @@ class Trainer(object): | |||
else: | |||
print("Fail to reload best model.") | |||
finally: | |||
self._summary_writer.close() | |||
del self._summary_writer | |||
pass | |||
results['seconds'] = round(time.time() - start_time, 2) | |||
return results | |||
@@ -250,8 +229,7 @@ class Trainer(object): | |||
with inner_tqdm(total=total_steps, postfix='loss:{0:<6.5f}', leave=False, dynamic_ncols=True) as pbar: | |||
avg_loss = 0 | |||
data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=self.sampler, as_numpy=False, | |||
num_workers=self.num_workers, pin_memory=self.pin_memory, timeout=self.timeout, | |||
keep_process=True) | |||
prefetch=self.prefetch, device=self._model_device) | |||
for epoch in range(1, self.n_epochs+1): | |||
pbar.set_description_str(desc="Epoch {}/{}".format(epoch, self.n_epochs)) | |||
# early stopping | |||
@@ -260,8 +238,6 @@ class Trainer(object): | |||
indices = data_iterator.get_batch_indices() | |||
# negative sampling; replace unknown; re-weight batch_y | |||
self.callback_manager.before_batch(batch_x, batch_y, indices) | |||
_move_dict_value_to_device(batch_x, batch_y, device=self._model_device, | |||
non_blocking=self.pin_memory) # pin_memory, use non_blockling. | |||
prediction = self._data_forward(self.model, batch_x) | |||
# edit prediction | |||
@@ -279,12 +255,6 @@ class Trainer(object): | |||
# lr scheduler; lr_finder; one_cycle | |||
self.callback_manager.after_step(self.optimizer) | |||
self._summary_writer.add_scalar("loss", loss.item(), global_step=self.step) | |||
for name, param in self.model.named_parameters(): | |||
if param.requires_grad: | |||
self._summary_writer.add_scalar(name + "_mean", param.mean(), global_step=self.step) | |||
# self._summary_writer.add_scalar(name + "_std", param.std(), global_step=self.step) | |||
# self._summary_writer.add_scalar(name + "_grad_sum", param.sum(), global_step=self.step) | |||
if (self.step+1) % self.print_every == 0: | |||
if self.use_tqdm: | |||
print_output = "loss:{0:<6.5f}".format(avg_loss / self.print_every) | |||
@@ -319,10 +289,7 @@ class Trainer(object): | |||
def _do_validation(self, epoch, step): | |||
res = self.tester.test() | |||
for name, metric in res.items(): | |||
for metric_key, metric_val in metric.items(): | |||
self._summary_writer.add_scalar("valid_{}_{}".format(name, metric_key), metric_val, | |||
global_step=self.step) | |||
if self._better_eval_result(res): | |||
if self.save_path is not None: | |||
self._save_model(self.model, | |||
@@ -14,7 +14,7 @@ from fastNLP.core.metrics import SpanFPreRecMetric | |||
from fastNLP.core.trainer import Trainer | |||
from fastNLP.io.config_io import ConfigLoader, ConfigSection | |||
from fastNLP.models.sequence_modeling import AdvSeqLabel | |||
from fastNLP.io.dataset_loader import ZhConllPOSReader, ConllxDataLoader | |||
from fastNLP.io.dataset_loader import ConllxDataLoader | |||
from fastNLP.api.processor import ModelProcessor, Index2WordProcessor | |||
@@ -35,7 +35,7 @@ def load_tencent_embed(embed_path, word2id): | |||
return embedding_tensor | |||
def train(train_data_path, dev_data_path, checkpoint=None): | |||
def train(train_data_path, dev_data_path, checkpoint=None, save=None): | |||
# load config | |||
train_param = ConfigSection() | |||
model_param = ConfigSection() | |||
@@ -44,9 +44,9 @@ def train(train_data_path, dev_data_path, checkpoint=None): | |||
# Data Loader | |||
print("loading training set...") | |||
dataset = ConllxDataLoader().load(train_data_path) | |||
dataset = ConllxDataLoader().load(train_data_path, return_dataset=True) | |||
print("loading dev set...") | |||
dev_data = ConllxDataLoader().load(dev_data_path) | |||
dev_data = ConllxDataLoader().load(dev_data_path, return_dataset=True) | |||
print(dataset) | |||
print("================= dataset ready =====================") | |||
@@ -54,9 +54,9 @@ def train(train_data_path, dev_data_path, checkpoint=None): | |||
dev_data.rename_field("tag", "truth") | |||
vocab_proc = VocabIndexerProcessor("words", new_added_filed_name="word_seq") | |||
tag_proc = VocabIndexerProcessor("truth") | |||
tag_proc = VocabIndexerProcessor("truth", is_input=True) | |||
seq_len_proc = SeqLenProcessor(field_name="word_seq", new_added_field_name="word_seq_origin_len", is_input=True) | |||
set_input_proc = SetInputProcessor("word_seq", "word_seq_origin_len", "truth") | |||
set_input_proc = SetInputProcessor("word_seq", "word_seq_origin_len") | |||
vocab_proc(dataset) | |||
tag_proc(dataset) | |||
@@ -93,7 +93,7 @@ def train(train_data_path, dev_data_path, checkpoint=None): | |||
target="truth", | |||
seq_lens="word_seq_origin_len"), | |||
dev_data=dev_data, metric_key="f", | |||
use_tqdm=True, use_cuda=True, print_every=10, n_epochs=20, save_path="./save_0117") | |||
use_tqdm=True, use_cuda=True, print_every=10, n_epochs=20, save_path=save) | |||
trainer.train(load_best_model=True) | |||
# save model & pipeline | |||
@@ -102,12 +102,12 @@ def train(train_data_path, dev_data_path, checkpoint=None): | |||
pp = Pipeline([vocab_proc, seq_len_proc, set_input_proc, model_proc, id2tag]) | |||
save_dict = {"pipeline": pp, "model": model, "tag_vocab": tag_proc.vocab} | |||
torch.save(save_dict, "model_pp_0117.pkl") | |||
torch.save(save_dict, os.path.join(save, "model_pp.pkl")) | |||
print("pipeline saved") | |||
def run_test(test_path): | |||
test_data = ZhConllPOSReader().load(test_path) | |||
test_data = ConllxDataLoader().load(test_path, return_dataset=True) | |||
with open("model_pp_0117.pkl", "rb") as f: | |||
save_dict = torch.load(f) | |||
@@ -157,7 +157,7 @@ if __name__ == "__main__": | |||
# 继续训练 python train_pos_tag.py -c -cp ./save/best_model.pkl | |||
if args.checkpoint is None: | |||
raise RuntimeError("Please provide the checkpoint. -cp ") | |||
train(args.train, args.dev, args.checkpoint) | |||
train(args.train, args.dev, args.checkpoint, save=args.save) | |||
else: | |||
# 一次训练 python train_pos_tag.py | |||
train(args.train, args.dev) | |||
train(args.train, args.dev, save=args.save) |
@@ -1,3 +1,4 @@ | |||
import time | |||
import unittest | |||
import numpy as np | |||
@@ -8,7 +9,7 @@ from fastNLP.core.dataset import DataSet | |||
from fastNLP.core.dataset import construct_dataset | |||
from fastNLP.core.instance import Instance | |||
from fastNLP.core.sampler import SequentialSampler | |||
import time | |||
def generate_fake_dataset(num_samples=1000): | |||
""" | |||
@@ -161,12 +162,13 @@ class TestCase1(unittest.TestCase): | |||
dataset = generate_fake_dataset(num_samples) | |||
batch = Batch(dataset, batch_size=batch_size, sampler=SequentialSampler(), pin_memory=True) | |||
for batch_x, batch_y in batch: | |||
time.sleep(pause_seconds) | |||
# 这里发生OOM | |||
# for batch_x, batch_y in batch: | |||
# time.sleep(pause_seconds) | |||
num_workers = 2 | |||
batch = Batch(dataset, batch_size=batch_size, sampler=SequentialSampler(), num_workers=num_workers, | |||
pin_memory=True) | |||
for batch_x, batch_y in batch: | |||
time.sleep(pause_seconds) | |||
# 这里发生OOM | |||
# for batch_x, batch_y in batch: | |||
# time.sleep(pause_seconds) |
@@ -3,7 +3,9 @@ import unittest | |||
import numpy as np | |||
import torch | |||
from fastNLP.core.callback import EchoCallback, EarlyStopCallback, GradientClipCallback, LRScheduler, ControlC | |||
from fastNLP.core.callback import EchoCallback, EarlyStopCallback, GradientClipCallback, LRScheduler, ControlC, \ | |||
LRFinder, \ | |||
TensorboardCallback | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.core.instance import Instance | |||
from fastNLP.core.losses import BCELoss | |||
@@ -52,7 +54,7 @@ class TestCallback(unittest.TestCase): | |||
data_set, model = prepare_env() | |||
trainer = Trainer(data_set, model, | |||
loss=BCELoss(pred="predict", target="y"), | |||
n_epochs=30, | |||
n_epochs=20, | |||
batch_size=32, | |||
print_every=50, | |||
optimizer=SGD(lr=0.1), | |||
@@ -67,7 +69,7 @@ class TestCallback(unittest.TestCase): | |||
data_set, model = prepare_env() | |||
trainer = Trainer(data_set, model, | |||
loss=BCELoss(pred="predict", target="y"), | |||
n_epochs=50, | |||
n_epochs=20, | |||
batch_size=32, | |||
print_every=50, | |||
optimizer=SGD(lr=0.01), | |||
@@ -83,7 +85,7 @@ class TestCallback(unittest.TestCase): | |||
optimizer = torch.optim.SGD(model.parameters(), lr=0.01) | |||
trainer = Trainer(data_set, model, | |||
loss=BCELoss(pred="predict", target="y"), | |||
n_epochs=50, | |||
n_epochs=5, | |||
batch_size=32, | |||
print_every=50, | |||
optimizer=optimizer, | |||
@@ -98,7 +100,7 @@ class TestCallback(unittest.TestCase): | |||
data_set, model = prepare_env() | |||
trainer = Trainer(data_set, model, | |||
loss=BCELoss(pred="predict", target="y"), | |||
n_epochs=50, | |||
n_epochs=5, | |||
batch_size=32, | |||
print_every=50, | |||
optimizer=SGD(lr=0.1), | |||
@@ -106,3 +108,31 @@ class TestCallback(unittest.TestCase): | |||
use_tqdm=False, | |||
callbacks=[ControlC(False)]) | |||
trainer.train() | |||
def test_LRFinder(self): | |||
data_set, model = prepare_env() | |||
trainer = Trainer(data_set, model, | |||
loss=BCELoss(pred="predict", target="y"), | |||
n_epochs=5, | |||
batch_size=32, | |||
print_every=50, | |||
optimizer=SGD(lr=0.1), | |||
check_code_level=2, | |||
use_tqdm=False, | |||
callbacks=[LRFinder(len(data_set) // 32)]) | |||
trainer.train() | |||
def test_TensorboardCallback(self): | |||
data_set, model = prepare_env() | |||
trainer = Trainer(data_set, model, | |||
loss=BCELoss(pred="predict", target="y"), | |||
n_epochs=5, | |||
batch_size=32, | |||
print_every=50, | |||
optimizer=SGD(lr=0.1), | |||
check_code_level=2, | |||
use_tqdm=False, | |||
dev_data=data_set, | |||
metrics=AccuracyMetric(pred="predict", target="y"), | |||
callbacks=[TensorboardCallback("loss", "metric")]) | |||
trainer.train() |