|
|
@@ -33,8 +33,8 @@ from fastNLP.core.utils import get_func_signature |
|
|
|
class Trainer(object): |
|
|
|
def __init__(self, train_data, model, loss=None, metrics=None, n_epochs=3, batch_size=32, print_every=50, |
|
|
|
validate_every=-1, dev_data=None, save_path=None, optimizer=Adam(lr=0.01, weight_decay=0), |
|
|
|
check_code_level=0, metric_key=None, sampler=RandomSampler(), num_workers=0, pin_memory=False, |
|
|
|
timeout=0, use_tqdm=True, use_cuda=False, callbacks=None): |
|
|
|
check_code_level=0, metric_key=None, sampler=RandomSampler(), prefetch=False, use_tqdm=True, |
|
|
|
use_cuda=False, callbacks=None): |
|
|
|
""" |
|
|
|
:param DataSet train_data: the training data |
|
|
|
:param torch.nn.modules.module model: a PyTorch model |
|
|
@@ -58,12 +58,7 @@ class Trainer(object): |
|
|
|
|
|
|
|
metric_key="-PPL" # language model gets better as perplexity gets smaller |
|
|
|
:param BaseSampler sampler: method used to generate batch data. |
|
|
|
:param num_workers: int, 使用多少个进程来准备数据。默认为0, 即使用主线程生成数据。 特性处于实验阶段,谨慎使用。 |
|
|
|
如果DataSet较大,且每个batch的准备时间很短,使用多进程可能并不能提速。 |
|
|
|
:param pin_memory: bool, 默认为False. 当设置为True时,会使用锁页内存,可能导致内存占用变多。如果内存比较充足, |
|
|
|
可以考虑设置为True进行加速, 当pin_memory为True时,默认使用non_blocking=True的方式将数据从cpu移动到gpu。 |
|
|
|
:param timeout: float, 大于0的数,只有在num_workers>0时才有用。超过该时间仍然没有获取到一个batch则报错,可以用于 |
|
|
|
检测是否出现了batch产生阻塞的情况。 |
|
|
|
:param prefetch: bool, 是否使用额外的进程对产生batch数据。 |
|
|
|
:param bool use_tqdm: whether to use tqdm to show train progress. |
|
|
|
:param callbacks: List[Callback]. 用于在train过程中起调节作用的回调函数。比如early stop,negative sampling等可以 |
|
|
|
通过callback机制实现。 |
|
|
@@ -125,9 +120,7 @@ class Trainer(object): |
|
|
|
self.best_dev_step = None |
|
|
|
self.best_dev_perf = None |
|
|
|
self.sampler = sampler |
|
|
|
self.num_workers = num_workers |
|
|
|
self.pin_memory = pin_memory |
|
|
|
self.timeout = timeout |
|
|
|
self.prefetch = prefetch |
|
|
|
self.callback_manager = CallbackManager(env={"trainer": self}, callbacks=callbacks) |
|
|
|
|
|
|
|
if isinstance(optimizer, torch.optim.Optimizer): |
|
|
@@ -236,8 +229,7 @@ class Trainer(object): |
|
|
|
with inner_tqdm(total=total_steps, postfix='loss:{0:<6.5f}', leave=False, dynamic_ncols=True) as pbar: |
|
|
|
avg_loss = 0 |
|
|
|
data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=self.sampler, as_numpy=False, |
|
|
|
num_workers=self.num_workers, pin_memory=self.pin_memory, timeout=self.timeout, |
|
|
|
keep_process=True) |
|
|
|
prefetch=self.prefetch, device=self._model_device) |
|
|
|
for epoch in range(1, self.n_epochs+1): |
|
|
|
pbar.set_description_str(desc="Epoch {}/{}".format(epoch, self.n_epochs)) |
|
|
|
# early stopping |
|
|
@@ -246,8 +238,6 @@ class Trainer(object): |
|
|
|
indices = data_iterator.get_batch_indices() |
|
|
|
# negative sampling; replace unknown; re-weight batch_y |
|
|
|
self.callback_manager.before_batch(batch_x, batch_y, indices) |
|
|
|
_move_dict_value_to_device(batch_x, batch_y, device=self._model_device, |
|
|
|
non_blocking=self.pin_memory) # pin_memory, use non_blocking. |
|
|
|
prediction = self._data_forward(self.model, batch_x) |
|
|
|
|
|
|
|
# edit prediction |
|
|
|