@@ -47,9 +47,7 @@ def initialize_paddle_driver(driver: str, device: Optional[Union[str, int, List[ | |||
raise ValueError("Parameter `device` can only be '-1' when it is smaller than 0.") | |||
if device >= _could_use_device_num: | |||
raise ValueError("The gpu device that parameter `device` specifies is not existed.") | |||
if device != -1: | |||
device = f"gpu:{device}" | |||
else: | |||
if device == -1: | |||
device = list(range(_could_use_device_num)) | |||
elif isinstance(device, Sequence) and not isinstance(device, str): | |||
device = list(set(device)) | |||
@@ -61,9 +59,6 @@ def initialize_paddle_driver(driver: str, device: Optional[Union[str, int, List[ | |||
elif each >= _could_use_device_num: | |||
raise ValueError("When parameter `device` is 'Sequence' type, the value in it should not be bigger than" | |||
" the available gpu number.") | |||
if len(device) == 1: | |||
# 传入了 [1] 这样的,视为单卡。 | |||
device = device[0] | |||
elif device is not None and not isinstance(device, str): | |||
raise ValueError("Parameter `device` is wrong type, please check our documentation for the right use.") | |||
@@ -82,6 +77,6 @@ def initialize_paddle_driver(driver: str, device: Optional[Union[str, int, List[ | |||
logger.warning("Notice you are using `fleet` driver, but your chosen `device` is only one gpu, we will" | |||
"still use `PaddleFleetDriver` for you, but if you mean using `PaddleSingleDriver`, you should " | |||
"choose `paddle` driver.") | |||
return PaddleFleetDriver(model, device, **kwargs) | |||
return PaddleFleetDriver(model, [device], **kwargs) | |||
else: | |||
return PaddleFleetDriver(model, device, **kwargs) |
@@ -19,7 +19,12 @@ from fastNLP.envs import ( | |||
rank_zero_call, | |||
) | |||
from fastNLP.core.log import logger | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, RandomBatchSampler | |||
from fastNLP.core.samplers import ( | |||
ReproducibleBatchSampler, | |||
ReproducibleSampler, | |||
RandomBatchSampler, | |||
RandomSampler, | |||
) | |||
if _NEED_IMPORT_PADDLE: | |||
import paddle | |||
@@ -29,7 +34,7 @@ if _NEED_IMPORT_PADDLE: | |||
Dataset, | |||
Sampler, | |||
BatchSampler, | |||
RandomSampler, | |||
RandomSampler as PaddleRandomSampler, | |||
) | |||
from paddle.optimizer import Optimizer | |||
@@ -333,6 +338,9 @@ class PaddleDriver(Driver): | |||
sampler = dataloader_args.batch_sampler | |||
elif isinstance(dataloader_args.sampler, ReproducibleSampler): | |||
sampler = dataloader_args.sampler | |||
elif isinstance(dataloader_args.sampler, PaddleRandomSampler): | |||
sampler = RandomSampler(dataloader_args.sampler.data_source) | |||
logger.debug("Replace paddle RandomSampler into fastNLP RandomSampler.") | |||
elif self.is_distributed(): | |||
raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our or " | |||
"`ReproducibleSampler`.") | |||
@@ -464,7 +472,7 @@ class PaddleDriver(Driver): | |||
res.sampler = dataloader.batch_sampler.sampler | |||
if hasattr(dataloader.batch_sampler.sampler, "shuffle"): | |||
res.shuffle = dataloader.batch_sampler.sampler.shuffle | |||
elif isinstance(dataloader.batch_sampler.sampler, RandomSampler): | |||
elif isinstance(dataloader.batch_sampler.sampler, PaddleRandomSampler): | |||
res.shuffle = True | |||
else: | |||
res.shuffle = False | |||
@@ -474,7 +482,7 @@ class PaddleDriver(Driver): | |||
res.sampler = batch_sampler.sampler | |||
if hasattr(batch_sampler.sampler, "shuffle"): | |||
res.shuffle = dataloader.batch_sampler.sampler.shuffle | |||
elif isinstance(batch_sampler.sampler, RandomSampler): | |||
elif isinstance(batch_sampler.sampler, PaddleRandomSampler): | |||
res.shuffle = True | |||
else: | |||
res.shuffle = False | |||
@@ -19,7 +19,7 @@ def test_incorrect_driver(): | |||
@pytest.mark.parametrize( | |||
"device", | |||
["cpu", "gpu:0", 0, [1]] | |||
["cpu", "gpu:0", 0] | |||
) | |||
@pytest.mark.parametrize( | |||
"driver", | |||
@@ -27,7 +27,7 @@ def test_incorrect_driver(): | |||
) | |||
def test_get_single_device(driver, device): | |||
""" | |||
测试正常情况下初始化PaddleSingleDriver的情况 | |||
测试正常情况下初始化 PaddleSingleDriver 的情况 | |||
""" | |||
model = PaddleNormalModel_Classification_1(2, 100) | |||
@@ -36,7 +36,7 @@ def test_get_single_device(driver, device): | |||
@pytest.mark.parametrize( | |||
"device", | |||
[0, 1] | |||
[0, 1, [1]] | |||
) | |||
@pytest.mark.parametrize( | |||
"driver", | |||
@@ -45,7 +45,7 @@ def test_get_single_device(driver, device): | |||
@magic_argv_env_context | |||
def test_get_fleet_2(driver, device): | |||
""" | |||
测试 fleet 多卡的初始化情况 | |||
测试 fleet 多卡的初始化情况,但传入了单个 gpu | |||
""" | |||
model = PaddleNormalModel_Classification_1(64, 10) | |||
@@ -34,7 +34,7 @@ class TestPaddleDriverFunctions: | |||
def test_check_single_optimizer_legality(self): | |||
""" | |||
测试传入单个optimizer时的表现 | |||
测试传入单个 optimizer 时的表现 | |||
""" | |||
optimizer = paddle.optimizer.Adam( | |||
parameters=self.driver.model.parameters(), | |||
@@ -50,7 +50,7 @@ class TestPaddleDriverFunctions: | |||
def test_check_optimizers_legality(self): | |||
""" | |||
测试传入optimizer list的表现 | |||
测试传入 optimizer list 的表现 | |||
""" | |||
optimizers = [ | |||
paddle.optimizer.Adam( | |||
@@ -70,13 +70,13 @@ class TestPaddleDriverFunctions: | |||
def test_check_dataloader_legality_in_train(self): | |||
""" | |||
测试is_train参数为True时,_check_dataloader_legality函数的表现 | |||
测试 `is_train` 参数为 True 时,_check_dataloader_legality 函数的表现 | |||
""" | |||
dataloader = paddle.io.DataLoader(PaddleNormalDataset()) | |||
dataloader = DataLoader(PaddleNormalDataset()) | |||
PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", True) | |||
# batch_size 和 batch_sampler 均为 None 的情形 | |||
dataloader = paddle.io.DataLoader(PaddleNormalDataset(), batch_size=None) | |||
dataloader = DataLoader(PaddleNormalDataset(), batch_size=None) | |||
with pytest.raises(ValueError): | |||
PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", True) | |||
@@ -90,29 +90,29 @@ class TestPaddleDriverFunctions: | |||
def test_check_dataloader_legality_in_test(self): | |||
""" | |||
测试is_train参数为False时,_check_dataloader_legality函数的表现 | |||
测试 `is_train` 参数为 False 时,_check_dataloader_legality 函数的表现 | |||
""" | |||
# 此时传入的应该是dict | |||
dataloader = { | |||
"train": paddle.io.DataLoader(PaddleNormalDataset()), | |||
"test":paddle.io.DataLoader(PaddleNormalDataset()) | |||
"train": DataLoader(PaddleNormalDataset()), | |||
"test":DataLoader(PaddleNormalDataset()) | |||
} | |||
PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", False) | |||
# batch_size 和 batch_sampler 均为 None 的情形 | |||
dataloader = { | |||
"train": paddle.io.DataLoader(PaddleNormalDataset()), | |||
"test":paddle.io.DataLoader(PaddleNormalDataset(), batch_size=None) | |||
"train": DataLoader(PaddleNormalDataset()), | |||
"test":DataLoader(PaddleNormalDataset(), batch_size=None) | |||
} | |||
with pytest.raises(ValueError): | |||
PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", False) | |||
# 传入的不是dict,应该报错 | |||
dataloader = paddle.io.DataLoader(PaddleNormalDataset()) | |||
# 传入的不是 dict ,应该报错 | |||
dataloader = DataLoader(PaddleNormalDataset()) | |||
with pytest.raises(ValueError): | |||
PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", False) | |||
# 创建torch的dataloader | |||
# 创建 torch 的 dataloader | |||
train_loader = torch.utils.data.DataLoader( | |||
TorchNormalDataset(), | |||
batch_size=32, shuffle=True | |||
@@ -127,7 +127,7 @@ class TestPaddleDriverFunctions: | |||
def test_tensor_to_numeric(self): | |||
""" | |||
测试tensor_to_numeric函数 | |||
测试 tensor_to_numeric 函数 | |||
""" | |||
# 单个张量 | |||
tensor = paddle.to_tensor(3) | |||
@@ -180,7 +180,7 @@ class TestPaddleDriverFunctions: | |||
def test_set_model_mode(self): | |||
""" | |||
测试set_model_mode函数 | |||
测试 set_model_mode 函数 | |||
""" | |||
self.driver.set_model_mode("train") | |||
assert self.driver.model.training | |||
@@ -192,14 +192,14 @@ class TestPaddleDriverFunctions: | |||
def test_move_model_to_device_cpu(self): | |||
""" | |||
测试move_model_to_device函数 | |||
测试 move_model_to_device 函数 | |||
""" | |||
PaddleSingleDriver.move_model_to_device(self.driver.model, "cpu") | |||
assert self.driver.model.linear1.weight.place.is_cpu_place() | |||
def test_move_model_to_device_gpu(self): | |||
""" | |||
测试move_model_to_device函数 | |||
测试 move_model_to_device 函数 | |||
""" | |||
PaddleSingleDriver.move_model_to_device(self.driver.model, "gpu") | |||
assert self.driver.model.linear1.weight.place.is_gpu_place() | |||
@@ -207,7 +207,7 @@ class TestPaddleDriverFunctions: | |||
def test_worker_init_function(self): | |||
""" | |||
测试worker_init_function | |||
测试 worker_init_function | |||
""" | |||
# 先确保不影响运行 | |||
# TODO:正确性 | |||
@@ -215,7 +215,7 @@ class TestPaddleDriverFunctions: | |||
def test_set_deterministic_dataloader(self): | |||
""" | |||
测试set_deterministic_dataloader | |||
测试 set_deterministic_dataloader | |||
""" | |||
# 先确保不影响运行 | |||
# TODO:正确性 | |||
@@ -224,7 +224,7 @@ class TestPaddleDriverFunctions: | |||
def test_set_sampler_epoch(self): | |||
""" | |||
测试set_sampler_epoch | |||
测试 set_sampler_epoch | |||
""" | |||
# 先确保不影响运行 | |||
# TODO:正确性 | |||
@@ -336,7 +336,7 @@ class TestSingleDeviceFunction: | |||
def test_move_data_to_device(self): | |||
""" | |||
这个函数仅调用了paddle_move_data_to_device,测试例在tests/core/utils/test_paddle_utils.py中 | |||
这个函数仅调用了 paddle_move_data_to_device ,测试例在 tests/core/utils/test_paddle_utils.py 中 | |||
就不重复测试了 | |||
""" | |||
self.driver.move_data_to_device(paddle.rand((32, 64))) | |||
@@ -490,9 +490,6 @@ class TestSetDistReproDataloader: | |||
else: | |||
sampler_states = replaced_loader.batch_sampler.sampler.state_dict() | |||
# 加载 num_consumed_samples_array,设置正确取出的 batch 数目 | |||
num_consumed_samples_array = sampler_states.pop('num_consumed_samples_array', None) | |||
# 重新加载,应该可以输出剩下的内容,且对于 PaddleNormalDataset 来说,排序后应该是一个 range | |||
left_idxes = set() | |||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler): | |||
@@ -510,7 +507,6 @@ class TestSetDistReproDataloader: | |||
new_loader.batch_sampler.load_state_dict(sampler_states) | |||
else: | |||
batch_size = replaced_loader.batch_sampler.batch_size | |||
num_consumed_samples = num_consumed_batches * batch_size | |||
sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size | |||
# 重新构造 dataloader | |||
batch_sampler = BatchSampler(replaced_loader.dataset, shuffle=shuffle, batch_size=batch_size) | |||
@@ -0,0 +1,103 @@ | |||
import os | |||
import pytest | |||
os.environ["FASTNLP_BACKEND"] = "torch" | |||
from fastNLP.core.drivers import TorchSingleDriver, TorchDDPDriver | |||
from fastNLP.core.drivers.torch_driver.initialize_torch_driver import initialize_torch_driver | |||
from fastNLP.envs import get_gpu_count | |||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.utils import magic_argv_env_context | |||
import torch | |||
def test_incorrect_driver(): | |||
model = TorchNormalModel_Classification_1(2, 100) | |||
with pytest.raises(ValueError): | |||
driver = initialize_torch_driver("paddle", 0, model) | |||
@pytest.mark.parametrize( | |||
"device", | |||
["cpu", "cuda:0", 0, torch.device("cuda:0")] | |||
) | |||
@pytest.mark.parametrize( | |||
"driver", | |||
["torch"] | |||
) | |||
def test_get_single_device(driver, device): | |||
""" | |||
测试正常情况下初始化TorchSingleDriver的情况 | |||
""" | |||
model = TorchNormalModel_Classification_1(2, 100) | |||
driver = initialize_torch_driver(driver, device, model) | |||
assert isinstance(driver, TorchSingleDriver) | |||
@pytest.mark.parametrize( | |||
"device", | |||
[0, 1] | |||
) | |||
@pytest.mark.parametrize( | |||
"driver", | |||
["torch_ddp"] | |||
) | |||
@magic_argv_env_context | |||
def test_get_ddp_2(driver, device): | |||
""" | |||
测试 ddp 多卡的初始化情况,但传入了单个 gpu | |||
""" | |||
model = TorchNormalModel_Classification_1(64, 10) | |||
driver = initialize_torch_driver(driver, device, model) | |||
assert isinstance(driver, TorchDDPDriver) | |||
@pytest.mark.parametrize( | |||
"device", | |||
[[0, 2, 3], -1] | |||
) | |||
@pytest.mark.parametrize( | |||
"driver", | |||
["torch", "torch_ddp"] | |||
) | |||
@magic_argv_env_context | |||
def test_get_ddp(driver, device): | |||
""" | |||
测试 ddp 多卡的初始化情况 | |||
""" | |||
model = TorchNormalModel_Classification_1(64, 10) | |||
driver = initialize_torch_driver(driver, device, model) | |||
assert isinstance(driver, TorchDDPDriver) | |||
@pytest.mark.parametrize( | |||
("driver", "device"), | |||
[("torch_ddp", "cpu")] | |||
) | |||
@magic_argv_env_context | |||
def test_get_ddp_cpu(driver, device): | |||
""" | |||
测试试图在 cpu 上初始化分布式训练的情况 | |||
""" | |||
model = TorchNormalModel_Classification_1(64, 10) | |||
with pytest.raises(ValueError): | |||
driver = initialize_torch_driver(driver, device, model) | |||
@pytest.mark.parametrize( | |||
"device", | |||
[-2, [0, torch.cuda.device_count() + 1, 3], [-2], torch.cuda.device_count() + 1] | |||
) | |||
@pytest.mark.parametrize( | |||
"driver", | |||
["torch", "torch_ddp"] | |||
) | |||
@magic_argv_env_context | |||
def test_device_out_of_range(driver, device): | |||
""" | |||
测试传入的device超过范围的情况 | |||
""" | |||
model = TorchNormalModel_Classification_1(2, 100) | |||
with pytest.raises(ValueError): | |||
driver = initialize_torch_driver(driver, device, model) |