@@ -47,9 +47,7 @@ def initialize_paddle_driver(driver: str, device: Optional[Union[str, int, List[ | |||||
raise ValueError("Parameter `device` can only be '-1' when it is smaller than 0.") | raise ValueError("Parameter `device` can only be '-1' when it is smaller than 0.") | ||||
if device >= _could_use_device_num: | if device >= _could_use_device_num: | ||||
raise ValueError("The gpu device that parameter `device` specifies is not existed.") | raise ValueError("The gpu device that parameter `device` specifies is not existed.") | ||||
if device != -1: | |||||
device = f"gpu:{device}" | |||||
else: | |||||
if device == -1: | |||||
device = list(range(_could_use_device_num)) | device = list(range(_could_use_device_num)) | ||||
elif isinstance(device, Sequence) and not isinstance(device, str): | elif isinstance(device, Sequence) and not isinstance(device, str): | ||||
device = list(set(device)) | device = list(set(device)) | ||||
@@ -61,9 +59,6 @@ def initialize_paddle_driver(driver: str, device: Optional[Union[str, int, List[ | |||||
elif each >= _could_use_device_num: | elif each >= _could_use_device_num: | ||||
raise ValueError("When parameter `device` is 'Sequence' type, the value in it should not be bigger than" | raise ValueError("When parameter `device` is 'Sequence' type, the value in it should not be bigger than" | ||||
" the available gpu number.") | " the available gpu number.") | ||||
if len(device) == 1: | |||||
# 传入了 [1] 这样的,视为单卡。 | |||||
device = device[0] | |||||
elif device is not None and not isinstance(device, str): | elif device is not None and not isinstance(device, str): | ||||
raise ValueError("Parameter `device` is wrong type, please check our documentation for the right use.") | raise ValueError("Parameter `device` is wrong type, please check our documentation for the right use.") | ||||
@@ -82,6 +77,6 @@ def initialize_paddle_driver(driver: str, device: Optional[Union[str, int, List[ | |||||
logger.warning("Notice you are using `fleet` driver, but your chosen `device` is only one gpu, we will" | logger.warning("Notice you are using `fleet` driver, but your chosen `device` is only one gpu, we will" | ||||
"still use `PaddleFleetDriver` for you, but if you mean using `PaddleSingleDriver`, you should " | "still use `PaddleFleetDriver` for you, but if you mean using `PaddleSingleDriver`, you should " | ||||
"choose `paddle` driver.") | "choose `paddle` driver.") | ||||
return PaddleFleetDriver(model, device, **kwargs) | |||||
return PaddleFleetDriver(model, [device], **kwargs) | |||||
else: | else: | ||||
return PaddleFleetDriver(model, device, **kwargs) | return PaddleFleetDriver(model, device, **kwargs) |
@@ -19,7 +19,12 @@ from fastNLP.envs import ( | |||||
rank_zero_call, | rank_zero_call, | ||||
) | ) | ||||
from fastNLP.core.log import logger | from fastNLP.core.log import logger | ||||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, RandomBatchSampler | |||||
from fastNLP.core.samplers import ( | |||||
ReproducibleBatchSampler, | |||||
ReproducibleSampler, | |||||
RandomBatchSampler, | |||||
RandomSampler, | |||||
) | |||||
if _NEED_IMPORT_PADDLE: | if _NEED_IMPORT_PADDLE: | ||||
import paddle | import paddle | ||||
@@ -29,7 +34,7 @@ if _NEED_IMPORT_PADDLE: | |||||
Dataset, | Dataset, | ||||
Sampler, | Sampler, | ||||
BatchSampler, | BatchSampler, | ||||
RandomSampler, | |||||
RandomSampler as PaddleRandomSampler, | |||||
) | ) | ||||
from paddle.optimizer import Optimizer | from paddle.optimizer import Optimizer | ||||
@@ -333,6 +338,9 @@ class PaddleDriver(Driver): | |||||
sampler = dataloader_args.batch_sampler | sampler = dataloader_args.batch_sampler | ||||
elif isinstance(dataloader_args.sampler, ReproducibleSampler): | elif isinstance(dataloader_args.sampler, ReproducibleSampler): | ||||
sampler = dataloader_args.sampler | sampler = dataloader_args.sampler | ||||
elif isinstance(dataloader_args.sampler, PaddleRandomSampler): | |||||
sampler = RandomSampler(dataloader_args.sampler.data_source) | |||||
logger.debug("Replace paddle RandomSampler into fastNLP RandomSampler.") | |||||
elif self.is_distributed(): | elif self.is_distributed(): | ||||
raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our or " | raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our or " | ||||
"`ReproducibleSampler`.") | "`ReproducibleSampler`.") | ||||
@@ -464,7 +472,7 @@ class PaddleDriver(Driver): | |||||
res.sampler = dataloader.batch_sampler.sampler | res.sampler = dataloader.batch_sampler.sampler | ||||
if hasattr(dataloader.batch_sampler.sampler, "shuffle"): | if hasattr(dataloader.batch_sampler.sampler, "shuffle"): | ||||
res.shuffle = dataloader.batch_sampler.sampler.shuffle | res.shuffle = dataloader.batch_sampler.sampler.shuffle | ||||
elif isinstance(dataloader.batch_sampler.sampler, RandomSampler): | |||||
elif isinstance(dataloader.batch_sampler.sampler, PaddleRandomSampler): | |||||
res.shuffle = True | res.shuffle = True | ||||
else: | else: | ||||
res.shuffle = False | res.shuffle = False | ||||
@@ -474,7 +482,7 @@ class PaddleDriver(Driver): | |||||
res.sampler = batch_sampler.sampler | res.sampler = batch_sampler.sampler | ||||
if hasattr(batch_sampler.sampler, "shuffle"): | if hasattr(batch_sampler.sampler, "shuffle"): | ||||
res.shuffle = dataloader.batch_sampler.sampler.shuffle | res.shuffle = dataloader.batch_sampler.sampler.shuffle | ||||
elif isinstance(batch_sampler.sampler, RandomSampler): | |||||
elif isinstance(batch_sampler.sampler, PaddleRandomSampler): | |||||
res.shuffle = True | res.shuffle = True | ||||
else: | else: | ||||
res.shuffle = False | res.shuffle = False | ||||
@@ -19,7 +19,7 @@ def test_incorrect_driver(): | |||||
@pytest.mark.parametrize( | @pytest.mark.parametrize( | ||||
"device", | "device", | ||||
["cpu", "gpu:0", 0, [1]] | |||||
["cpu", "gpu:0", 0] | |||||
) | ) | ||||
@pytest.mark.parametrize( | @pytest.mark.parametrize( | ||||
"driver", | "driver", | ||||
@@ -27,7 +27,7 @@ def test_incorrect_driver(): | |||||
) | ) | ||||
def test_get_single_device(driver, device): | def test_get_single_device(driver, device): | ||||
""" | """ | ||||
测试正常情况下初始化PaddleSingleDriver的情况 | |||||
测试正常情况下初始化 PaddleSingleDriver 的情况 | |||||
""" | """ | ||||
model = PaddleNormalModel_Classification_1(2, 100) | model = PaddleNormalModel_Classification_1(2, 100) | ||||
@@ -36,7 +36,7 @@ def test_get_single_device(driver, device): | |||||
@pytest.mark.parametrize( | @pytest.mark.parametrize( | ||||
"device", | "device", | ||||
[0, 1] | |||||
[0, 1, [1]] | |||||
) | ) | ||||
@pytest.mark.parametrize( | @pytest.mark.parametrize( | ||||
"driver", | "driver", | ||||
@@ -45,7 +45,7 @@ def test_get_single_device(driver, device): | |||||
@magic_argv_env_context | @magic_argv_env_context | ||||
def test_get_fleet_2(driver, device): | def test_get_fleet_2(driver, device): | ||||
""" | """ | ||||
测试 fleet 多卡的初始化情况 | |||||
测试 fleet 多卡的初始化情况,但传入了单个 gpu | |||||
""" | """ | ||||
model = PaddleNormalModel_Classification_1(64, 10) | model = PaddleNormalModel_Classification_1(64, 10) | ||||
@@ -34,7 +34,7 @@ class TestPaddleDriverFunctions: | |||||
def test_check_single_optimizer_legality(self): | def test_check_single_optimizer_legality(self): | ||||
""" | """ | ||||
测试传入单个optimizer时的表现 | |||||
测试传入单个 optimizer 时的表现 | |||||
""" | """ | ||||
optimizer = paddle.optimizer.Adam( | optimizer = paddle.optimizer.Adam( | ||||
parameters=self.driver.model.parameters(), | parameters=self.driver.model.parameters(), | ||||
@@ -50,7 +50,7 @@ class TestPaddleDriverFunctions: | |||||
def test_check_optimizers_legality(self): | def test_check_optimizers_legality(self): | ||||
""" | """ | ||||
测试传入optimizer list的表现 | |||||
测试传入 optimizer list 的表现 | |||||
""" | """ | ||||
optimizers = [ | optimizers = [ | ||||
paddle.optimizer.Adam( | paddle.optimizer.Adam( | ||||
@@ -70,13 +70,13 @@ class TestPaddleDriverFunctions: | |||||
def test_check_dataloader_legality_in_train(self): | def test_check_dataloader_legality_in_train(self): | ||||
""" | """ | ||||
测试is_train参数为True时,_check_dataloader_legality函数的表现 | |||||
测试 `is_train` 参数为 True 时,_check_dataloader_legality 函数的表现 | |||||
""" | """ | ||||
dataloader = paddle.io.DataLoader(PaddleNormalDataset()) | |||||
dataloader = DataLoader(PaddleNormalDataset()) | |||||
PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", True) | PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", True) | ||||
# batch_size 和 batch_sampler 均为 None 的情形 | # batch_size 和 batch_sampler 均为 None 的情形 | ||||
dataloader = paddle.io.DataLoader(PaddleNormalDataset(), batch_size=None) | |||||
dataloader = DataLoader(PaddleNormalDataset(), batch_size=None) | |||||
with pytest.raises(ValueError): | with pytest.raises(ValueError): | ||||
PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", True) | PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", True) | ||||
@@ -90,29 +90,29 @@ class TestPaddleDriverFunctions: | |||||
def test_check_dataloader_legality_in_test(self): | def test_check_dataloader_legality_in_test(self): | ||||
""" | """ | ||||
测试is_train参数为False时,_check_dataloader_legality函数的表现 | |||||
测试 `is_train` 参数为 False 时,_check_dataloader_legality 函数的表现 | |||||
""" | """ | ||||
# 此时传入的应该是dict | # 此时传入的应该是dict | ||||
dataloader = { | dataloader = { | ||||
"train": paddle.io.DataLoader(PaddleNormalDataset()), | |||||
"test":paddle.io.DataLoader(PaddleNormalDataset()) | |||||
"train": DataLoader(PaddleNormalDataset()), | |||||
"test":DataLoader(PaddleNormalDataset()) | |||||
} | } | ||||
PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", False) | PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", False) | ||||
# batch_size 和 batch_sampler 均为 None 的情形 | # batch_size 和 batch_sampler 均为 None 的情形 | ||||
dataloader = { | dataloader = { | ||||
"train": paddle.io.DataLoader(PaddleNormalDataset()), | |||||
"test":paddle.io.DataLoader(PaddleNormalDataset(), batch_size=None) | |||||
"train": DataLoader(PaddleNormalDataset()), | |||||
"test":DataLoader(PaddleNormalDataset(), batch_size=None) | |||||
} | } | ||||
with pytest.raises(ValueError): | with pytest.raises(ValueError): | ||||
PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", False) | PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", False) | ||||
# 传入的不是dict,应该报错 | |||||
dataloader = paddle.io.DataLoader(PaddleNormalDataset()) | |||||
# 传入的不是 dict ,应该报错 | |||||
dataloader = DataLoader(PaddleNormalDataset()) | |||||
with pytest.raises(ValueError): | with pytest.raises(ValueError): | ||||
PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", False) | PaddleSingleDriver.check_dataloader_legality(dataloader, "dataloader", False) | ||||
# 创建torch的dataloader | |||||
# 创建 torch 的 dataloader | |||||
train_loader = torch.utils.data.DataLoader( | train_loader = torch.utils.data.DataLoader( | ||||
TorchNormalDataset(), | TorchNormalDataset(), | ||||
batch_size=32, shuffle=True | batch_size=32, shuffle=True | ||||
@@ -127,7 +127,7 @@ class TestPaddleDriverFunctions: | |||||
def test_tensor_to_numeric(self): | def test_tensor_to_numeric(self): | ||||
""" | """ | ||||
测试tensor_to_numeric函数 | |||||
测试 tensor_to_numeric 函数 | |||||
""" | """ | ||||
# 单个张量 | # 单个张量 | ||||
tensor = paddle.to_tensor(3) | tensor = paddle.to_tensor(3) | ||||
@@ -180,7 +180,7 @@ class TestPaddleDriverFunctions: | |||||
def test_set_model_mode(self): | def test_set_model_mode(self): | ||||
""" | """ | ||||
测试set_model_mode函数 | |||||
测试 set_model_mode 函数 | |||||
""" | """ | ||||
self.driver.set_model_mode("train") | self.driver.set_model_mode("train") | ||||
assert self.driver.model.training | assert self.driver.model.training | ||||
@@ -192,14 +192,14 @@ class TestPaddleDriverFunctions: | |||||
def test_move_model_to_device_cpu(self): | def test_move_model_to_device_cpu(self): | ||||
""" | """ | ||||
测试move_model_to_device函数 | |||||
测试 move_model_to_device 函数 | |||||
""" | """ | ||||
PaddleSingleDriver.move_model_to_device(self.driver.model, "cpu") | PaddleSingleDriver.move_model_to_device(self.driver.model, "cpu") | ||||
assert self.driver.model.linear1.weight.place.is_cpu_place() | assert self.driver.model.linear1.weight.place.is_cpu_place() | ||||
def test_move_model_to_device_gpu(self): | def test_move_model_to_device_gpu(self): | ||||
""" | """ | ||||
测试move_model_to_device函数 | |||||
测试 move_model_to_device 函数 | |||||
""" | """ | ||||
PaddleSingleDriver.move_model_to_device(self.driver.model, "gpu") | PaddleSingleDriver.move_model_to_device(self.driver.model, "gpu") | ||||
assert self.driver.model.linear1.weight.place.is_gpu_place() | assert self.driver.model.linear1.weight.place.is_gpu_place() | ||||
@@ -207,7 +207,7 @@ class TestPaddleDriverFunctions: | |||||
def test_worker_init_function(self): | def test_worker_init_function(self): | ||||
""" | """ | ||||
测试worker_init_function | |||||
测试 worker_init_function | |||||
""" | """ | ||||
# 先确保不影响运行 | # 先确保不影响运行 | ||||
# TODO:正确性 | # TODO:正确性 | ||||
@@ -215,7 +215,7 @@ class TestPaddleDriverFunctions: | |||||
def test_set_deterministic_dataloader(self): | def test_set_deterministic_dataloader(self): | ||||
""" | """ | ||||
测试set_deterministic_dataloader | |||||
测试 set_deterministic_dataloader | |||||
""" | """ | ||||
# 先确保不影响运行 | # 先确保不影响运行 | ||||
# TODO:正确性 | # TODO:正确性 | ||||
@@ -224,7 +224,7 @@ class TestPaddleDriverFunctions: | |||||
def test_set_sampler_epoch(self): | def test_set_sampler_epoch(self): | ||||
""" | """ | ||||
测试set_sampler_epoch | |||||
测试 set_sampler_epoch | |||||
""" | """ | ||||
# 先确保不影响运行 | # 先确保不影响运行 | ||||
# TODO:正确性 | # TODO:正确性 | ||||
@@ -336,7 +336,7 @@ class TestSingleDeviceFunction: | |||||
def test_move_data_to_device(self): | def test_move_data_to_device(self): | ||||
""" | """ | ||||
这个函数仅调用了paddle_move_data_to_device,测试例在tests/core/utils/test_paddle_utils.py中 | |||||
这个函数仅调用了 paddle_move_data_to_device ,测试例在 tests/core/utils/test_paddle_utils.py 中 | |||||
就不重复测试了 | 就不重复测试了 | ||||
""" | """ | ||||
self.driver.move_data_to_device(paddle.rand((32, 64))) | self.driver.move_data_to_device(paddle.rand((32, 64))) | ||||
@@ -490,9 +490,6 @@ class TestSetDistReproDataloader: | |||||
else: | else: | ||||
sampler_states = replaced_loader.batch_sampler.sampler.state_dict() | sampler_states = replaced_loader.batch_sampler.sampler.state_dict() | ||||
# 加载 num_consumed_samples_array,设置正确取出的 batch 数目 | |||||
num_consumed_samples_array = sampler_states.pop('num_consumed_samples_array', None) | |||||
# 重新加载,应该可以输出剩下的内容,且对于 PaddleNormalDataset 来说,排序后应该是一个 range | # 重新加载,应该可以输出剩下的内容,且对于 PaddleNormalDataset 来说,排序后应该是一个 range | ||||
left_idxes = set() | left_idxes = set() | ||||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler): | if isinstance(replaced_loader.batch_sampler, RandomBatchSampler): | ||||
@@ -510,7 +507,6 @@ class TestSetDistReproDataloader: | |||||
new_loader.batch_sampler.load_state_dict(sampler_states) | new_loader.batch_sampler.load_state_dict(sampler_states) | ||||
else: | else: | ||||
batch_size = replaced_loader.batch_sampler.batch_size | batch_size = replaced_loader.batch_sampler.batch_size | ||||
num_consumed_samples = num_consumed_batches * batch_size | |||||
sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size | sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size | ||||
# 重新构造 dataloader | # 重新构造 dataloader | ||||
batch_sampler = BatchSampler(replaced_loader.dataset, shuffle=shuffle, batch_size=batch_size) | batch_sampler = BatchSampler(replaced_loader.dataset, shuffle=shuffle, batch_size=batch_size) | ||||
@@ -0,0 +1,103 @@ | |||||
import os | |||||
import pytest | |||||
os.environ["FASTNLP_BACKEND"] = "torch" | |||||
from fastNLP.core.drivers import TorchSingleDriver, TorchDDPDriver | |||||
from fastNLP.core.drivers.torch_driver.initialize_torch_driver import initialize_torch_driver | |||||
from fastNLP.envs import get_gpu_count | |||||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||||
from tests.helpers.utils import magic_argv_env_context | |||||
import torch | |||||
def test_incorrect_driver(): | |||||
model = TorchNormalModel_Classification_1(2, 100) | |||||
with pytest.raises(ValueError): | |||||
driver = initialize_torch_driver("paddle", 0, model) | |||||
@pytest.mark.parametrize( | |||||
"device", | |||||
["cpu", "cuda:0", 0, torch.device("cuda:0")] | |||||
) | |||||
@pytest.mark.parametrize( | |||||
"driver", | |||||
["torch"] | |||||
) | |||||
def test_get_single_device(driver, device): | |||||
""" | |||||
测试正常情况下初始化TorchSingleDriver的情况 | |||||
""" | |||||
model = TorchNormalModel_Classification_1(2, 100) | |||||
driver = initialize_torch_driver(driver, device, model) | |||||
assert isinstance(driver, TorchSingleDriver) | |||||
@pytest.mark.parametrize( | |||||
"device", | |||||
[0, 1] | |||||
) | |||||
@pytest.mark.parametrize( | |||||
"driver", | |||||
["torch_ddp"] | |||||
) | |||||
@magic_argv_env_context | |||||
def test_get_ddp_2(driver, device): | |||||
""" | |||||
测试 ddp 多卡的初始化情况,但传入了单个 gpu | |||||
""" | |||||
model = TorchNormalModel_Classification_1(64, 10) | |||||
driver = initialize_torch_driver(driver, device, model) | |||||
assert isinstance(driver, TorchDDPDriver) | |||||
@pytest.mark.parametrize( | |||||
"device", | |||||
[[0, 2, 3], -1] | |||||
) | |||||
@pytest.mark.parametrize( | |||||
"driver", | |||||
["torch", "torch_ddp"] | |||||
) | |||||
@magic_argv_env_context | |||||
def test_get_ddp(driver, device): | |||||
""" | |||||
测试 ddp 多卡的初始化情况 | |||||
""" | |||||
model = TorchNormalModel_Classification_1(64, 10) | |||||
driver = initialize_torch_driver(driver, device, model) | |||||
assert isinstance(driver, TorchDDPDriver) | |||||
@pytest.mark.parametrize( | |||||
("driver", "device"), | |||||
[("torch_ddp", "cpu")] | |||||
) | |||||
@magic_argv_env_context | |||||
def test_get_ddp_cpu(driver, device): | |||||
""" | |||||
测试试图在 cpu 上初始化分布式训练的情况 | |||||
""" | |||||
model = TorchNormalModel_Classification_1(64, 10) | |||||
with pytest.raises(ValueError): | |||||
driver = initialize_torch_driver(driver, device, model) | |||||
@pytest.mark.parametrize( | |||||
"device", | |||||
[-2, [0, torch.cuda.device_count() + 1, 3], [-2], torch.cuda.device_count() + 1] | |||||
) | |||||
@pytest.mark.parametrize( | |||||
"driver", | |||||
["torch", "torch_ddp"] | |||||
) | |||||
@magic_argv_env_context | |||||
def test_device_out_of_range(driver, device): | |||||
""" | |||||
测试传入的device超过范围的情况 | |||||
""" | |||||
model = TorchNormalModel_Classification_1(2, 100) | |||||
with pytest.raises(ValueError): | |||||
driver = initialize_torch_driver(driver, device, model) |