| @@ -0,0 +1,8 @@ | |||
| SpaCy "Doc" | |||
| https://github.com/explosion/spaCy/blob/75d2a05c2938f412f0fae44748374e4de19cc2be/spacy/tokens/doc.pyx#L80 | |||
| SpaCy "Vocab" | |||
| https://github.com/explosion/spaCy/blob/75d2a05c2938f412f0fae44748374e4de19cc2be/spacy/vocab.pyx#L25 | |||
| SpaCy "Token" | |||
| https://github.com/explosion/spaCy/blob/75d2a05c2938f412f0fae44748374e4de19cc2be/spacy/tokens/token.pyx#L27 | |||
| @@ -0,0 +1,46 @@ | |||
| from saver.logger import Logger | |||
| class Action(object): | |||
| """ | |||
| base class for Trainer and Tester | |||
| """ | |||
| def __init__(self): | |||
| super(Action, self).__init__() | |||
| self.logger = Logger("logger_output.txt") | |||
| def load_config(self, args): | |||
| raise NotImplementedError | |||
| def load_dataset(self, args): | |||
| raise NotImplementedError | |||
| def log(self, string): | |||
| self.logger.log(string) | |||
| def batchify(self, batch_size, X, Y=None): | |||
| """ | |||
| :param batch_size: int | |||
| :param X: feature matrix of size [n_sample, m_feature] | |||
| :param Y: label vector of size [n_sample, 1] (optional) | |||
| :return iteration:int, the number of step in each epoch | |||
| generator:generator, to generate batch inputs | |||
| """ | |||
| n_samples = X.shape[0] | |||
| num_iter = n_samples // batch_size | |||
| if Y is None: | |||
| generator = self._batch_generate(batch_size, num_iter, X) | |||
| else: | |||
| generator = self._batch_generate(batch_size, num_iter, X, Y) | |||
| return num_iter, generator | |||
| @staticmethod | |||
| def _batch_generate(batch_size, num_iter, *data): | |||
| for step in range(num_iter): | |||
| start = batch_size * step | |||
| end = batch_size * (step + 1) | |||
| yield tuple([x[start:end] for x in data]) | |||
| def make_log(self, *args): | |||
| return "log" | |||
| @@ -0,0 +1,87 @@ | |||
| from collections import namedtuple | |||
| import numpy as np | |||
| from fastNLP.action import Action | |||
| class Tester(Action): | |||
| """docstring for Tester""" | |||
| TestConfig = namedtuple("config", ["validate_in_training", "save_dev_input", "save_output", | |||
| "save_loss", "batch_size"]) | |||
| def __init__(self, test_args): | |||
| """ | |||
| :param test_args: named tuple | |||
| """ | |||
| super(Tester, self).__init__() | |||
| self.validate_in_training = test_args.validate_in_training | |||
| self.save_dev_input = test_args.save_dev_input | |||
| self.valid_x = None | |||
| self.valid_y = None | |||
| self.save_output = test_args.save_output | |||
| self.output = None | |||
| self.save_loss = test_args.save_loss | |||
| self.mean_loss = None | |||
| self.batch_size = test_args.batch_size | |||
| def test(self, network, data): | |||
| print("testing") | |||
| network.mode(test=True) # turn on the testing mode | |||
| if self.save_dev_input: | |||
| if self.valid_x is None: | |||
| valid_x, valid_y = network.prepare_input(data) | |||
| self.valid_x = valid_x | |||
| self.valid_y = valid_y | |||
| else: | |||
| valid_x = self.valid_x | |||
| valid_y = self.valid_y | |||
| else: | |||
| valid_x, valid_y = network.prepare_input(data) | |||
| # split into batches by self.batch_size | |||
| iterations, test_batch_generator = self.batchify(self.batch_size, valid_x, valid_y) | |||
| batch_output = list() | |||
| loss_history = list() | |||
| # turn on the testing mode of the network | |||
| network.mode(test=True) | |||
| for step in range(iterations): | |||
| batch_x, batch_y = test_batch_generator.__next__() | |||
| # forward pass from test input to predicted output | |||
| prediction = network.data_forward(batch_x) | |||
| loss = network.get_loss(prediction, batch_y) | |||
| if self.save_output: | |||
| batch_output.append(prediction.data) | |||
| if self.save_loss: | |||
| loss_history.append(loss) | |||
| self.log(self.make_log(step, loss)) | |||
| if self.save_loss: | |||
| self.mean_loss = np.mean(np.array(loss_history)) | |||
| if self.save_output: | |||
| self.output = self.make_output(batch_output) | |||
| @property | |||
| def loss(self): | |||
| return self.mean_loss | |||
| @property | |||
| def result(self): | |||
| return self.output | |||
| @staticmethod | |||
| def make_output(batch_outputs): | |||
| # construct full prediction with batch outputs | |||
| return np.concatenate(batch_outputs, axis=0) | |||
| def load_config(self, args): | |||
| raise NotImplementedError | |||
| def load_dataset(self, args): | |||
| raise NotImplementedError | |||
| @@ -0,0 +1,93 @@ | |||
| from collections import namedtuple | |||
| from .action import Action | |||
| from .tester import Tester | |||
| class Trainer(Action): | |||
| """ | |||
| Trainer is a common training pipeline shared among all models. | |||
| """ | |||
| TrainConfig = namedtuple("config", ["epochs", "validate", "save_when_better", | |||
| "log_per_step", "log_validation", "batch_size"]) | |||
| def __init__(self, train_args): | |||
| """ | |||
| :param train_args: namedtuple | |||
| """ | |||
| super(Trainer, self).__init__() | |||
| self.n_epochs = train_args.epochs | |||
| self.validate = train_args.validate | |||
| self.save_when_better = train_args.save_when_better | |||
| self.log_per_step = train_args.log_per_step | |||
| self.log_validation = train_args.log_validation | |||
| self.batch_size = train_args.batch_size | |||
| def train(self, network, train_data, dev_data=None): | |||
| """ | |||
| :param network: the models controller | |||
| :param train_data: raw data for training | |||
| :param dev_data: raw data for validation | |||
| This method will call all the base methods of network (implemented in models.base_model). | |||
| """ | |||
| train_x, train_y = network.prepare_input(train_data) | |||
| iterations, train_batch_generator = self.batchify(self.batch_size, train_x, train_y) | |||
| test_args = Tester.TestConfig(save_output=True, validate_in_training=True, | |||
| save_dev_input=True, save_loss=True, batch_size=self.batch_size) | |||
| evaluator = Tester(test_args) | |||
| best_loss = 1e10 | |||
| loss_history = list() | |||
| for epoch in range(self.n_epochs): | |||
| network.mode(test=False) # turn on the train mode | |||
| network.define_optimizer() | |||
| for step in range(iterations): | |||
| batch_x, batch_y = train_batch_generator.__next__() | |||
| prediction = network.data_forward(batch_x) | |||
| loss = network.get_loss(prediction, batch_y) | |||
| network.grad_backward() | |||
| if step % self.log_per_step == 0: | |||
| print("step ", step) | |||
| loss_history.append(loss) | |||
| self.log(self.make_log(epoch, step, loss)) | |||
| #################### evaluate over dev set ################### | |||
| if self.validate: | |||
| if dev_data is None: | |||
| raise RuntimeError("No validation data provided.") | |||
| # give all controls to tester | |||
| evaluator.test(network, dev_data) | |||
| if self.log_validation: | |||
| self.log(self.make_valid_log(epoch, evaluator.loss)) | |||
| if evaluator.loss < best_loss: | |||
| best_loss = evaluator.loss | |||
| if self.save_when_better: | |||
| self.save_model(network) | |||
| # finish training | |||
| def make_log(self, *args): | |||
| return "make a log" | |||
| def make_valid_log(self, *args): | |||
| return "make a valid log" | |||
| def save_model(self, model): | |||
| model.save() | |||
| def load_data(self, data_name): | |||
| print("load data") | |||
| def load_config(self, args): | |||
| raise NotImplementedError | |||
| def load_dataset(self, args): | |||
| raise NotImplementedError | |||
| @@ -0,0 +1,36 @@ | |||
| class BaseLoader(object): | |||
| """docstring for BaseLoader""" | |||
| def __init__(self, data_name, data_path): | |||
| super(BaseLoader, self).__init__() | |||
| self.data_name = data_name | |||
| self.data_path = data_path | |||
| def load(self): | |||
| """ | |||
| :return: string | |||
| """ | |||
| with open(self.data_path, "r", encoding="utf-8") as f: | |||
| text = f.read() | |||
| return text | |||
| def load_lines(self): | |||
| with open(self.data_path, "r", encoding="utf=8") as f: | |||
| text = f.readlines() | |||
| return text | |||
| class ToyLoader0(BaseLoader): | |||
| """ | |||
| For charLM | |||
| """ | |||
| def __init__(self, name, path): | |||
| super(ToyLoader0, self).__init__(name, path) | |||
| def load(self): | |||
| with open(self.data_path, 'r') as f: | |||
| corpus = f.read().lower() | |||
| import re | |||
| corpus = re.sub(r"<unk>", "unk", corpus) | |||
| return corpus.split() | |||
| @@ -0,0 +1,13 @@ | |||
| from loader.base_loader import BaseLoader | |||
| class ConfigLoader(BaseLoader): | |||
| """loader for configuration files""" | |||
| def __int__(self, data_name, data_path): | |||
| super(ConfigLoader, self).__init__(data_name, data_path) | |||
| self.config = self.parse(super(ConfigLoader, self).load()) | |||
| @staticmethod | |||
| def parse(string): | |||
| raise NotImplementedError | |||
| @@ -0,0 +1,47 @@ | |||
| from loader.base_loader import BaseLoader | |||
| class DatasetLoader(BaseLoader): | |||
| """"loader for data sets""" | |||
| def __init__(self, data_name, data_path): | |||
| super(DatasetLoader, self).__init__(data_name, data_path) | |||
| class ConllLoader(DatasetLoader): | |||
| """loader for conll format files""" | |||
| def __int__(self, data_name, data_path): | |||
| """ | |||
| :param str data_name: the name of the conll data set | |||
| :param str data_path: the path to the conll data set | |||
| """ | |||
| super(ConllLoader, self).__init__(data_name, data_path) | |||
| self.data_set = self.parse(self.load()) | |||
| def load(self): | |||
| """ | |||
| :return: list lines: all lines in a conll file | |||
| """ | |||
| with open(self.data_path, "r", encoding="utf-8") as f: | |||
| lines = f.readlines() | |||
| return lines | |||
| @staticmethod | |||
| def parse(lines): | |||
| """ | |||
| :param list lines:a list containing all lines in a conll file. | |||
| :return: a 3D list | |||
| """ | |||
| sentences = list() | |||
| tokens = list() | |||
| for line in lines: | |||
| if line[0] == "#": | |||
| # skip the comments | |||
| continue | |||
| if line == "\n": | |||
| sentences.append(tokens) | |||
| tokens = [] | |||
| continue | |||
| tokens.append(line.split()) | |||
| return sentences | |||
| @@ -0,0 +1,8 @@ | |||
| from loader.base_loader import BaseLoader | |||
| class EmbedLoader(BaseLoader): | |||
| """docstring for EmbedLoader""" | |||
| def __init__(self, data_name, data_path): | |||
| super(EmbedLoader, self).__init__(data_name, data_path) | |||
| @@ -0,0 +1,158 @@ | |||
| import numpy as np | |||
| class BaseModel(object): | |||
| """The base class of all models. | |||
| This class and its subclasses are actually "wrappers" of the PyTorch models. | |||
| They act as an interface between Trainer and the deep learning networks. | |||
| This interface provides the following methods to be called by Trainer. | |||
| - prepare_input | |||
| - mode | |||
| - define_optimizer | |||
| - data_forward | |||
| - grad_backward | |||
| - get_loss | |||
| """ | |||
| def __init__(self): | |||
| pass | |||
| def prepare_input(self, data): | |||
| """ | |||
| Perform data transformation from raw input to vector/matrix inputs. | |||
| :param data: raw inputs | |||
| :return (X, Y): tuple, input features and labels | |||
| """ | |||
| raise NotImplementedError | |||
| def mode(self, test=False): | |||
| """ | |||
| Tell the network to be trained or not, required by PyTorch. | |||
| :param test: bool | |||
| """ | |||
| raise NotImplementedError | |||
| def define_optimizer(self): | |||
| """ | |||
| Define PyTorch optimizer specified by the models. | |||
| """ | |||
| raise NotImplementedError | |||
| def data_forward(self, *x): | |||
| """ | |||
| Forward pass of the data. | |||
| :param x: input feature matrix and label vector | |||
| :return: output by the models | |||
| """ | |||
| # required by PyTorch nn | |||
| raise NotImplementedError | |||
| def grad_backward(self): | |||
| """ | |||
| Perform gradient descent to update the models parameters. | |||
| """ | |||
| raise NotImplementedError | |||
| def get_loss(self, pred, truth): | |||
| """ | |||
| Compute loss given models prediction and ground truth. Loss function specified by the models. | |||
| :param pred: prediction label vector | |||
| :param truth: ground truth label vector | |||
| :return: a scalar | |||
| """ | |||
| raise NotImplementedError | |||
| class ToyModel(BaseModel): | |||
| """This is for code testing.""" | |||
| def __init__(self): | |||
| super(ToyModel, self).__init__() | |||
| self.test_mode = False | |||
| self.weight = np.random.rand(5, 1) | |||
| self.bias = np.random.rand() | |||
| self._loss = 0 | |||
| def prepare_input(self, data): | |||
| return data[:, :-1], data[:, -1] | |||
| def mode(self, test=False): | |||
| self.test_mode = test | |||
| def data_forward(self, x): | |||
| return np.matmul(x, self.weight) + self.bias | |||
| def grad_backward(self): | |||
| print("loss gradient backward") | |||
| def get_loss(self, pred, truth): | |||
| self._loss = np.mean(np.square(pred - truth)) | |||
| return self._loss | |||
| def define_optimizer(self): | |||
| pass | |||
| class Vocabulary(object): | |||
| """A look-up table that allows you to access `Lexeme` objects. The `Vocab` | |||
| instance also provides access to the `StringStore`, and owns underlying | |||
| data that is shared between `Doc` objects. | |||
| """ | |||
| def __init__(self): | |||
| """Create the vocabulary. | |||
| RETURNS (Vocab): The newly constructed object. | |||
| """ | |||
| self.data_frame = None | |||
| class Document(object): | |||
| """A sequence of Token objects. Access sentences and named entities, export | |||
| annotations to numpy arrays, losslessly serialize to compressed binary | |||
| strings. The `Doc` object holds an array of `Token` objects. The | |||
| Python-level `Token` and `Span` objects are views of this array, i.e. | |||
| they don't own the data themselves. -- spacy | |||
| """ | |||
| def __init__(self, vocab, words=None, spaces=None): | |||
| """Create a Doc object. | |||
| vocab (Vocab): A vocabulary object, which must match any models you | |||
| want to use (e.g. tokenizer, parser, entity recognizer). | |||
| words (list or None): A list of unicode strings, to add to the document | |||
| as words. If `None`, defaults to empty list. | |||
| spaces (list or None): A list of boolean values, of the same length as | |||
| words. True means that the word is followed by a space, False means | |||
| it is not. If `None`, defaults to `[True]*len(words)` | |||
| user_data (dict or None): Optional extra data to attach to the Doc. | |||
| RETURNS (Doc): The newly constructed object. | |||
| """ | |||
| self.vocab = vocab | |||
| self.spaces = spaces | |||
| self.words = words | |||
| if spaces is None: | |||
| self.spaces = [True] * len(self.words) | |||
| elif len(spaces) != len(self.words): | |||
| raise ValueError("dismatch spaces and words") | |||
| def get_chunker(self, vocab): | |||
| return None | |||
| def push_back(self, vocab): | |||
| pass | |||
| class Token(object): | |||
| """An individual token – i.e. a word, punctuation symbol, whitespace, | |||
| etc. | |||
| """ | |||
| def __init__(self, vocab, doc, offset): | |||
| """Construct a `Token` object. | |||
| vocab (Vocabulary): A storage container for lexical types. | |||
| doc (Document): The parent document. | |||
| offset (int): The index of the token within the document. | |||
| """ | |||
| self.vocab = vocab | |||
| self.doc = doc | |||
| self.token = doc[offset] | |||
| self.i = offset | |||
| @@ -0,0 +1,354 @@ | |||
| import os | |||
| from collections import namedtuple | |||
| import numpy as np | |||
| import torch | |||
| import torch.nn as nn | |||
| import torch.nn.functional as F | |||
| import torch.optim as optim | |||
| from model.base_model import BaseModel | |||
| from torch.autograd import Variable | |||
| USE_GPU = True | |||
| class CharLM(BaseModel): | |||
| """ | |||
| Controller of the Character-level Neural Language Model | |||
| To do: | |||
| - where the data goes, call data savers. | |||
| """ | |||
| DataTuple = namedtuple("DataTuple", ["feature", "label"]) | |||
| def __init__(self, lstm_batch_size, lstm_seq_len): | |||
| super(CharLM, self).__init__() | |||
| """ | |||
| Settings: should come from config loader or pre-processing | |||
| """ | |||
| self.word_embed_dim = 300 | |||
| self.char_embedding_dim = 15 | |||
| self.cnn_batch_size = lstm_batch_size * lstm_seq_len | |||
| self.lstm_seq_len = lstm_seq_len | |||
| self.lstm_batch_size = lstm_batch_size | |||
| self.num_epoch = 10 | |||
| self.old_PPL = 100000 | |||
| self.best_PPL = 100000 | |||
| """ | |||
| These parameters are set by pre-processing. | |||
| """ | |||
| self.max_word_len = None | |||
| self.num_char = None | |||
| self.vocab_size = None | |||
| self.preprocess("./data_for_tests/charlm.txt") | |||
| self.data = None # named tuple to store all data set | |||
| self.data_ready = False | |||
| self.criterion = nn.CrossEntropyLoss() | |||
| self._loss = None | |||
| self.use_gpu = USE_GPU | |||
| # word_emb_dim == hidden_size / num of hidden units | |||
| self.hidden = (to_var(torch.zeros(2, self.lstm_batch_size, self.word_embed_dim)), | |||
| to_var(torch.zeros(2, self.lstm_batch_size, self.word_embed_dim))) | |||
| self.model = charLM(self.char_embedding_dim, | |||
| self.word_embed_dim, | |||
| self.vocab_size, | |||
| self.num_char, | |||
| use_gpu=self.use_gpu) | |||
| for param in self.model.parameters(): | |||
| nn.init.uniform(param.data, -0.05, 0.05) | |||
| self.learning_rate = 0.1 | |||
| self.optimizer = None | |||
| def prepare_input(self, raw_text): | |||
| """ | |||
| :param raw_text: raw input text consisting of words | |||
| :return: torch.Tensor, torch.Tensor | |||
| feature matrix, label vector | |||
| This function is only called once in Trainer.train, but may called multiple times in Tester.test | |||
| So Tester will save test input for frequent calls. | |||
| """ | |||
| if os.path.exists("cache/prep.pt") is False: | |||
| self.preprocess("./data_for_tests/charlm.txt") # To do: This is not good. Need to fix.. | |||
| objects = torch.load("cache/prep.pt") | |||
| word_dict = objects["word_dict"] | |||
| char_dict = objects["char_dict"] | |||
| max_word_len = self.max_word_len | |||
| print("word/char dictionary built. Start making inputs.") | |||
| words = raw_text | |||
| input_vec = np.array(text2vec(words, char_dict, max_word_len)) | |||
| # Labels are next-word index in word_dict with the same length as inputs | |||
| input_label = np.array([word_dict[w] for w in words[1:]] + [word_dict[words[-1]]]) | |||
| feature_input = torch.from_numpy(input_vec) | |||
| label_input = torch.from_numpy(input_label) | |||
| return feature_input, label_input | |||
| def mode(self, test=False): | |||
| if test: | |||
| self.model.eval() | |||
| else: | |||
| self.model.train() | |||
| def data_forward(self, x): | |||
| """ | |||
| :param x: Tensor of size [lstm_batch_size, lstm_seq_len, max_word_len+2] | |||
| :return: Tensor of size [num_words, ?] | |||
| """ | |||
| # additional processing of inputs after batching | |||
| num_seq = x.size()[0] // self.lstm_seq_len | |||
| x = x[:num_seq * self.lstm_seq_len, :] | |||
| x = x.view(-1, self.lstm_seq_len, self.max_word_len + 2) | |||
| # detach hidden state of LSTM from last batch | |||
| hidden = [state.detach() for state in self.hidden] | |||
| output, self.hidden = self.model(to_var(x), hidden) | |||
| return output | |||
| def grad_backward(self): | |||
| self.model.zero_grad() | |||
| self._loss.backward() | |||
| torch.nn.utils.clip_grad_norm(self.model.parameters(), 5, norm_type=2) | |||
| self.optimizer.step() | |||
| def get_loss(self, predict, truth): | |||
| self._loss = self.criterion(predict, to_var(truth)) | |||
| return self._loss.data # No pytorch data structure exposed outsides | |||
| def define_optimizer(self): | |||
| # redefine optimizer for every new epoch | |||
| self.optimizer = optim.SGD(self.model.parameters(), lr=self.learning_rate, momentum=0.85) | |||
| def save(self): | |||
| print("network saved") | |||
| # torch.save(self.models, "cache/models.pkl") | |||
| def preprocess(self, all_text_files): | |||
| word_dict, char_dict = create_word_char_dict(all_text_files) | |||
| num_char = len(char_dict) | |||
| self.vocab_size = len(word_dict) | |||
| char_dict["BOW"] = num_char + 1 | |||
| char_dict["EOW"] = num_char + 2 | |||
| char_dict["PAD"] = 0 | |||
| self.num_char = num_char + 3 | |||
| # char_dict is a dict of (int, string), int counting from 0 to 47 | |||
| reverse_word_dict = {value: key for key, value in word_dict.items()} | |||
| self.max_word_len = max([len(word) for word in word_dict]) | |||
| objects = { | |||
| "word_dict": word_dict, | |||
| "char_dict": char_dict, | |||
| "reverse_word_dict": reverse_word_dict, | |||
| } | |||
| torch.save(objects, "cache/prep.pt") | |||
| print("Preprocess done.") | |||
| """ | |||
| Global Functions | |||
| """ | |||
| def batch_generator(x, batch_size): | |||
| # x: [num_words, in_channel, height, width] | |||
| # partitions x into batches | |||
| num_step = x.size()[0] // batch_size | |||
| for t in range(num_step): | |||
| yield x[t * batch_size:(t + 1) * batch_size] | |||
| def text2vec(words, char_dict, max_word_len): | |||
| """ Return list of list of int """ | |||
| word_vec = [] | |||
| for word in words: | |||
| vec = [char_dict[ch] for ch in word] | |||
| if len(vec) < max_word_len: | |||
| vec += [char_dict["PAD"] for _ in range(max_word_len - len(vec))] | |||
| vec = [char_dict["BOW"]] + vec + [char_dict["EOW"]] | |||
| word_vec.append(vec) | |||
| return word_vec | |||
| def read_data(file_name): | |||
| with open(file_name, 'r') as f: | |||
| corpus = f.read().lower() | |||
| import re | |||
| corpus = re.sub(r"<unk>", "unk", corpus) | |||
| return corpus.split() | |||
| def get_char_dict(vocabulary): | |||
| char_dict = dict() | |||
| count = 1 | |||
| for word in vocabulary: | |||
| for ch in word: | |||
| if ch not in char_dict: | |||
| char_dict[ch] = count | |||
| count += 1 | |||
| return char_dict | |||
| def create_word_char_dict(*file_name): | |||
| text = [] | |||
| for file in file_name: | |||
| text += read_data(file) | |||
| word_dict = {word: ix for ix, word in enumerate(set(text))} | |||
| char_dict = get_char_dict(word_dict) | |||
| return word_dict, char_dict | |||
| def to_var(x): | |||
| if torch.cuda.is_available() and USE_GPU: | |||
| x = x.cuda() | |||
| return Variable(x) | |||
| """ | |||
| Neural Network | |||
| """ | |||
| class Highway(nn.Module): | |||
| """Highway network""" | |||
| def __init__(self, input_size): | |||
| super(Highway, self).__init__() | |||
| self.fc1 = nn.Linear(input_size, input_size, bias=True) | |||
| self.fc2 = nn.Linear(input_size, input_size, bias=True) | |||
| def forward(self, x): | |||
| t = F.sigmoid(self.fc1(x)) | |||
| return torch.mul(t, F.relu(self.fc2(x))) + torch.mul(1 - t, x) | |||
| class charLM(nn.Module): | |||
| """Character-level Neural Language Model | |||
| CNN + highway network + LSTM | |||
| # Input: | |||
| 4D tensor with shape [batch_size, in_channel, height, width] | |||
| # Output: | |||
| 2D Tensor with shape [batch_size, vocab_size] | |||
| # Arguments: | |||
| char_emb_dim: the size of each character's attention | |||
| word_emb_dim: the size of each word's attention | |||
| vocab_size: num of unique words | |||
| num_char: num of characters | |||
| use_gpu: True or False | |||
| """ | |||
| def __init__(self, char_emb_dim, word_emb_dim, | |||
| vocab_size, num_char, use_gpu): | |||
| super(charLM, self).__init__() | |||
| self.char_emb_dim = char_emb_dim | |||
| self.word_emb_dim = word_emb_dim | |||
| self.vocab_size = vocab_size | |||
| # char attention layer | |||
| self.char_embed = nn.Embedding(num_char, char_emb_dim) | |||
| # convolutions of filters with different sizes | |||
| self.convolutions = [] | |||
| # list of tuples: (the number of filter, width) | |||
| # self.filter_num_width = [(25, 1), (50, 2), (75, 3), (100, 4), (125, 5), (150, 6)] | |||
| self.filter_num_width = [(25, 1), (50, 2), (75, 3)] | |||
| for out_channel, filter_width in self.filter_num_width: | |||
| self.convolutions.append( | |||
| nn.Conv2d( | |||
| 1, # in_channel | |||
| out_channel, # out_channel | |||
| kernel_size=(char_emb_dim, filter_width), # (height, width) | |||
| bias=True | |||
| ) | |||
| ) | |||
| self.highway_input_dim = sum([x for x, y in self.filter_num_width]) | |||
| self.batch_norm = nn.BatchNorm1d(self.highway_input_dim, affine=False) | |||
| # highway net | |||
| self.highway1 = Highway(self.highway_input_dim) | |||
| self.highway2 = Highway(self.highway_input_dim) | |||
| # LSTM | |||
| self.lstm_num_layers = 2 | |||
| self.lstm = nn.LSTM(input_size=self.highway_input_dim, | |||
| hidden_size=self.word_emb_dim, | |||
| num_layers=self.lstm_num_layers, | |||
| bias=True, | |||
| dropout=0.5, | |||
| batch_first=True) | |||
| # output layer | |||
| self.dropout = nn.Dropout(p=0.5) | |||
| self.linear = nn.Linear(self.word_emb_dim, self.vocab_size) | |||
| if use_gpu is True: | |||
| for x in range(len(self.convolutions)): | |||
| self.convolutions[x] = self.convolutions[x].cuda() | |||
| self.highway1 = self.highway1.cuda() | |||
| self.highway2 = self.highway2.cuda() | |||
| self.lstm = self.lstm.cuda() | |||
| self.dropout = self.dropout.cuda() | |||
| self.char_embed = self.char_embed.cuda() | |||
| self.linear = self.linear.cuda() | |||
| self.batch_norm = self.batch_norm.cuda() | |||
| def forward(self, x, hidden): | |||
| # Input: Variable of Tensor with shape [num_seq, seq_len, max_word_len+2] | |||
| # Return: Variable of Tensor with shape [num_words, len(word_dict)] | |||
| lstm_batch_size = x.size()[0] | |||
| lstm_seq_len = x.size()[1] | |||
| x = x.contiguous().view(-1, x.size()[2]) | |||
| # [num_seq*seq_len, max_word_len+2] | |||
| x = self.char_embed(x) | |||
| # [num_seq*seq_len, max_word_len+2, char_emb_dim] | |||
| x = torch.transpose(x.view(x.size()[0], 1, x.size()[1], -1), 2, 3) | |||
| # [num_seq*seq_len, 1, char_emb_dim, max_word_len+2] | |||
| x = self.conv_layers(x) | |||
| # [num_seq*seq_len, total_num_filters] | |||
| x = self.batch_norm(x) | |||
| # [num_seq*seq_len, total_num_filters] | |||
| x = self.highway1(x) | |||
| x = self.highway2(x) | |||
| # [num_seq*seq_len, total_num_filters] | |||
| x = x.contiguous().view(lstm_batch_size, lstm_seq_len, -1) | |||
| # [num_seq, seq_len, total_num_filters] | |||
| x, hidden = self.lstm(x, hidden) | |||
| # [seq_len, num_seq, hidden_size] | |||
| x = self.dropout(x) | |||
| # [seq_len, num_seq, hidden_size] | |||
| x = x.contiguous().view(lstm_batch_size * lstm_seq_len, -1) | |||
| # [num_seq*seq_len, hidden_size] | |||
| x = self.linear(x) | |||
| # [num_seq*seq_len, vocab_size] | |||
| return x, hidden | |||
| def conv_layers(self, x): | |||
| chosen_list = list() | |||
| for conv in self.convolutions: | |||
| feature_map = F.tanh(conv(x)) | |||
| # (batch_size, out_channel, 1, max_word_len-width+1) | |||
| chosen = torch.max(feature_map, 3)[0] | |||
| # (batch_size, out_channel, 1) | |||
| chosen = chosen.squeeze() | |||
| # (batch_size, out_channel) | |||
| chosen_list.append(chosen) | |||
| # (batch_size, total_num_filers) | |||
| return torch.cat(chosen_list, 1) | |||
| @@ -0,0 +1,134 @@ | |||
| import numpy as np | |||
| import torch | |||
| import torch.nn as nn | |||
| import torch.optim as optim | |||
| from model.base_model import BaseModel | |||
| from torch.autograd import Variable | |||
| USE_GPU = True | |||
| def to_var(x): | |||
| if torch.cuda.is_available() and USE_GPU: | |||
| x = x.cuda() | |||
| return Variable(x) | |||
| class WordSegModel(BaseModel): | |||
| """ | |||
| Model controller for WordSeg | |||
| """ | |||
| def __init__(self): | |||
| super(WordSegModel, self).__init__() | |||
| self.id2word = None | |||
| self.word2id = None | |||
| self.id2tag = None | |||
| self.tag2id = None | |||
| self.lstm_batch_size = 8 | |||
| self.lstm_seq_len = 32 # Trainer batch_size == lstm_batch_size * lstm_seq_len | |||
| self.hidden_dim = 100 | |||
| self.lstm_num_layers = 2 | |||
| self.vocab_size = 100 | |||
| self.word_emb_dim = 100 | |||
| self.model = WordSeg(self.hidden_dim, self.lstm_num_layers, self.vocab_size, self.word_emb_dim) | |||
| self.hidden = (to_var(torch.zeros(2, self.lstm_batch_size, self.word_emb_dim)), | |||
| to_var(torch.zeros(2, self.lstm_batch_size, self.word_emb_dim))) | |||
| self.optimizer = None | |||
| self._loss = None | |||
| def prepare_input(self, data): | |||
| """ | |||
| perform word indices lookup to convert strings into indices | |||
| :param data: list of string, each string contains word + space + [B, M, E, S] | |||
| :return | |||
| """ | |||
| word_list = [] | |||
| tag_list = [] | |||
| for line in data: | |||
| if len(line) > 2: | |||
| tokens = line.split("#") | |||
| word_list.append(tokens[0]) | |||
| tag_list.append(tokens[2][0]) | |||
| self.id2word = list(set(word_list)) | |||
| self.word2id = {word: idx for idx, word in enumerate(self.id2word)} | |||
| self.id2tag = list(set(tag_list)) | |||
| self.tag2id = {tag: idx for idx, tag in enumerate(self.id2tag)} | |||
| words = np.array([self.word2id[w] for w in word_list]).reshape(-1, 1) | |||
| tags = np.array([self.tag2id[t] for t in tag_list]).reshape(-1, 1) | |||
| return words, tags | |||
| def mode(self, test=False): | |||
| if test: | |||
| self.model.eval() | |||
| else: | |||
| self.model.train() | |||
| def data_forward(self, x): | |||
| """ | |||
| :param x: sequence of length [batch_size], word indices | |||
| :return: | |||
| """ | |||
| x = x.reshape(self.lstm_batch_size, self.lstm_seq_len) | |||
| output, self.hidden = self.model(x, self.hidden) | |||
| return output | |||
| def define_optimizer(self): | |||
| self.optimizer = optim.SGD(self.model.parameters(), lr=0.01, momentum=0.85) | |||
| def get_loss(self, pred, truth): | |||
| self._loss = nn.CrossEntropyLoss(pred, truth) | |||
| return self._loss | |||
| def grad_backward(self): | |||
| self.model.zero_grad() | |||
| self._loss.backward() | |||
| torch.nn.utils.clip_grad_norm(self.model.parameters(), 5, norm_type=2) | |||
| self.optimizer.step() | |||
| class WordSeg(nn.Module): | |||
| """ | |||
| PyTorch Network for word segmentation | |||
| """ | |||
| def __init__(self, hidden_dim, lstm_num_layers, vocab_size, word_emb_dim=100): | |||
| super(WordSeg, self).__init__() | |||
| self.vocab_size = vocab_size | |||
| self.word_emb_dim = word_emb_dim | |||
| self.lstm_num_layers = lstm_num_layers | |||
| self.hidden_dim = hidden_dim | |||
| self.word_emb = nn.Embedding(self.vocab_size, self.word_emb_dim) | |||
| self.lstm = nn.LSTM(input_size=self.word_emb_dim, | |||
| hidden_size=self.word_emb_dim, | |||
| num_layers=self.lstm_num_layers, | |||
| bias=True, | |||
| dropout=0.5, | |||
| batch_first=True) | |||
| self.linear = nn.Linear(self.word_emb_dim, self.vocab_size) | |||
| def forward(self, x, hidden): | |||
| """ | |||
| :param x: tensor of shape [batch_size, seq_len], vocabulary index | |||
| :param hidden: | |||
| :return x: probability of vocabulary entries | |||
| hidden: (memory cell, hidden state) from LSTM | |||
| """ | |||
| # [batch_size, seq_len] | |||
| x = self.word_emb(x) | |||
| # [batch_size, seq_len, word_emb_size] | |||
| x, hidden = self.lstm(x, hidden) | |||
| # [batch_size, seq_len, word_emb_size] | |||
| x = x.contiguous().view(x.shape[0] * x.shape[1], -1) | |||
| # [batch_size*seq_len, word_emb_size] | |||
| x = self.linear(x) | |||
| # [batch_size*seq_len, vocab_size] | |||
| return x, hidden | |||