@@ -1,8 +0,0 @@ | |||
SpaCy "Doc" | |||
https://github.com/explosion/spaCy/blob/75d2a05c2938f412f0fae44748374e4de19cc2be/spacy/tokens/doc.pyx#L80 | |||
SpaCy "Vocab" | |||
https://github.com/explosion/spaCy/blob/75d2a05c2938f412f0fae44748374e4de19cc2be/spacy/vocab.pyx#L25 | |||
SpaCy "Token" | |||
https://github.com/explosion/spaCy/blob/75d2a05c2938f412f0fae44748374e4de19cc2be/spacy/tokens/token.pyx#L27 |
@@ -1,46 +0,0 @@ | |||
from saver.logger import Logger | |||
class Action(object): | |||
""" | |||
base class for Trainer and Tester | |||
""" | |||
def __init__(self): | |||
super(Action, self).__init__() | |||
self.logger = Logger("logger_output.txt") | |||
def load_config(self, args): | |||
raise NotImplementedError | |||
def load_dataset(self, args): | |||
raise NotImplementedError | |||
def log(self, string): | |||
self.logger.log(string) | |||
def batchify(self, batch_size, X, Y=None): | |||
""" | |||
:param batch_size: int | |||
:param X: feature matrix of size [n_sample, m_feature] | |||
:param Y: label vector of size [n_sample, 1] (optional) | |||
:return iteration:int, the number of step in each epoch | |||
generator:generator, to generate batch inputs | |||
""" | |||
n_samples = X.shape[0] | |||
num_iter = n_samples // batch_size | |||
if Y is None: | |||
generator = self._batch_generate(batch_size, num_iter, X) | |||
else: | |||
generator = self._batch_generate(batch_size, num_iter, X, Y) | |||
return num_iter, generator | |||
@staticmethod | |||
def _batch_generate(batch_size, num_iter, *data): | |||
for step in range(num_iter): | |||
start = batch_size * step | |||
end = batch_size * (step + 1) | |||
yield tuple([x[start:end] for x in data]) | |||
def make_log(self, *args): | |||
return "log" |
@@ -1,87 +0,0 @@ | |||
from collections import namedtuple | |||
import numpy as np | |||
from action.action import Action | |||
class Tester(Action): | |||
"""docstring for Tester""" | |||
TestConfig = namedtuple("config", ["validate_in_training", "save_dev_input", "save_output", | |||
"save_loss", "batch_size"]) | |||
def __init__(self, test_args): | |||
""" | |||
:param test_args: named tuple | |||
""" | |||
super(Tester, self).__init__() | |||
self.validate_in_training = test_args.validate_in_training | |||
self.save_dev_input = test_args.save_dev_input | |||
self.valid_x = None | |||
self.valid_y = None | |||
self.save_output = test_args.save_output | |||
self.output = None | |||
self.save_loss = test_args.save_loss | |||
self.mean_loss = None | |||
self.batch_size = test_args.batch_size | |||
def test(self, network, data): | |||
print("testing") | |||
network.mode(test=True) # turn on the testing mode | |||
if self.save_dev_input: | |||
if self.valid_x is None: | |||
valid_x, valid_y = network.prepare_input(data) | |||
self.valid_x = valid_x | |||
self.valid_y = valid_y | |||
else: | |||
valid_x = self.valid_x | |||
valid_y = self.valid_y | |||
else: | |||
valid_x, valid_y = network.prepare_input(data) | |||
# split into batches by self.batch_size | |||
iterations, test_batch_generator = self.batchify(self.batch_size, valid_x, valid_y) | |||
batch_output = list() | |||
loss_history = list() | |||
# turn on the testing mode of the network | |||
network.mode(test=True) | |||
for step in range(iterations): | |||
batch_x, batch_y = test_batch_generator.__next__() | |||
# forward pass from tests input to predicted output | |||
prediction = network.data_forward(batch_x) | |||
loss = network.get_loss(prediction, batch_y) | |||
if self.save_output: | |||
batch_output.append(prediction.data) | |||
if self.save_loss: | |||
loss_history.append(loss) | |||
self.log(self.make_log(step, loss)) | |||
if self.save_loss: | |||
self.mean_loss = np.mean(np.array(loss_history)) | |||
if self.save_output: | |||
self.output = self.make_output(batch_output) | |||
@property | |||
def loss(self): | |||
return self.mean_loss | |||
@property | |||
def result(self): | |||
return self.output | |||
@staticmethod | |||
def make_output(batch_outputs): | |||
# construct full prediction with batch outputs | |||
return np.concatenate(batch_outputs, axis=0) | |||
def load_config(self, args): | |||
raise NotImplementedError | |||
def load_dataset(self, args): | |||
raise NotImplementedError |
@@ -1,93 +0,0 @@ | |||
from collections import namedtuple | |||
from .action import Action | |||
from .tester import Tester | |||
class Trainer(Action): | |||
""" | |||
Trainer is a common training pipeline shared among all models. | |||
""" | |||
TrainConfig = namedtuple("config", ["epochs", "validate", "save_when_better", | |||
"log_per_step", "log_validation", "batch_size"]) | |||
def __init__(self, train_args): | |||
""" | |||
:param train_args: namedtuple | |||
""" | |||
super(Trainer, self).__init__() | |||
self.n_epochs = train_args.epochs | |||
self.validate = train_args.validate | |||
self.save_when_better = train_args.save_when_better | |||
self.log_per_step = train_args.log_per_step | |||
self.log_validation = train_args.log_validation | |||
self.batch_size = train_args.batch_size | |||
def train(self, network, train_data, dev_data=None): | |||
""" | |||
:param network: the model controller | |||
:param train_data: raw data for training | |||
:param dev_data: raw data for validation | |||
This method will call all the base methods of network (implemented in model.base_model). | |||
""" | |||
train_x, train_y = network.prepare_input(train_data) | |||
iterations, train_batch_generator = self.batchify(self.batch_size, train_x, train_y) | |||
test_args = Tester.TestConfig(save_output=True, validate_in_training=True, | |||
save_dev_input=True, save_loss=True, batch_size=self.batch_size) | |||
evaluator = Tester(test_args) | |||
best_loss = 1e10 | |||
loss_history = list() | |||
for epoch in range(self.n_epochs): | |||
network.mode(test=False) # turn on the train mode | |||
network.define_optimizer() | |||
for step in range(iterations): | |||
batch_x, batch_y = train_batch_generator.__next__() | |||
prediction = network.data_forward(batch_x) | |||
loss = network.get_loss(prediction, batch_y) | |||
network.grad_backward() | |||
if step % self.log_per_step == 0: | |||
print("step ", step) | |||
loss_history.append(loss) | |||
self.log(self.make_log(epoch, step, loss)) | |||
#################### evaluate over dev set ################### | |||
if self.validate: | |||
if dev_data is None: | |||
raise RuntimeError("No validation data provided.") | |||
# give all controls to tester | |||
evaluator.test(network, dev_data) | |||
if self.log_validation: | |||
self.log(self.make_valid_log(epoch, evaluator.loss)) | |||
if evaluator.loss < best_loss: | |||
best_loss = evaluator.loss | |||
if self.save_when_better: | |||
self.save_model(network) | |||
# finish training | |||
def make_log(self, *args): | |||
return "make a log" | |||
def make_valid_log(self, *args): | |||
return "make a valid log" | |||
def save_model(self, model): | |||
model.save() | |||
def load_data(self, data_name): | |||
print("load data") | |||
def load_config(self, args): | |||
raise NotImplementedError | |||
def load_dataset(self, args): | |||
raise NotImplementedError |
@@ -0,0 +1,174 @@ | |||
import torch | |||
from torch import nn | |||
def log_sum_exp(x, dim=-1): | |||
max_value, _ = x.max(dim=dim, keepdim=True) | |||
res = torch.log(torch.sum(torch.exp(x - max_value), dim=dim, keepdim=True)) + max_value | |||
return res.squeeze(dim) | |||
def seq_len_to_byte_mask(seq_lens): | |||
# usually seq_lens: LongTensor, batch_size | |||
# return value: ByteTensor, batch_size x max_len | |||
batch_size = seq_lens.size(0) | |||
max_len = seq_lens.max() | |||
broadcast_arange = torch.arange(max_len).view(1, -1).repeat(batch_size, 1) | |||
mask = broadcast_arange.lt(seq_lens.float().view(-1, 1)) | |||
return mask | |||
class ContionalRandomField(nn.Module): | |||
def __init__(self, tag_size, include_start_end_trans=True): | |||
""" | |||
:param tag_size: int, num of tags | |||
:param include_start_end_trans: bool, whether to include start/end tag | |||
""" | |||
super(ContionalRandomField, self).__init__() | |||
self.include_start_end_trans = include_start_end_trans | |||
self.tag_size = tag_size | |||
# the meaning of entry in this matrix is (from_tag_id, to_tag_id) score | |||
self.transition_m = nn.Parameter(torch.randn(tag_size, tag_size)) | |||
if self.include_start_end_trans: | |||
self.start_scores = nn.Parameter(torch.randn(tag_size)) | |||
self.end_scores = nn.Parameter(torch.randn(tag_size)) | |||
self.reset_parameter() | |||
def reset_parameter(self): | |||
nn.init.xavier_normal_(self.transition_m) | |||
if self.include_start_end_trans: | |||
nn.init.normal_(self.start_scores) | |||
nn.init.normal_(self.end_scores) | |||
def _normalizer_likelihood(self, feats, masks): | |||
""" | |||
Computes the (batch_size,) denominator term for the log-likelihood, which is the | |||
sum of the likelihoods across all possible state sequences. | |||
:param feats:FloatTensor, batch_size x max_len x tag_size | |||
:param masks:ByteTensor, batch_size x max_len | |||
:return:FloatTensor, batch_size | |||
""" | |||
batch_size, max_len, _ = feats.size() | |||
# alpha, batch_size x tag_size | |||
if self.include_start_end_trans: | |||
alpha = self.start_scores.view(1, -1) + feats[:, 0] | |||
else: | |||
alpha = feats[:, 0] | |||
# broadcast_trans_m, the meaning of entry in this matrix is [batch_idx, to_tag_id, from_tag_id] | |||
broadcast_trans_m = self.transition_m.permute( | |||
1, 0).unsqueeze(0).repeat(batch_size, 1, 1) | |||
# loop | |||
for i in range(1, max_len): | |||
emit_score = feats[:, i].unsqueeze(2) | |||
new_alpha = broadcast_trans_m + alpha.unsqueeze(1) + emit_score | |||
new_alpha = log_sum_exp(new_alpha, dim=2) | |||
alpha = new_alpha * \ | |||
masks[:, i:i + 1].float() + alpha * \ | |||
(1 - masks[:, i:i + 1].float()) | |||
if self.include_start_end_trans: | |||
alpha = alpha + self.end_scores.view(1, -1) | |||
return log_sum_exp(alpha) | |||
def _glod_score(self, feats, tags, masks): | |||
""" | |||
Compute the score for the gold path. | |||
:param feats: FloatTensor, batch_size x tag_size x tag_size | |||
:param tags: LongTensor, batch_size x max_len | |||
:param masks: ByteTensor, batch_size x max_len | |||
:return:FloatTensor, batch_size | |||
""" | |||
batch_size, max_len, _ = feats.size() | |||
# alpha, B x 1 | |||
if self.include_start_end_trans: | |||
alpha = self.start_scores.view(1, -1).repeat(batch_size, 1).gather(dim=1, index=tags[:, :1]) + \ | |||
feats[:, 0].gather(dim=1, index=tags[:, :1]) | |||
else: | |||
alpha = feats[:, 0].gather(dim=1, index=tags[:, :1]) | |||
for i in range(1, max_len): | |||
trans_score = self.transition_m[( | |||
tags[:, i - 1], tags[:, i])].unsqueeze(1) | |||
emit_score = feats[:, i].gather(dim=1, index=tags[:, i:i + 1]) | |||
new_alpha = alpha + trans_score + emit_score | |||
alpha = new_alpha * \ | |||
masks[:, i:i + 1].float() + alpha * \ | |||
(1 - masks[:, i:i + 1].float()) | |||
if self.include_start_end_trans: | |||
last_tag_index = masks.cumsum(dim=1, dtype=torch.long)[:, -1:] - 1 | |||
last_from_tag_id = tags.gather(dim=1, index=last_tag_index) | |||
trans_score = self.end_scores.view( | |||
1, -1).repeat(batch_size, 1).gather(dim=1, index=last_from_tag_id) | |||
alpha = alpha + trans_score | |||
return alpha.squeeze(1) | |||
def forward(self, feats, tags, masks): | |||
""" | |||
Calculate the neg log likelihood | |||
:param feats:FloatTensor, batch_size x tag_size x tag_size | |||
:param tags:LongTensor, batch_size x max_len | |||
:param masks:ByteTensor batch_size x max_len | |||
:return:FloatTensor, batch_size | |||
""" | |||
all_path_score = self._normalizer_likelihood(feats, masks) | |||
gold_path_score = self._glod_score(feats, tags, masks) | |||
return all_path_score - gold_path_score | |||
def viterbi_decode(self, feats, masks): | |||
""" | |||
Given a feats matrix, return best decode path and best score. | |||
:param feats: | |||
:param masks: | |||
:return:List[Tuple(List, float)], | |||
""" | |||
batch_size, max_len, tag_size = feats.size() | |||
paths = torch.zeros(batch_size, max_len - 1, self.tag_size) | |||
if self.include_start_end_trans: | |||
alpha = self.start_scores.repeat(batch_size, 1) + feats[:, 0] | |||
else: | |||
alpha = feats[:, 0] | |||
for i in range(1, max_len): | |||
new_alpha = alpha.clone() | |||
for t in range(self.tag_size): | |||
pre_scores = self.transition_m[:, t].view( | |||
1, self.tag_size) + alpha | |||
max_scroe, indice = pre_scores.max(dim=1) | |||
new_alpha[:, t] = max_scroe + feats[:, i, t] | |||
paths[:, i - 1, t] = indice | |||
alpha = new_alpha * \ | |||
masks[:, i:i + 1].float() + alpha * \ | |||
(1 - masks[:, i:i + 1].float()) | |||
if self.include_start_end_trans: | |||
alpha += self.end_scores.view(1, -1) | |||
max_scroes, indice = alpha.max(dim=1) | |||
indice = indice.cpu().numpy() | |||
final_paths = [] | |||
paths = paths.cpu().numpy().astype(int) | |||
seq_lens = masks.cumsum(dim=1, dtype=torch.long)[:, -1] | |||
for b in range(batch_size): | |||
path = [indice[b]] | |||
for i in range(seq_lens[b] - 2, -1, -1): | |||
index = paths[b, i, path[-1]] | |||
path.append(index) | |||
final_paths.append(path[::-1]) | |||
return list(zip(final_paths, max_scroes.detach().cpu().numpy())) |
@@ -0,0 +1,19 @@ | |||
import torch | |||
from fastNLP.modules.utils import mask_softmax | |||
class Attention(torch.nn.Module): | |||
def __init__(self, normalize=False): | |||
super(Attention, self).__init__() | |||
self.normalize = normalize | |||
def forward(self, query, memory, mask): | |||
similarities = self._atten_forward(query, memory) | |||
if self.normalize: | |||
return mask_softmax(similarities, mask) | |||
return similarities | |||
def _atten_forward(self, query, memory): | |||
raise NotImplementedError |
@@ -0,0 +1,9 @@ | |||
from fastNLP.modules.attention.attention import Attention | |||
class LinearAttention(Attention): | |||
def __init__(self, normalize=False): | |||
super(LinearAttention, self).__init__(normalize) | |||
def _atten_forward(self, query, memory): | |||
raise NotImplementedError |
@@ -0,0 +1,9 @@ | |||
import torch | |||
def mask_softmax(matrix, mask): | |||
if mask is None: | |||
result = torch.nn.functional.softmax(matrix, dim=-1) | |||
else: | |||
raise NotImplementedError | |||
return result |
@@ -1,37 +0,0 @@ | |||
class BaseLoader(object): | |||
"""docstring for BaseLoader""" | |||
def __init__(self, data_name, data_path): | |||
super(BaseLoader, self).__init__() | |||
self.data_name = data_name | |||
self.data_path = data_path | |||
def load(self): | |||
""" | |||
:return: string | |||
""" | |||
with open(self.data_path, "r", encoding="utf-8") as f: | |||
text = f.read() | |||
return text | |||
def load_lines(self): | |||
with open(self.data_path, "r", encoding="utf=8") as f: | |||
text = f.readlines() | |||
return text | |||
class ToyLoader0(BaseLoader): | |||
""" | |||
For charLM | |||
""" | |||
def __init__(self, name, path): | |||
super(ToyLoader0, self).__init__(name, path) | |||
def load(self): | |||
with open(self.data_path, 'r') as f: | |||
corpus = f.read().lower() | |||
import re | |||
corpus = re.sub(r"<unk>", "unk", corpus) | |||
return corpus.split() | |||
@@ -1,13 +0,0 @@ | |||
from loader.base_loader import BaseLoader | |||
class ConfigLoader(BaseLoader): | |||
"""loader for configuration files""" | |||
def __int__(self, data_name, data_path): | |||
super(ConfigLoader, self).__init__(data_name, data_path) | |||
self.config = self.parse(super(ConfigLoader, self).load()) | |||
@staticmethod | |||
def parse(string): | |||
raise NotImplementedError |
@@ -1,47 +0,0 @@ | |||
from loader.base_loader import BaseLoader | |||
class DatasetLoader(BaseLoader): | |||
""""loader for data sets""" | |||
def __init__(self, data_name, data_path): | |||
super(DatasetLoader, self).__init__(data_name, data_path) | |||
class ConllLoader(DatasetLoader): | |||
"""loader for conll format files""" | |||
def __int__(self, data_name, data_path): | |||
""" | |||
:param str data_name: the name of the conll data set | |||
:param str data_path: the path to the conll data set | |||
""" | |||
super(ConllLoader, self).__init__(data_name, data_path) | |||
self.data_set = self.parse(self.load()) | |||
def load(self): | |||
""" | |||
:return: list lines: all lines in a conll file | |||
""" | |||
with open(self.data_path, "r", encoding="utf-8") as f: | |||
lines = f.readlines() | |||
return lines | |||
@staticmethod | |||
def parse(lines): | |||
""" | |||
:param list lines:a list containing all lines in a conll file. | |||
:return: a 3D list | |||
""" | |||
sentences = list() | |||
tokens = list() | |||
for line in lines: | |||
if line[0] == "#": | |||
# skip the comments | |||
continue | |||
if line == "\n": | |||
sentences.append(tokens) | |||
tokens = [] | |||
continue | |||
tokens.append(line.split()) | |||
return sentences |
@@ -1,8 +0,0 @@ | |||
from loader.base_loader import BaseLoader | |||
class EmbedLoader(BaseLoader): | |||
"""docstring for EmbedLoader""" | |||
def __init__(self, data_name, data_path): | |||
super(EmbedLoader, self).__init__(data_name, data_path) |
@@ -1,158 +0,0 @@ | |||
import numpy as np | |||
class BaseModel(object): | |||
"""The base class of all models. | |||
This class and its subclasses are actually "wrappers" of the PyTorch models. | |||
They act as an interface between Trainer and the deep learning networks. | |||
This interface provides the following methods to be called by Trainer. | |||
- prepare_input | |||
- mode | |||
- define_optimizer | |||
- data_forward | |||
- grad_backward | |||
- get_loss | |||
""" | |||
def __init__(self): | |||
pass | |||
def prepare_input(self, data): | |||
""" | |||
Perform data transformation from raw input to vector/matrix inputs. | |||
:param data: raw inputs | |||
:return (X, Y): tuple, input features and labels | |||
""" | |||
raise NotImplementedError | |||
def mode(self, test=False): | |||
""" | |||
Tell the network to be trained or not, required by PyTorch. | |||
:param test: bool | |||
""" | |||
raise NotImplementedError | |||
def define_optimizer(self): | |||
""" | |||
Define PyTorch optimizer specified by the model. | |||
""" | |||
raise NotImplementedError | |||
def data_forward(self, *x): | |||
""" | |||
Forward pass of the data. | |||
:param x: input feature matrix and label vector | |||
:return: output by the model | |||
""" | |||
# required by PyTorch nn | |||
raise NotImplementedError | |||
def grad_backward(self): | |||
""" | |||
Perform gradient descent to update the model parameters. | |||
""" | |||
raise NotImplementedError | |||
def get_loss(self, pred, truth): | |||
""" | |||
Compute loss given model prediction and ground truth. Loss function specified by the model. | |||
:param pred: prediction label vector | |||
:param truth: ground truth label vector | |||
:return: a scalar | |||
""" | |||
raise NotImplementedError | |||
class ToyModel(BaseModel): | |||
"""This is for code testing.""" | |||
def __init__(self): | |||
super(ToyModel, self).__init__() | |||
self.test_mode = False | |||
self.weight = np.random.rand(5, 1) | |||
self.bias = np.random.rand() | |||
self._loss = 0 | |||
def prepare_input(self, data): | |||
return data[:, :-1], data[:, -1] | |||
def mode(self, test=False): | |||
self.test_mode = test | |||
def data_forward(self, x): | |||
return np.matmul(x, self.weight) + self.bias | |||
def grad_backward(self): | |||
print("loss gradient backward") | |||
def get_loss(self, pred, truth): | |||
self._loss = np.mean(np.square(pred - truth)) | |||
return self._loss | |||
def define_optimizer(self): | |||
pass | |||
class Vocabulary(object): | |||
"""A look-up table that allows you to access `Lexeme` objects. The `Vocab` | |||
instance also provides access to the `StringStore`, and owns underlying | |||
data that is shared between `Doc` objects. | |||
""" | |||
def __init__(self): | |||
"""Create the vocabulary. | |||
RETURNS (Vocab): The newly constructed object. | |||
""" | |||
self.data_frame = None | |||
class Document(object): | |||
"""A sequence of Token objects. Access sentences and named entities, export | |||
annotations to numpy arrays, losslessly serialize to compressed binary | |||
strings. The `Doc` object holds an array of `Token` objects. The | |||
Python-level `Token` and `Span` objects are views of this array, i.e. | |||
they don't own the data themselves. -- spacy | |||
""" | |||
def __init__(self, vocab, words=None, spaces=None): | |||
"""Create a Doc object. | |||
vocab (Vocab): A vocabulary object, which must match any models you | |||
want to use (e.g. tokenizer, parser, entity recognizer). | |||
words (list or None): A list of unicode strings, to add to the document | |||
as words. If `None`, defaults to empty list. | |||
spaces (list or None): A list of boolean values, of the same length as | |||
words. True means that the word is followed by a space, False means | |||
it is not. If `None`, defaults to `[True]*len(words)` | |||
user_data (dict or None): Optional extra data to attach to the Doc. | |||
RETURNS (Doc): The newly constructed object. | |||
""" | |||
self.vocab = vocab | |||
self.spaces = spaces | |||
self.words = words | |||
if spaces is None: | |||
self.spaces = [True] * len(self.words) | |||
elif len(spaces) != len(self.words): | |||
raise ValueError("dismatch spaces and words") | |||
def get_chunker(self, vocab): | |||
return None | |||
def push_back(self, vocab): | |||
pass | |||
class Token(object): | |||
"""An individual token – i.e. a word, punctuation symbol, whitespace, | |||
etc. | |||
""" | |||
def __init__(self, vocab, doc, offset): | |||
"""Construct a `Token` object. | |||
vocab (Vocabulary): A storage container for lexical types. | |||
doc (Document): The parent document. | |||
offset (int): The index of the token within the document. | |||
""" | |||
self.vocab = vocab | |||
self.doc = doc | |||
self.token = doc[offset] | |||
self.i = offset |
@@ -1,356 +0,0 @@ | |||
import os | |||
from collections import namedtuple | |||
import numpy as np | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
import torch.optim as optim | |||
from torch.autograd import Variable | |||
from model.base_model import BaseModel | |||
USE_GPU = True | |||
class CharLM(BaseModel): | |||
""" | |||
Controller of the Character-level Neural Language Model | |||
To do: | |||
- where the data goes, call data savers. | |||
""" | |||
DataTuple = namedtuple("DataTuple", ["feature", "label"]) | |||
def __init__(self, lstm_batch_size, lstm_seq_len): | |||
super(CharLM, self).__init__() | |||
""" | |||
Settings: should come from config loader or pre-processing | |||
""" | |||
self.word_embed_dim = 300 | |||
self.char_embedding_dim = 15 | |||
self.cnn_batch_size = lstm_batch_size * lstm_seq_len | |||
self.lstm_seq_len = lstm_seq_len | |||
self.lstm_batch_size = lstm_batch_size | |||
self.num_epoch = 10 | |||
self.old_PPL = 100000 | |||
self.best_PPL = 100000 | |||
""" | |||
These parameters are set by pre-processing. | |||
""" | |||
self.max_word_len = None | |||
self.num_char = None | |||
self.vocab_size = None | |||
self.preprocess("./data_for_tests/charlm.txt") | |||
self.data = None # named tuple to store all data set | |||
self.data_ready = False | |||
self.criterion = nn.CrossEntropyLoss() | |||
self._loss = None | |||
self.use_gpu = USE_GPU | |||
# word_emb_dim == hidden_size / num of hidden units | |||
self.hidden = (to_var(torch.zeros(2, self.lstm_batch_size, self.word_embed_dim)), | |||
to_var(torch.zeros(2, self.lstm_batch_size, self.word_embed_dim))) | |||
self.model = charLM(self.char_embedding_dim, | |||
self.word_embed_dim, | |||
self.vocab_size, | |||
self.num_char, | |||
use_gpu=self.use_gpu) | |||
for param in self.model.parameters(): | |||
nn.init.uniform(param.data, -0.05, 0.05) | |||
self.learning_rate = 0.1 | |||
self.optimizer = None | |||
def prepare_input(self, raw_text): | |||
""" | |||
:param raw_text: raw input text consisting of words | |||
:return: torch.Tensor, torch.Tensor | |||
feature matrix, label vector | |||
This function is only called once in Trainer.train, but may called multiple times in Tester.test | |||
So Tester will save test input for frequent calls. | |||
""" | |||
if os.path.exists("cache/prep.pt") is False: | |||
self.preprocess("./data_for_tests/charlm.txt") # To do: This is not good. Need to fix.. | |||
objects = torch.load("cache/prep.pt") | |||
word_dict = objects["word_dict"] | |||
char_dict = objects["char_dict"] | |||
max_word_len = self.max_word_len | |||
print("word/char dictionary built. Start making inputs.") | |||
words = raw_text | |||
input_vec = np.array(text2vec(words, char_dict, max_word_len)) | |||
# Labels are next-word index in word_dict with the same length as inputs | |||
input_label = np.array([word_dict[w] for w in words[1:]] + [word_dict[words[-1]]]) | |||
feature_input = torch.from_numpy(input_vec) | |||
label_input = torch.from_numpy(input_label) | |||
return feature_input, label_input | |||
def mode(self, test=False): | |||
if test: | |||
self.model.eval() | |||
else: | |||
self.model.train() | |||
def data_forward(self, x): | |||
""" | |||
:param x: Tensor of size [lstm_batch_size, lstm_seq_len, max_word_len+2] | |||
:return: Tensor of size [num_words, ?] | |||
""" | |||
# additional processing of inputs after batching | |||
num_seq = x.size()[0] // self.lstm_seq_len | |||
x = x[:num_seq * self.lstm_seq_len, :] | |||
x = x.view(-1, self.lstm_seq_len, self.max_word_len + 2) | |||
# detach hidden state of LSTM from last batch | |||
hidden = [state.detach() for state in self.hidden] | |||
output, self.hidden = self.model(to_var(x), hidden) | |||
return output | |||
def grad_backward(self): | |||
self.model.zero_grad() | |||
self._loss.backward() | |||
torch.nn.utils.clip_grad_norm(self.model.parameters(), 5, norm_type=2) | |||
self.optimizer.step() | |||
def get_loss(self, predict, truth): | |||
self._loss = self.criterion(predict, to_var(truth)) | |||
return self._loss.data # No pytorch data structure exposed outsides | |||
def define_optimizer(self): | |||
# redefine optimizer for every new epoch | |||
self.optimizer = optim.SGD(self.model.parameters(), lr=self.learning_rate, momentum=0.85) | |||
def save(self): | |||
print("network saved") | |||
# torch.save(self.model, "cache/model.pkl") | |||
def preprocess(self, all_text_files): | |||
word_dict, char_dict = create_word_char_dict(all_text_files) | |||
num_char = len(char_dict) | |||
self.vocab_size = len(word_dict) | |||
char_dict["BOW"] = num_char + 1 | |||
char_dict["EOW"] = num_char + 2 | |||
char_dict["PAD"] = 0 | |||
self.num_char = num_char + 3 | |||
# char_dict is a dict of (int, string), int counting from 0 to 47 | |||
reverse_word_dict = {value: key for key, value in word_dict.items()} | |||
self.max_word_len = max([len(word) for word in word_dict]) | |||
objects = { | |||
"word_dict": word_dict, | |||
"char_dict": char_dict, | |||
"reverse_word_dict": reverse_word_dict, | |||
} | |||
torch.save(objects, "cache/prep.pt") | |||
print("Preprocess done.") | |||
""" | |||
Global Functions | |||
""" | |||
def batch_generator(x, batch_size): | |||
# x: [num_words, in_channel, height, width] | |||
# partitions x into batches | |||
num_step = x.size()[0] // batch_size | |||
for t in range(num_step): | |||
yield x[t * batch_size:(t + 1) * batch_size] | |||
def text2vec(words, char_dict, max_word_len): | |||
""" Return list of list of int """ | |||
word_vec = [] | |||
for word in words: | |||
vec = [char_dict[ch] for ch in word] | |||
if len(vec) < max_word_len: | |||
vec += [char_dict["PAD"] for _ in range(max_word_len - len(vec))] | |||
vec = [char_dict["BOW"]] + vec + [char_dict["EOW"]] | |||
word_vec.append(vec) | |||
return word_vec | |||
def read_data(file_name): | |||
with open(file_name, 'r') as f: | |||
corpus = f.read().lower() | |||
import re | |||
corpus = re.sub(r"<unk>", "unk", corpus) | |||
return corpus.split() | |||
def get_char_dict(vocabulary): | |||
char_dict = dict() | |||
count = 1 | |||
for word in vocabulary: | |||
for ch in word: | |||
if ch not in char_dict: | |||
char_dict[ch] = count | |||
count += 1 | |||
return char_dict | |||
def create_word_char_dict(*file_name): | |||
text = [] | |||
for file in file_name: | |||
text += read_data(file) | |||
word_dict = {word: ix for ix, word in enumerate(set(text))} | |||
char_dict = get_char_dict(word_dict) | |||
return word_dict, char_dict | |||
def to_var(x): | |||
if torch.cuda.is_available() and USE_GPU: | |||
x = x.cuda() | |||
return Variable(x) | |||
""" | |||
Neural Network | |||
""" | |||
class Highway(nn.Module): | |||
"""Highway network""" | |||
def __init__(self, input_size): | |||
super(Highway, self).__init__() | |||
self.fc1 = nn.Linear(input_size, input_size, bias=True) | |||
self.fc2 = nn.Linear(input_size, input_size, bias=True) | |||
def forward(self, x): | |||
t = F.sigmoid(self.fc1(x)) | |||
return torch.mul(t, F.relu(self.fc2(x))) + torch.mul(1 - t, x) | |||
class charLM(nn.Module): | |||
"""Character-level Neural Language Model | |||
CNN + highway network + LSTM | |||
# Input: | |||
4D tensor with shape [batch_size, in_channel, height, width] | |||
# Output: | |||
2D Tensor with shape [batch_size, vocab_size] | |||
# Arguments: | |||
char_emb_dim: the size of each character's embedding | |||
word_emb_dim: the size of each word's embedding | |||
vocab_size: num of unique words | |||
num_char: num of characters | |||
use_gpu: True or False | |||
""" | |||
def __init__(self, char_emb_dim, word_emb_dim, | |||
vocab_size, num_char, use_gpu): | |||
super(charLM, self).__init__() | |||
self.char_emb_dim = char_emb_dim | |||
self.word_emb_dim = word_emb_dim | |||
self.vocab_size = vocab_size | |||
# char embedding layer | |||
self.char_embed = nn.Embedding(num_char, char_emb_dim) | |||
# convolutions of filters with different sizes | |||
self.convolutions = [] | |||
# list of tuples: (the number of filter, width) | |||
# self.filter_num_width = [(25, 1), (50, 2), (75, 3), (100, 4), (125, 5), (150, 6)] | |||
self.filter_num_width = [(25, 1), (50, 2), (75, 3)] | |||
for out_channel, filter_width in self.filter_num_width: | |||
self.convolutions.append( | |||
nn.Conv2d( | |||
1, # in_channel | |||
out_channel, # out_channel | |||
kernel_size=(char_emb_dim, filter_width), # (height, width) | |||
bias=True | |||
) | |||
) | |||
self.highway_input_dim = sum([x for x, y in self.filter_num_width]) | |||
self.batch_norm = nn.BatchNorm1d(self.highway_input_dim, affine=False) | |||
# highway net | |||
self.highway1 = Highway(self.highway_input_dim) | |||
self.highway2 = Highway(self.highway_input_dim) | |||
# LSTM | |||
self.lstm_num_layers = 2 | |||
self.lstm = nn.LSTM(input_size=self.highway_input_dim, | |||
hidden_size=self.word_emb_dim, | |||
num_layers=self.lstm_num_layers, | |||
bias=True, | |||
dropout=0.5, | |||
batch_first=True) | |||
# output layer | |||
self.dropout = nn.Dropout(p=0.5) | |||
self.linear = nn.Linear(self.word_emb_dim, self.vocab_size) | |||
if use_gpu is True: | |||
for x in range(len(self.convolutions)): | |||
self.convolutions[x] = self.convolutions[x].cuda() | |||
self.highway1 = self.highway1.cuda() | |||
self.highway2 = self.highway2.cuda() | |||
self.lstm = self.lstm.cuda() | |||
self.dropout = self.dropout.cuda() | |||
self.char_embed = self.char_embed.cuda() | |||
self.linear = self.linear.cuda() | |||
self.batch_norm = self.batch_norm.cuda() | |||
def forward(self, x, hidden): | |||
# Input: Variable of Tensor with shape [num_seq, seq_len, max_word_len+2] | |||
# Return: Variable of Tensor with shape [num_words, len(word_dict)] | |||
lstm_batch_size = x.size()[0] | |||
lstm_seq_len = x.size()[1] | |||
x = x.contiguous().view(-1, x.size()[2]) | |||
# [num_seq*seq_len, max_word_len+2] | |||
x = self.char_embed(x) | |||
# [num_seq*seq_len, max_word_len+2, char_emb_dim] | |||
x = torch.transpose(x.view(x.size()[0], 1, x.size()[1], -1), 2, 3) | |||
# [num_seq*seq_len, 1, char_emb_dim, max_word_len+2] | |||
x = self.conv_layers(x) | |||
# [num_seq*seq_len, total_num_filters] | |||
x = self.batch_norm(x) | |||
# [num_seq*seq_len, total_num_filters] | |||
x = self.highway1(x) | |||
x = self.highway2(x) | |||
# [num_seq*seq_len, total_num_filters] | |||
x = x.contiguous().view(lstm_batch_size, lstm_seq_len, -1) | |||
# [num_seq, seq_len, total_num_filters] | |||
x, hidden = self.lstm(x, hidden) | |||
# [seq_len, num_seq, hidden_size] | |||
x = self.dropout(x) | |||
# [seq_len, num_seq, hidden_size] | |||
x = x.contiguous().view(lstm_batch_size * lstm_seq_len, -1) | |||
# [num_seq*seq_len, hidden_size] | |||
x = self.linear(x) | |||
# [num_seq*seq_len, vocab_size] | |||
return x, hidden | |||
def conv_layers(self, x): | |||
chosen_list = list() | |||
for conv in self.convolutions: | |||
feature_map = F.tanh(conv(x)) | |||
# (batch_size, out_channel, 1, max_word_len-width+1) | |||
chosen = torch.max(feature_map, 3)[0] | |||
# (batch_size, out_channel, 1) | |||
chosen = chosen.squeeze() | |||
# (batch_size, out_channel) | |||
chosen_list.append(chosen) | |||
# (batch_size, total_num_filers) | |||
return torch.cat(chosen_list, 1) |
@@ -1,135 +0,0 @@ | |||
import numpy as np | |||
import torch | |||
import torch.nn as nn | |||
import torch.optim as optim | |||
from torch.autograd import Variable | |||
from model.base_model import BaseModel | |||
USE_GPU = True | |||
def to_var(x): | |||
if torch.cuda.is_available() and USE_GPU: | |||
x = x.cuda() | |||
return Variable(x) | |||
class WordSegModel(BaseModel): | |||
""" | |||
Model controller for WordSeg | |||
""" | |||
def __init__(self): | |||
super(WordSegModel, self).__init__() | |||
self.id2word = None | |||
self.word2id = None | |||
self.id2tag = None | |||
self.tag2id = None | |||
self.lstm_batch_size = 8 | |||
self.lstm_seq_len = 32 # Trainer batch_size == lstm_batch_size * lstm_seq_len | |||
self.hidden_dim = 100 | |||
self.lstm_num_layers = 2 | |||
self.vocab_size = 100 | |||
self.word_emb_dim = 100 | |||
self.model = WordSeg(self.hidden_dim, self.lstm_num_layers, self.vocab_size, self.word_emb_dim) | |||
self.hidden = (to_var(torch.zeros(2, self.lstm_batch_size, self.word_emb_dim)), | |||
to_var(torch.zeros(2, self.lstm_batch_size, self.word_emb_dim))) | |||
self.optimizer = None | |||
self._loss = None | |||
def prepare_input(self, data): | |||
""" | |||
perform word indices lookup to convert strings into indices | |||
:param data: list of string, each string contains word + space + [B, M, E, S] | |||
:return | |||
""" | |||
word_list = [] | |||
tag_list = [] | |||
for line in data: | |||
if len(line) > 2: | |||
tokens = line.split("#") | |||
word_list.append(tokens[0]) | |||
tag_list.append(tokens[2][0]) | |||
self.id2word = list(set(word_list)) | |||
self.word2id = {word: idx for idx, word in enumerate(self.id2word)} | |||
self.id2tag = list(set(tag_list)) | |||
self.tag2id = {tag: idx for idx, tag in enumerate(self.id2tag)} | |||
words = np.array([self.word2id[w] for w in word_list]).reshape(-1, 1) | |||
tags = np.array([self.tag2id[t] for t in tag_list]).reshape(-1, 1) | |||
return words, tags | |||
def mode(self, test=False): | |||
if test: | |||
self.model.eval() | |||
else: | |||
self.model.train() | |||
def data_forward(self, x): | |||
""" | |||
:param x: sequence of length [batch_size], word indices | |||
:return: | |||
""" | |||
x = x.reshape(self.lstm_batch_size, self.lstm_seq_len) | |||
output, self.hidden = self.model(x, self.hidden) | |||
return output | |||
def define_optimizer(self): | |||
self.optimizer = optim.SGD(self.model.parameters(), lr=0.01, momentum=0.85) | |||
def get_loss(self, pred, truth): | |||
self._loss = nn.CrossEntropyLoss(pred, truth) | |||
return self._loss | |||
def grad_backward(self): | |||
self.model.zero_grad() | |||
self._loss.backward() | |||
torch.nn.utils.clip_grad_norm(self.model.parameters(), 5, norm_type=2) | |||
self.optimizer.step() | |||
class WordSeg(nn.Module): | |||
""" | |||
PyTorch Network for word segmentation | |||
""" | |||
def __init__(self, hidden_dim, lstm_num_layers, vocab_size, word_emb_dim=100): | |||
super(WordSeg, self).__init__() | |||
self.vocab_size = vocab_size | |||
self.word_emb_dim = word_emb_dim | |||
self.lstm_num_layers = lstm_num_layers | |||
self.hidden_dim = hidden_dim | |||
self.word_emb = nn.Embedding(self.vocab_size, self.word_emb_dim) | |||
self.lstm = nn.LSTM(input_size=self.word_emb_dim, | |||
hidden_size=self.word_emb_dim, | |||
num_layers=self.lstm_num_layers, | |||
bias=True, | |||
dropout=0.5, | |||
batch_first=True) | |||
self.linear = nn.Linear(self.word_emb_dim, self.vocab_size) | |||
def forward(self, x, hidden): | |||
""" | |||
:param x: tensor of shape [batch_size, seq_len], vocabulary index | |||
:param hidden: | |||
:return x: probability of vocabulary entries | |||
hidden: (memory cell, hidden state) from LSTM | |||
""" | |||
# [batch_size, seq_len] | |||
x = self.word_emb(x) | |||
# [batch_size, seq_len, word_emb_size] | |||
x, hidden = self.lstm(x, hidden) | |||
# [batch_size, seq_len, word_emb_size] | |||
x = x.contiguous().view(x.shape[0] * x.shape[1], -1) | |||
# [batch_size*seq_len, word_emb_size] | |||
x = self.linear(x) | |||
# [batch_size*seq_len, vocab_size] | |||
return x, hidden |
@@ -1,110 +0,0 @@ | |||
# Byte-compiled / optimized / DLL files | |||
__pycache__/ | |||
*.py[cod] | |||
*$py.class | |||
# C extensions | |||
*.so | |||
# Distribution / packaging | |||
.Python | |||
build/ | |||
develop-eggs/ | |||
dist/ | |||
downloads/ | |||
eggs/ | |||
.eggs/ | |||
lib/ | |||
lib64/ | |||
parts/ | |||
sdist/ | |||
var/ | |||
wheels/ | |||
*.egg-info/ | |||
.installed.cfg | |||
*.egg | |||
MANIFEST | |||
# PyInstaller | |||
# Usually these files are written by a python script from a template | |||
# before PyInstaller builds the exe, so as to inject date/other infos into it. | |||
*.manifest | |||
*.spec | |||
# Installer logs | |||
pip-log.txt | |||
pip-delete-this-directory.txt | |||
# Unit test / coverage reports | |||
htmlcov/ | |||
.tox/ | |||
.coverage | |||
.coverage.* | |||
.cache | |||
nosetests.xml | |||
coverage.xml | |||
*.cover | |||
.hypothesis/ | |||
.pytest_cache/ | |||
# Translations | |||
*.mo | |||
*.pot | |||
# Django stuff: | |||
*.log | |||
local_settings.py | |||
db.sqlite3 | |||
# Flask stuff: | |||
instance/ | |||
.webassets-cache | |||
# Scrapy stuff: | |||
.scrapy | |||
# Sphinx documentation | |||
docs/_build/ | |||
# PyBuilder | |||
target/ | |||
# Jupyter Notebook | |||
.ipynb_checkpoints | |||
# pyenv | |||
.python-version | |||
# celery beat schedule file | |||
celerybeat-schedule | |||
# SageMath parsed files | |||
*.sage.py | |||
# Environments | |||
.env | |||
.venv | |||
env/ | |||
venv/ | |||
ENV/ | |||
env.bak/ | |||
venv.bak/ | |||
# Spyder project settings | |||
.spyderproject | |||
.spyproject | |||
# Rope project settings | |||
.ropeproject | |||
# mkdocs documentation | |||
/site | |||
# mypy | |||
.mypy_cache | |||
#custom | |||
GoogleNews-vectors-negative300.bin/ | |||
GoogleNews-vectors-negative300.bin.gz | |||
models/ | |||
*.swp |
@@ -1,77 +0,0 @@ | |||
## Introduction | |||
This is the implementation of [Convolutional Neural Networks for Sentence Classification](https://arxiv.org/abs/1408.5882) paper in PyTorch. | |||
* MRDataset, non-static-model(word2vec rained by Mikolov etal. (2013) on 100 billion words of Google News) | |||
* It can be run in both CPU and GPU | |||
* The best accuracy is 82.61%, which is better than 81.5% in the paper | |||
(by Jingyuan Liu @Fudan University; Email:(fdjingyuan@outlook.com) Welcome to discussion!) | |||
## Requirement | |||
* python 3.6 | |||
* pytorch > 0.1 | |||
* numpy | |||
* gensim | |||
## Run | |||
STEP 1 | |||
install packages like gensim (other needed pakages is the same) | |||
``` | |||
pip install gensim | |||
``` | |||
STEP 2 | |||
install MRdataset and word2vec resources | |||
* MRdataset: you can download the dataset in (https://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polaritydata.tar.gz) | |||
* word2vec: you can download the file in (https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit) | |||
Since this file is more than 1.5G, I did not display in folders. If you download the file, please remember modify the path in Function def word_embeddings(path = './GoogleNews-vectors-negative300.bin/'): | |||
STEP 3 | |||
train the model | |||
``` | |||
python train.py | |||
``` | |||
you will get the information printed in the screen, like | |||
``` | |||
Epoch [1/20], Iter [100/192] Loss: 0.7008 | |||
Test Accuracy: 71.869159 % | |||
Epoch [2/20], Iter [100/192] Loss: 0.5957 | |||
Test Accuracy: 75.700935 % | |||
Epoch [3/20], Iter [100/192] Loss: 0.4934 | |||
Test Accuracy: 78.130841 % | |||
...... | |||
Epoch [20/20], Iter [100/192] Loss: 0.0364 | |||
Test Accuracy: 81.495327 % | |||
Best Accuracy: 82.616822 % | |||
Best Model: models/cnn.pkl | |||
``` | |||
## Hyperparameters | |||
According to the paper and experiment, I set: | |||
|Epoch|Kernel Size|dropout|learning rate|batch size| | |||
|---|---|---|---|---| | |||
|20|\(h,300,100\)|0.5|0.0001|50| | |||
h = [3,4,5] | |||
If the accuracy is not improved, the learning rate will \*0.8. | |||
## Result | |||
I just tried one dataset : MR. (Other 6 dataset in paper SST-1, SST-2, TREC, CR, MPQA) | |||
There are four models in paper: CNN-rand, CNN-static, CNN-non-static, CNN-multichannel. | |||
I have tried CNN-non-static:A model with pre-trained vectors from word2vec. | |||
All words—including the unknown ones that are randomly initialized and the pretrained vectors are fine-tuned for each task | |||
(which has almost the best performance and the most difficut to implement among the four models) | |||
|Dataset|Class Size|Best Result|Kim's Paper Result| | |||
|---|---|---|---| | |||
|MR|2|82.617%(CNN-non-static)|81.5%(CNN-nonstatic)| | |||
## Reference | |||
* [Convolutional Neural Networks for Sentence Classification](https://arxiv.org/abs/1408.5882) | |||
* https://github.com/Shawn1993/cnn-text-classification-pytorch | |||
* https://github.com/junwang4/CNN-sentence-classification-pytorch-2017/blob/master/utils.py | |||
@@ -1,142 +0,0 @@ | |||
import codecs | |||
import random | |||
import re | |||
import gensim | |||
import numpy as np | |||
from gensim import corpora | |||
from torch.utils.data import Dataset | |||
def clean_str(string): | |||
""" | |||
Tokenization/string cleaning for all datasets except for SST. | |||
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py | |||
""" | |||
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string) | |||
string = re.sub(r"\'s", " \'s", string) | |||
string = re.sub(r"\'ve", " \'ve", string) | |||
string = re.sub(r"n\'t", " n\'t", string) | |||
string = re.sub(r"\'re", " \'re", string) | |||
string = re.sub(r"\'d", " \'d", string) | |||
string = re.sub(r"\'ll", " \'ll", string) | |||
string = re.sub(r",", " , ", string) | |||
string = re.sub(r"!", " ! ", string) | |||
string = re.sub(r"\(", " \( ", string) | |||
string = re.sub(r"\)", " \) ", string) | |||
string = re.sub(r"\?", " \? ", string) | |||
string = re.sub(r"\s{2,}", " ", string) | |||
return string.strip() | |||
def pad_sentences(sentence, padding_word=" <PAD/>"): | |||
sequence_length = 64 | |||
sent = sentence.split() | |||
padded_sentence = sentence + padding_word * (sequence_length - len(sent)) | |||
return padded_sentence | |||
#data loader | |||
class MRDataset(Dataset): | |||
def __init__(self): | |||
#load positive and negative sentenses from files | |||
with codecs.open("./rt-polaritydata/rt-polarity.pos",encoding ='ISO-8859-1') as f: | |||
positive_examples = list(f.readlines()) | |||
with codecs.open("./rt-polaritydata/rt-polarity.neg",encoding ='ISO-8859-1') as f: | |||
negative_examples = list(f.readlines()) | |||
#s.strip: clear "\n"; clear_str; pad | |||
positive_examples = [pad_sentences(clean_str(s.strip())) for s in positive_examples] | |||
negative_examples = [pad_sentences(clean_str(s.strip())) for s in negative_examples] | |||
self.examples = positive_examples + negative_examples | |||
self.sentences_texts = [sample.split() for sample in self.examples] | |||
#word dictionary | |||
dictionary = corpora.Dictionary(self.sentences_texts) | |||
self.word2id_dict = dictionary.token2id # transform to dict, like {"human":0, "a":1,...} | |||
#set lables: postive is 1; negative is 0 | |||
positive_labels = [1 for _ in positive_examples] | |||
negative_labels = [0 for _ in negative_examples] | |||
self.lables = positive_labels + negative_labels | |||
examples_lables = list(zip(self.examples,self.lables)) | |||
random.shuffle(examples_lables) | |||
self.MRDataset_frame = examples_lables | |||
#transform word to id | |||
self.MRDataset_wordid = \ | |||
[( | |||
np.array([self.word2id_dict[word] for word in sent[0].split()], dtype=np.int64), | |||
sent[1] | |||
) for sent in self.MRDataset_frame] | |||
def word_embeddings(self, path="./GoogleNews-vectors-negative300.bin/GoogleNews-vectors-negative300.bin"): | |||
# establish from google | |||
model = gensim.models.KeyedVectors.load_word2vec_format(path, binary=True) | |||
print('Please wait ... (it could take a while to load the file : {})'.format(path)) | |||
word_dict = self.word2id_dict | |||
embedding_weights = np.random.uniform(-0.25, 0.25, (len(self.word2id_dict), 300)) | |||
for word in word_dict: | |||
word_id = word_dict[word] | |||
if word in model.wv.vocab: | |||
embedding_weights[word_id, :] = model[word] | |||
return embedding_weights | |||
def __len__(self): | |||
return len(self.MRDataset_frame) | |||
def __getitem__(self,idx): | |||
sample = self.MRDataset_wordid[idx] | |||
return sample | |||
def getsent(self, idx): | |||
sample = self.MRDataset_wordid[idx][0] | |||
return sample | |||
def getlabel(self, idx): | |||
label = self.MRDataset_wordid[idx][1] | |||
return label | |||
def word2id(self): | |||
return self.word2id_dict | |||
def id2word(self): | |||
id2word_dict = dict([val,key] for key,val in self.word2id_dict.items()) | |||
return id2word_dict | |||
class train_set(Dataset): | |||
def __init__(self, samples): | |||
self.train_frame = samples | |||
def __len__(self): | |||
return len(self.train_frame) | |||
def __getitem__(self, idx): | |||
return self.train_frame[idx] | |||
class test_set(Dataset): | |||
def __init__(self, samples): | |||
self.test_frame = samples | |||
def __len__(self): | |||
return len(self.test_frame) | |||
def __getitem__(self, idx): | |||
return self.test_frame[idx] |
@@ -1,43 +0,0 @@ | |||
import os | |||
import sys | |||
import numpy as np | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
from torch.autograd import Variable | |||
import dataset | |||
class CNN_text(nn.Module): | |||
def __init__(self, kernel_h=[3,4,5], kernel_num=100, embed_num=1000, embed_dim=300, dropout=0.5, L2_constrain=3, batchsize=50, pretrained_embeddings=None): | |||
super(CNN_text, self).__init__() | |||
self.embedding = nn.Embedding(embed_num,embed_dim) | |||
self.dropout = nn.Dropout(dropout) | |||
if pretrained_embeddings is not None: | |||
self.embedding.weight.data.copy_(torch.from_numpy(pretrained_embeddings)) | |||
#the network structure | |||
#Conv2d: input- N,C,H,W output- (50,100,62,1) | |||
self.conv1 = nn.ModuleList([nn.Conv2d(1, 100, (K, 300)) for K in kernel_h]) | |||
self.fc1 = nn.Linear(300,2) | |||
def max_pooling(self, x): | |||
x = F.relu(conv(x)).squeeze(3) #N,C,L - (50,100,62) | |||
x = F.max_pool1d(x, x.size(2)).squeeze(2) | |||
#x.size(2)=62 squeeze: (50,100,1) -> (50,100) | |||
return x | |||
def forward(self, x): | |||
x = self.embedding(x) #output: (N,H,W) = (50,64,300) | |||
x = x.unsqueeze(1) #(N,C,H,W) | |||
x = [F.relu(conv(x)).squeeze(3) for conv in self.conv1] #[N, C, H(50,100,62),(50,100,61),(50,100,60)] | |||
x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x] #[N,C(50,100),(50,100),(50,100)] | |||
x = torch.cat(x,1) | |||
x = self.dropout(x) | |||
x = self.fc1(x) | |||
return x |
@@ -1,97 +0,0 @@ | |||
import os | |||
import | |||
import | |||
import torch | |||
import torch.nn as nn | |||
.dataset as dst | |||
from .model import CNN_text | |||
from torch.autograd import Variable | |||
# Hyper Parameters | |||
batch_size = 50 | |||
learning_rate = 0.0001 | |||
num_epochs = 20 | |||
cuda = True | |||
#split Dataset | |||
dataset = dst.MRDataset() | |||
length = len(dataset) | |||
train_dataset = dataset[:int(0.9*length)] | |||
test_dataset = dataset[int(0.9*length):] | |||
train_dataset = dst.train_set(train_dataset) | |||
test_dataset = dst.test_set(test_dataset) | |||
# Data Loader | |||
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, | |||
batch_size=batch_size, | |||
shuffle=True) | |||
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, | |||
batch_size=batch_size, | |||
shuffle=False) | |||
#cnn | |||
cnn = CNN_text(embed_num=len(dataset.word2id()), pretrained_embeddings=dataset.word_embeddings()) | |||
if cuda: | |||
cnn.cuda() | |||
# Loss and Optimizer | |||
criterion = nn.CrossEntropyLoss() | |||
optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate) | |||
# train and tests | |||
best_acc = None | |||
for epoch in range(num_epochs): | |||
# Train the Model | |||
cnn.train() | |||
for i, (sents,labels) in enumerate(train_loader): | |||
sents = Variable(sents) | |||
labels = Variable(labels) | |||
if cuda: | |||
sents = sents.cuda() | |||
labels = labels.cuda() | |||
optimizer.zero_grad() | |||
outputs = cnn(sents) | |||
loss = criterion(outputs, labels) | |||
loss.backward() | |||
optimizer.step() | |||
if (i+1) % 100 == 0: | |||
print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f' | |||
%(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0])) | |||
# Test the Model | |||
cnn.eval() | |||
correct = 0 | |||
total = 0 | |||
for sents, labels in test_loader: | |||
sents = Variable(sents) | |||
if cuda: | |||
sents = sents.cuda() | |||
labels = labels.cuda() | |||
outputs = cnn(sents) | |||
_, predicted = torch.max(outputs.data, 1) | |||
total += labels.size(0) | |||
correct += (predicted == labels).sum() | |||
acc = 100. * correct / total | |||
print('Test Accuracy: %f %%' % (acc)) | |||
if best_acc is None or acc > best_acc: | |||
best_acc = acc | |||
if os.path.exists("models") is False: | |||
os.makedirs("models") | |||
torch.save(cnn.state_dict(), 'models/cnn.pkl') | |||
else: | |||
learning_rate = learning_rate * 0.8 | |||
print("Best Accuracy: %f %%" % best_acc) | |||
print("Best Model: models/cnn.pkl") |
@@ -1,21 +0,0 @@ | |||
MIT License | |||
Copyright (c) 2017 | |||
Permission is hereby granted, free of charge, to any person obtaining a copy | |||
of this software and associated documentation files (the "Software"), to deal | |||
in the Software without restriction, including without limitation the rights | |||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |||
copies of the Software, and to permit persons to whom the Software is | |||
furnished to do so, subject to the following conditions: | |||
The above copyright notice and this permission notice shall be included in all | |||
copies or substantial portions of the Software. | |||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |||
SOFTWARE. |
@@ -1,40 +0,0 @@ | |||
# PyTorch-Character-Aware-Neural-Language-Model | |||
This is the PyTorch implementation of character-aware neural language model proposed in this [paper](https://arxiv.org/abs/1508.06615) by Yoon Kim. | |||
## Requiredments | |||
The code is run and tested with **Python 3.5.2** and **PyTorch 0.3.1**. | |||
## HyperParameters | |||
| HyperParam | value | | |||
| ------ | :-------| | |||
| LSTM batch size | 20 | | |||
| LSTM sequence length | 35 | | |||
| LSTM hidden units | 300 | | |||
| epochs | 35 | | |||
| initial learning rate | 1.0 | | |||
| character embedding dimension | 15 | | |||
## Demo | |||
Train the model with split train/valid/test data. | |||
`python train.py` | |||
The trained model will saved in `cache/net.pkl`. | |||
Test the model. | |||
`python test.py` | |||
Best result on test set: | |||
PPl=127.2163 | |||
cross entropy loss=4.8459 | |||
## Acknowledgement | |||
This implementation borrowed ideas from | |||
https://github.com/jarfo/kchar | |||
https://github.com/cronos123/Character-Aware-Neural-Language-Models | |||
@@ -1,148 +0,0 @@ | |||
import torch | |||
from torch.autograd import Variable | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
class Highway(nn.Module): | |||
"""Highway network""" | |||
def __init__(self, input_size): | |||
super(Highway, self).__init__() | |||
self.fc1 = nn.Linear(input_size, input_size, bias=True) | |||
self.fc2 = nn.Linear(input_size, input_size, bias=True) | |||
def forward(self, x): | |||
t = F.sigmoid(self.fc1(x)) | |||
return torch.mul(t, F.relu(self.fc2(x))) + torch.mul(1-t, x) | |||
class charLM(nn.Module): | |||
"""CNN + highway network + LSTM | |||
# Input: | |||
4D tensor with shape [batch_size, in_channel, height, width] | |||
# Output: | |||
2D Tensor with shape [batch_size, vocab_size] | |||
# Arguments: | |||
char_emb_dim: the size of each character's embedding | |||
word_emb_dim: the size of each word's embedding | |||
vocab_size: num of unique words | |||
num_char: num of characters | |||
use_gpu: True or False | |||
""" | |||
def __init__(self, char_emb_dim, word_emb_dim, | |||
vocab_size, num_char, use_gpu): | |||
super(charLM, self).__init__() | |||
self.char_emb_dim = char_emb_dim | |||
self.word_emb_dim = word_emb_dim | |||
self.vocab_size = vocab_size | |||
# char embedding layer | |||
self.char_embed = nn.Embedding(num_char, char_emb_dim) | |||
# convolutions of filters with different sizes | |||
self.convolutions = [] | |||
# list of tuples: (the number of filter, width) | |||
self.filter_num_width = [(25, 1), (50, 2), (75, 3), (100, 4), (125, 5), (150, 6)] | |||
for out_channel, filter_width in self.filter_num_width: | |||
self.convolutions.append( | |||
nn.Conv2d( | |||
1, # in_channel | |||
out_channel, # out_channel | |||
kernel_size=(char_emb_dim, filter_width), # (height, width) | |||
bias=True | |||
) | |||
) | |||
self.highway_input_dim = sum([x for x, y in self.filter_num_width]) | |||
self.batch_norm = nn.BatchNorm1d(self.highway_input_dim, affine=False) | |||
# highway net | |||
self.highway1 = Highway(self.highway_input_dim) | |||
self.highway2 = Highway(self.highway_input_dim) | |||
# LSTM | |||
self.lstm_num_layers = 2 | |||
self.lstm = nn.LSTM(input_size=self.highway_input_dim, | |||
hidden_size=self.word_emb_dim, | |||
num_layers=self.lstm_num_layers, | |||
bias=True, | |||
dropout=0.5, | |||
batch_first=True) | |||
# output layer | |||
self.dropout = nn.Dropout(p=0.5) | |||
self.linear = nn.Linear(self.word_emb_dim, self.vocab_size) | |||
if use_gpu is True: | |||
for x in range(len(self.convolutions)): | |||
self.convolutions[x] = self.convolutions[x].cuda() | |||
self.highway1 = self.highway1.cuda() | |||
self.highway2 = self.highway2.cuda() | |||
self.lstm = self.lstm.cuda() | |||
self.dropout = self.dropout.cuda() | |||
self.char_embed = self.char_embed.cuda() | |||
self.linear = self.linear.cuda() | |||
self.batch_norm = self.batch_norm.cuda() | |||
def forward(self, x, hidden): | |||
# Input: Variable of Tensor with shape [num_seq, seq_len, max_word_len+2] | |||
# Return: Variable of Tensor with shape [num_words, len(word_dict)] | |||
lstm_batch_size = x.size()[0] | |||
lstm_seq_len = x.size()[1] | |||
x = x.contiguous().view(-1, x.size()[2]) | |||
# [num_seq*seq_len, max_word_len+2] | |||
x = self.char_embed(x) | |||
# [num_seq*seq_len, max_word_len+2, char_emb_dim] | |||
x = torch.transpose(x.view(x.size()[0], 1, x.size()[1], -1), 2, 3) | |||
# [num_seq*seq_len, 1, max_word_len+2, char_emb_dim] | |||
x = self.conv_layers(x) | |||
# [num_seq*seq_len, total_num_filters] | |||
x = self.batch_norm(x) | |||
# [num_seq*seq_len, total_num_filters] | |||
x = self.highway1(x) | |||
x = self.highway2(x) | |||
# [num_seq*seq_len, total_num_filters] | |||
x = x.contiguous().view(lstm_batch_size,lstm_seq_len, -1) | |||
# [num_seq, seq_len, total_num_filters] | |||
x, hidden = self.lstm(x, hidden) | |||
# [seq_len, num_seq, hidden_size] | |||
x = self.dropout(x) | |||
# [seq_len, num_seq, hidden_size] | |||
x = x.contiguous().view(lstm_batch_size*lstm_seq_len, -1) | |||
# [num_seq*seq_len, hidden_size] | |||
x = self.linear(x) | |||
# [num_seq*seq_len, vocab_size] | |||
return x, hidden | |||
def conv_layers(self, x): | |||
chosen_list = list() | |||
for conv in self.convolutions: | |||
feature_map = F.tanh(conv(x)) | |||
# (batch_size, out_channel, 1, max_word_len-width+1) | |||
chosen = torch.max(feature_map, 3)[0] | |||
# (batch_size, out_channel, 1) | |||
chosen = chosen.squeeze() | |||
# (batch_size, out_channel) | |||
chosen_list.append(chosen) | |||
# (batch_size, total_num_filers) | |||
return torch.cat(chosen_list, 1) |
@@ -1,123 +0,0 @@ | |||
import os | |||
from collections import namedtuple | |||
import numpy as np | |||
import torch | |||
import torch.nn as nn | |||
from torch.autograd import Variable | |||
from utilities import * | |||
def to_var(x): | |||
if torch.cuda.is_available(): | |||
x = x.cuda() | |||
return Variable(x) | |||
def test(net, data, opt): | |||
net.eval() | |||
test_input = torch.from_numpy(data.test_input) | |||
test_label = torch.from_numpy(data.test_label) | |||
num_seq = test_input.size()[0] // opt.lstm_seq_len | |||
test_input = test_input[:num_seq*opt.lstm_seq_len, :] | |||
# [num_seq, seq_len, max_word_len+2] | |||
test_input = test_input.view(-1, opt.lstm_seq_len, opt.max_word_len+2) | |||
criterion = nn.CrossEntropyLoss() | |||
loss_list = [] | |||
num_hits = 0 | |||
total = 0 | |||
iterations = test_input.size()[0] // opt.lstm_batch_size | |||
test_generator = batch_generator(test_input, opt.lstm_batch_size) | |||
label_generator = batch_generator(test_label, opt.lstm_batch_size*opt.lstm_seq_len) | |||
hidden = (to_var(torch.zeros(2, opt.lstm_batch_size, opt.word_embed_dim)), | |||
to_var(torch.zeros(2, opt.lstm_batch_size, opt.word_embed_dim))) | |||
add_loss = 0.0 | |||
for t in range(iterations): | |||
batch_input = test_generator.__next__ () | |||
batch_label = label_generator.__next__() | |||
net.zero_grad() | |||
hidden = [state.detach() for state in hidden] | |||
test_output, hidden = net(to_var(batch_input), hidden) | |||
test_loss = criterion(test_output, to_var(batch_label)).data | |||
loss_list.append(test_loss) | |||
add_loss += test_loss | |||
print("Test Loss={0:.4f}".format(float(add_loss) / iterations)) | |||
print("Test PPL={0:.4f}".format(float(np.exp(add_loss / iterations)))) | |||
############################################################# | |||
if __name__ == "__main__": | |||
word_embed_dim = 300 | |||
char_embedding_dim = 15 | |||
if os.path.exists("cache/prep.pt") is False: | |||
print("Cannot find prep.pt") | |||
objetcs = torch.load("cache/prep.pt") | |||
word_dict = objetcs["word_dict"] | |||
char_dict = objetcs["char_dict"] | |||
reverse_word_dict = objetcs["reverse_word_dict"] | |||
max_word_len = objetcs["max_word_len"] | |||
num_words = len(word_dict) | |||
print("word/char dictionary built. Start making inputs.") | |||
if os.path.exists("cache/data_sets.pt") is False: | |||
test_text = read_data("./tests.txt") | |||
test_set = np.array(text2vec(test_text, char_dict, max_word_len)) | |||
# Labels are next-word index in word_dict with the same length as inputs | |||
test_label = np.array([word_dict[w] for w in test_text[1:]] + [word_dict[test_text[-1]]]) | |||
category = {"tests": test_set, "tlabel": test_label} | |||
torch.save(category, "cache/data_sets.pt") | |||
else: | |||
data_sets = torch.load("cache/data_sets.pt") | |||
test_set = data_sets["tests"] | |||
test_label = data_sets["tlabel"] | |||
train_set = data_sets["tdata"] | |||
train_label = data_sets["trlabel"] | |||
DataTuple = namedtuple("DataTuple", "test_input test_label train_input train_label ") | |||
data = DataTuple( test_input=test_set, | |||
test_label=test_label, train_label=train_label, train_input=train_set) | |||
print("Loaded data sets. Start building network.") | |||
USE_GPU = True | |||
cnn_batch_size = 700 | |||
lstm_seq_len = 35 | |||
lstm_batch_size = 20 | |||
net = torch.load("cache/net.pkl") | |||
Options = namedtuple("Options", [ "cnn_batch_size", "lstm_seq_len", | |||
"max_word_len", "lstm_batch_size", "word_embed_dim"]) | |||
opt = Options(cnn_batch_size=lstm_seq_len*lstm_batch_size, | |||
lstm_seq_len=lstm_seq_len, | |||
max_word_len=max_word_len, | |||
lstm_batch_size=lstm_batch_size, | |||
word_embed_dim=word_embed_dim) | |||
print("Network built. Start testing.") | |||
test(net, data, opt) |
@@ -1,275 +0,0 @@ | |||
import os | |||
from collections import namedtuple | |||
import numpy as np | |||
import torch.optim as optim | |||
from .model import charLM | |||
from .test import test | |||
from .utilities import * | |||
def preprocess(): | |||
word_dict, char_dict = create_word_char_dict("charlm.txt", "train.txt", "tests.txt") | |||
num_words = len(word_dict) | |||
num_char = len(char_dict) | |||
char_dict["BOW"] = num_char+1 | |||
char_dict["EOW"] = num_char+2 | |||
char_dict["PAD"] = 0 | |||
# dict of (int, string) | |||
reverse_word_dict = {value:key for key, value in word_dict.items()} | |||
max_word_len = max([len(word) for word in word_dict]) | |||
objects = { | |||
"word_dict": word_dict, | |||
"char_dict": char_dict, | |||
"reverse_word_dict": reverse_word_dict, | |||
"max_word_len": max_word_len | |||
} | |||
torch.save(objects, "cache/prep.pt") | |||
print("Preprocess done.") | |||
def to_var(x): | |||
if torch.cuda.is_available(): | |||
x = x.cuda() | |||
return Variable(x) | |||
def train(net, data, opt): | |||
""" | |||
:param net: the pytorch model | |||
:param data: numpy array | |||
:param opt: named tuple | |||
1. random seed | |||
2. define local input | |||
3. training settting: learning rate, loss, etc | |||
4. main loop epoch | |||
5. batchify | |||
6. validation | |||
7. save model | |||
""" | |||
torch.manual_seed(1024) | |||
train_input = torch.from_numpy(data.train_input) | |||
train_label = torch.from_numpy(data.train_label) | |||
valid_input = torch.from_numpy(data.valid_input) | |||
valid_label = torch.from_numpy(data.valid_label) | |||
# [num_seq, seq_len, max_word_len+2] | |||
num_seq = train_input.size()[0] // opt.lstm_seq_len | |||
train_input = train_input[:num_seq*opt.lstm_seq_len, :] | |||
train_input = train_input.view(-1, opt.lstm_seq_len, opt.max_word_len+2) | |||
num_seq = valid_input.size()[0] // opt.lstm_seq_len | |||
valid_input = valid_input[:num_seq*opt.lstm_seq_len, :] | |||
valid_input = valid_input.view(-1, opt.lstm_seq_len, opt.max_word_len+2) | |||
num_epoch = opt.epochs | |||
num_iter_per_epoch = train_input.size()[0] // opt.lstm_batch_size | |||
learning_rate = opt.init_lr | |||
old_PPL = 100000 | |||
best_PPL = 100000 | |||
# Log-SoftMax | |||
criterion = nn.CrossEntropyLoss() | |||
# word_emb_dim == hidden_size / num of hidden units | |||
hidden = (to_var(torch.zeros(2, opt.lstm_batch_size, opt.word_embed_dim)), | |||
to_var(torch.zeros(2, opt.lstm_batch_size, opt.word_embed_dim))) | |||
for epoch in range(num_epoch): | |||
################ Validation #################### | |||
net.eval() | |||
loss_batch = [] | |||
PPL_batch = [] | |||
iterations = valid_input.size()[0] // opt.lstm_batch_size | |||
valid_generator = batch_generator(valid_input, opt.lstm_batch_size) | |||
vlabel_generator = batch_generator(valid_label, opt.lstm_batch_size*opt.lstm_seq_len) | |||
for t in range(iterations): | |||
batch_input = valid_generator.__next__() | |||
batch_label = vlabel_generator.__next__() | |||
hidden = [state.detach() for state in hidden] | |||
valid_output, hidden = net(to_var(batch_input), hidden) | |||
length = valid_output.size()[0] | |||
# [num_sample-1, len(word_dict)] vs [num_sample-1] | |||
valid_loss = criterion(valid_output, to_var(batch_label)) | |||
PPL = torch.exp(valid_loss.data) | |||
loss_batch.append(float(valid_loss)) | |||
PPL_batch.append(float(PPL)) | |||
PPL = np.mean(PPL_batch) | |||
print("[epoch {}] valid PPL={}".format(epoch, PPL)) | |||
print("valid loss={}".format(np.mean(loss_batch))) | |||
print("PPL decrease={}".format(float(old_PPL - PPL))) | |||
# Preserve the best model | |||
if best_PPL > PPL: | |||
best_PPL = PPL | |||
torch.save(net.state_dict(), "cache/model.pt") | |||
torch.save(net, "cache/net.pkl") | |||
# Adjust the learning rate | |||
if float(old_PPL - PPL) <= 1.0: | |||
learning_rate /= 2 | |||
print("halved lr:{}".format(learning_rate)) | |||
old_PPL = PPL | |||
################################################## | |||
#################### Training #################### | |||
net.train() | |||
optimizer = optim.SGD(net.parameters(), | |||
lr = learning_rate, | |||
momentum=0.85) | |||
# split the first dim | |||
input_generator = batch_generator(train_input, opt.lstm_batch_size) | |||
label_generator = batch_generator(train_label, opt.lstm_batch_size*opt.lstm_seq_len) | |||
for t in range(num_iter_per_epoch): | |||
batch_input = input_generator.__next__() | |||
batch_label = label_generator.__next__() | |||
# detach hidden state of LSTM from last batch | |||
hidden = [state.detach() for state in hidden] | |||
output, hidden = net(to_var(batch_input), hidden) | |||
# [num_word, vocab_size] | |||
loss = criterion(output, to_var(batch_label)) | |||
net.zero_grad() | |||
loss.backward() | |||
torch.nn.utils.clip_grad_norm(net.parameters(), 5, norm_type=2) | |||
optimizer.step() | |||
if (t+1) % 100 == 0: | |||
print("[epoch {} step {}] train loss={}, Perplexity={}".format(epoch+1, | |||
t+1, float(loss.data), float(np.exp(loss.data)))) | |||
torch.save(net.state_dict(), "cache/model.pt") | |||
print("Training finished.") | |||
################################################################ | |||
if __name__=="__main__": | |||
word_embed_dim = 300 | |||
char_embedding_dim = 15 | |||
if os.path.exists("cache/prep.pt") is False: | |||
preprocess() | |||
objetcs = torch.load("cache/prep.pt") | |||
word_dict = objetcs["word_dict"] | |||
char_dict = objetcs["char_dict"] | |||
reverse_word_dict = objetcs["reverse_word_dict"] | |||
max_word_len = objetcs["max_word_len"] | |||
num_words = len(word_dict) | |||
print("word/char dictionary built. Start making inputs.") | |||
if os.path.exists("cache/data_sets.pt") is False: | |||
train_text = read_data("./train.txt") | |||
valid_text = read_data("./charlm.txt") | |||
test_text = read_data("./tests.txt") | |||
train_set = np.array(text2vec(train_text, char_dict, max_word_len)) | |||
valid_set = np.array(text2vec(valid_text, char_dict, max_word_len)) | |||
test_set = np.array(text2vec(test_text, char_dict, max_word_len)) | |||
# Labels are next-word index in word_dict with the same length as inputs | |||
train_label = np.array([word_dict[w] for w in train_text[1:]] + [word_dict[train_text[-1]]]) | |||
valid_label = np.array([word_dict[w] for w in valid_text[1:]] + [word_dict[valid_text[-1]]]) | |||
test_label = np.array([word_dict[w] for w in test_text[1:]] + [word_dict[test_text[-1]]]) | |||
category = {"tdata": train_set, "vdata": valid_set, "tests": test_set, | |||
"trlabel":train_label, "vlabel":valid_label, "tlabel":test_label} | |||
torch.save(category, "cache/data_sets.pt") | |||
else: | |||
data_sets = torch.load("cache/data_sets.pt") | |||
train_set = data_sets["tdata"] | |||
valid_set = data_sets["vdata"] | |||
test_set = data_sets["tests"] | |||
train_label = data_sets["trlabel"] | |||
valid_label = data_sets["vlabel"] | |||
test_label = data_sets["tlabel"] | |||
DataTuple = namedtuple("DataTuple", | |||
"train_input train_label valid_input valid_label test_input test_label") | |||
data = DataTuple(train_input=train_set, | |||
train_label=train_label, | |||
valid_input=valid_set, | |||
valid_label=valid_label, | |||
test_input=test_set, | |||
test_label=test_label) | |||
print("Loaded data sets. Start building network.") | |||
USE_GPU = True | |||
cnn_batch_size = 700 | |||
lstm_seq_len = 35 | |||
lstm_batch_size = 20 | |||
# cnn_batch_size == lstm_seq_len * lstm_batch_size | |||
net = charLM(char_embedding_dim, | |||
word_embed_dim, | |||
num_words, | |||
len(char_dict), | |||
use_gpu=USE_GPU) | |||
for param in net.parameters(): | |||
nn.init.uniform(param.data, -0.05, 0.05) | |||
Options = namedtuple("Options", [ | |||
"cnn_batch_size", "init_lr", "lstm_seq_len", | |||
"max_word_len", "lstm_batch_size", "epochs", | |||
"word_embed_dim"]) | |||
opt = Options(cnn_batch_size=lstm_seq_len*lstm_batch_size, | |||
init_lr=1.0, | |||
lstm_seq_len=lstm_seq_len, | |||
max_word_len=max_word_len, | |||
lstm_batch_size=lstm_batch_size, | |||
epochs=35, | |||
word_embed_dim=word_embed_dim) | |||
print("Network built. Start training.") | |||
# You can stop training anytime by "ctrl+C" | |||
try: | |||
train(net, data, opt) | |||
except KeyboardInterrupt: | |||
print('-' * 89) | |||
print('Exiting from training early') | |||
torch.save(net, "cache/net.pkl") | |||
print("save net") | |||
test(net, data, opt) |
@@ -1,86 +0,0 @@ | |||
import torch | |||
from torch.autograd import Variable | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
def batch_generator(x, batch_size): | |||
# x: [num_words, in_channel, height, width] | |||
# partitions x into batches | |||
num_step = x.size()[0] // batch_size | |||
for t in range(num_step): | |||
yield x[t*batch_size:(t+1)*batch_size] | |||
def text2vec(words, char_dict, max_word_len): | |||
""" Return list of list of int """ | |||
word_vec = [] | |||
for word in words: | |||
vec = [char_dict[ch] for ch in word] | |||
if len(vec) < max_word_len: | |||
vec += [char_dict["PAD"] for _ in range(max_word_len - len(vec))] | |||
vec = [char_dict["BOW"]] + vec + [char_dict["EOW"]] | |||
word_vec.append(vec) | |||
return word_vec | |||
def seq2vec(input_words, char_embedding, char_embedding_dim, char_table): | |||
""" convert the input strings into character embeddings """ | |||
# input_words == list of string | |||
# char_embedding == torch.nn.Embedding | |||
# char_embedding_dim == int | |||
# char_table == list of unique chars | |||
# Returns: tensor of shape [len(input_words), char_embedding_dim, max_word_len+2] | |||
max_word_len = max([len(word) for word in input_words]) | |||
print("max_word_len={}".format(max_word_len)) | |||
tensor_list = [] | |||
start_column = torch.ones(char_embedding_dim, 1) | |||
end_column = torch.ones(char_embedding_dim, 1) | |||
for word in input_words: | |||
# convert string to word embedding | |||
word_encoding = char_embedding_lookup(word, char_embedding, char_table) | |||
# add start and end columns | |||
word_encoding = torch.cat([start_column, word_encoding, end_column], 1) | |||
# zero-pad right columns | |||
word_encoding = F.pad(word_encoding, (0, max_word_len-word_encoding.size()[1]+2)).data | |||
# create dimension | |||
word_encoding = word_encoding.unsqueeze(0) | |||
tensor_list.append(word_encoding) | |||
return torch.cat(tensor_list, 0) | |||
def read_data(file_name): | |||
# Return: list of strings | |||
with open(file_name, 'r') as f: | |||
corpus = f.read().lower() | |||
import re | |||
corpus = re.sub(r"<unk>", "unk", corpus) | |||
return corpus.split() | |||
def get_char_dict(vocabulary): | |||
# vocabulary == dict of (word, int) | |||
# Return: dict of (char, int), starting from 1 | |||
char_dict = dict() | |||
count = 1 | |||
for word in vocabulary: | |||
for ch in word: | |||
if ch not in char_dict: | |||
char_dict[ch] = count | |||
count += 1 | |||
return char_dict | |||
def create_word_char_dict(*file_name): | |||
text = [] | |||
for file in file_name: | |||
text += read_data(file) | |||
word_dict = {word:ix for ix, word in enumerate(set(text))} | |||
char_dict = get_char_dict(word_dict) | |||
return word_dict, char_dict | |||
@@ -1,36 +0,0 @@ | |||
## Introduction | |||
This is the implementation of [Hierarchical Attention Networks for Document Classification](https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf) paper in PyTorch. | |||
* Dataset is 600k documents extracted from [Yelp 2018](https://www.yelp.com/dataset) customer reviews | |||
* Use [NLTK](http://www.nltk.org/) and [Stanford CoreNLP](https://stanfordnlp.github.io/CoreNLP/) to tokenize documents and sentences | |||
* Both CPU & GPU support | |||
* The best accuracy is 71%, reaching the same performance in the paper | |||
## Requirement | |||
* python 3.6 | |||
* pytorch = 0.3.0 | |||
* numpy | |||
* gensim | |||
* nltk | |||
* coreNLP | |||
## Parameters | |||
According to the paper and experiment, I set model parameters: | |||
|word embedding dimension|GRU hidden size|GRU layer|word/sentence context vector dimension| | |||
|---|---|---|---| | |||
|200|50|1|100| | |||
And the training parameters: | |||
|Epoch|learning rate|momentum|batch size| | |||
|---|---|---|---| | |||
|3|0.01|0.9|64| | |||
## Run | |||
1. Prepare dataset. Download the [data set](https://www.yelp.com/dataset), and unzip the custom reviews as a file. Use preprocess.py to transform file into data set foe model input. | |||
2. Train the model. Word enbedding of train data in 'yelp.word2vec'. The model will trained and autosaved in 'model.dict' | |||
``` | |||
python train | |||
``` | |||
3. Test the model. | |||
``` | |||
python evaluate | |||
``` |
@@ -1,44 +0,0 @@ | |||
from model import * | |||
from train import * | |||
def evaluate(net, dataset, bactch_size=64, use_cuda=False): | |||
dataloader = DataLoader(dataset, batch_size=bactch_size, collate_fn=collate, num_workers=0) | |||
count = 0 | |||
if use_cuda: | |||
net.cuda() | |||
for i, batch_samples in enumerate(dataloader): | |||
x, y = batch_samples | |||
doc_list = [] | |||
for sample in x: | |||
doc = [] | |||
for sent_vec in sample: | |||
if use_cuda: | |||
sent_vec = sent_vec.cuda() | |||
doc.append(Variable(sent_vec, volatile=True)) | |||
doc_list.append(pack_sequence(doc)) | |||
if use_cuda: | |||
y = y.cuda() | |||
predicts = net(doc_list) | |||
p, idx = torch.max(predicts, dim=1) | |||
idx = idx.data | |||
count += torch.sum(torch.eq(idx, y)) | |||
return count | |||
if __name__ == '__main__': | |||
''' | |||
Evaluate the performance of model | |||
''' | |||
from gensim.models import Word2Vec | |||
import gensim | |||
from gensim import models | |||
embed_model = Word2Vec.load('yelp.word2vec') | |||
embedding = Embedding_layer(embed_model.wv, embed_model.wv.vector_size) | |||
del embed_model | |||
net = HAN(input_size=200, output_size=5, | |||
word_hidden_size=50, word_num_layers=1, word_context_size=100, | |||
sent_hidden_size=50, sent_num_layers=1, sent_context_size=100) | |||
net.load_state_dict(torch.load('model.dict')) | |||
test_dataset = YelpDocSet('reviews', 199, 4, embedding) | |||
correct = evaluate(net, test_dataset, True) | |||
print('accuracy {}'.format(correct/len(test_dataset))) |
@@ -1,110 +0,0 @@ | |||
import torch | |||
import torch.nn as nn | |||
from torch.autograd import Variable | |||
import torch.nn.functional as F | |||
def pack_sequence(tensor_seq, padding_value=0.0): | |||
if len(tensor_seq) <= 0: | |||
return | |||
length = [v.size(0) for v in tensor_seq] | |||
max_len = max(length) | |||
size = [len(tensor_seq), max_len] | |||
size.extend(list(tensor_seq[0].size()[1:])) | |||
ans = torch.Tensor(*size).fill_(padding_value) | |||
if tensor_seq[0].data.is_cuda: | |||
ans = ans.cuda() | |||
ans = Variable(ans) | |||
for i, v in enumerate(tensor_seq): | |||
ans[i, :length[i], :] = v | |||
return ans | |||
class HAN(nn.Module): | |||
def __init__(self, input_size, output_size, | |||
word_hidden_size, word_num_layers, word_context_size, | |||
sent_hidden_size, sent_num_layers, sent_context_size): | |||
super(HAN, self).__init__() | |||
self.word_layer = AttentionNet(input_size, | |||
word_hidden_size, | |||
word_num_layers, | |||
word_context_size) | |||
self.sent_layer = AttentionNet(2* word_hidden_size, | |||
sent_hidden_size, | |||
sent_num_layers, | |||
sent_context_size) | |||
self.output_layer = nn.Linear(2* sent_hidden_size, output_size) | |||
self.softmax = nn.LogSoftmax(dim=1) | |||
def forward(self, batch_doc): | |||
# input is a sequence of matrix | |||
doc_vec_list = [] | |||
for doc in batch_doc: | |||
sent_mat = self.word_layer(doc) # doc's dim (num_sent, seq_len, word_dim) | |||
doc_vec_list.append(sent_mat) # sent_mat's dim (num_sent, vec_dim) | |||
doc_vec = self.sent_layer(pack_sequence(doc_vec_list)) | |||
output = self.softmax(self.output_layer(doc_vec)) | |||
return output | |||
class AttentionNet(nn.Module): | |||
def __init__(self, input_size, gru_hidden_size, gru_num_layers, context_vec_size): | |||
super(AttentionNet, self).__init__() | |||
self.input_size = input_size | |||
self.gru_hidden_size = gru_hidden_size | |||
self.gru_num_layers = gru_num_layers | |||
self.context_vec_size = context_vec_size | |||
# Encoder | |||
self.gru = nn.GRU(input_size=input_size, | |||
hidden_size=gru_hidden_size, | |||
num_layers=gru_num_layers, | |||
batch_first=True, | |||
bidirectional=True) | |||
# Attention | |||
self.fc = nn.Linear(2* gru_hidden_size, context_vec_size) | |||
self.tanh = nn.Tanh() | |||
self.softmax = nn.Softmax(dim=1) | |||
# context vector | |||
self.context_vec = nn.Parameter(torch.Tensor(context_vec_size, 1)) | |||
self.context_vec.data.uniform_(-0.1, 0.1) | |||
def forward(self, inputs): | |||
# GRU part | |||
h_t, hidden = self.gru(inputs) # inputs's dim (batch_size, seq_len, word_dim) | |||
u = self.tanh(self.fc(h_t)) | |||
# Attention part | |||
alpha = self.softmax(torch.matmul(u, self.context_vec)) # u's dim (batch_size, seq_len, context_vec_size) | |||
output = torch.bmm(torch.transpose(h_t, 1, 2), alpha) # alpha's dim (batch_size, seq_len, 1) | |||
return torch.squeeze(output, dim=2) # output's dim (batch_size, 2*hidden_size, 1) | |||
if __name__ == '__main__': | |||
''' | |||
Test the model correctness | |||
''' | |||
import numpy as np | |||
use_cuda = True | |||
net = HAN(input_size=200, output_size=5, | |||
word_hidden_size=50, word_num_layers=1, word_context_size=100, | |||
sent_hidden_size=50, sent_num_layers=1, sent_context_size=100) | |||
optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9) | |||
criterion = nn.NLLLoss() | |||
test_time = 10 | |||
batch_size = 64 | |||
if use_cuda: | |||
net.cuda() | |||
print('test training') | |||
for step in range(test_time): | |||
x_data = [torch.randn(np.random.randint(1,10), 200, 200) for i in range(batch_size)] | |||
y_data = torch.LongTensor([np.random.randint(0, 5) for i in range(batch_size)]) | |||
if use_cuda: | |||
x_data = [x_i.cuda() for x_i in x_data] | |||
y_data = y_data.cuda() | |||
x = [Variable(x_i) for x_i in x_data] | |||
y = Variable(y_data) | |||
predict = net(x) | |||
loss = criterion(predict, y) | |||
optimizer.zero_grad() | |||
loss.backward() | |||
optimizer.step() | |||
print(loss.data[0]) |
@@ -1,51 +0,0 @@ | |||
'''' | |||
Tokenize yelp dataset's documents using stanford core nlp | |||
''' | |||
import pickle | |||
import json | |||
import nltk | |||
from nltk.tokenize import stanford | |||
import os | |||
input_filename = 'review.json' | |||
# config for stanford core nlp | |||
os.environ['JAVAHOME'] = 'D:\\java\\bin\\java.exe' | |||
path_to_jar = 'E:\\College\\fudanNLP\\stanford-corenlp-full-2018-02-27\\stanford-corenlp-3.9.1.jar' | |||
tokenizer = stanford.CoreNLPTokenizer() | |||
in_dirname = 'review' | |||
out_dirname = 'reviews' | |||
f = open(input_filename, encoding='utf-8') | |||
samples = [] | |||
j = 0 | |||
for i, line in enumerate(f.readlines()): | |||
review = json.loads(line) | |||
samples.append((review['stars'], review['text'])) | |||
if (i+1) % 5000 == 0: | |||
print(i) | |||
pickle.dump(samples, open(in_dirname + '/samples%d.pkl'%j, 'wb')) | |||
j += 1 | |||
samples = [] | |||
pickle.dump(samples, open(in_dirname + '/samples%d.pkl'%j, 'wb')) | |||
# samples = pickle.load(open(out_dirname + '/samples0.pkl', 'rb')) | |||
# print(samples[0]) | |||
for fn in os.listdir(in_dirname): | |||
print(fn) | |||
precessed = [] | |||
for stars, text in pickle.load(open(os.path.join(in_dirname, fn), 'rb')): | |||
tokens = [] | |||
sents = nltk.tokenize.sent_tokenize(text) | |||
for s in sents: | |||
tokens.append(tokenizer.tokenize(s)) | |||
precessed.append((stars, tokens)) | |||
# print(tokens) | |||
if len(precessed) % 100 == 0: | |||
print(len(precessed)) | |||
pickle.dump(precessed, open(os.path.join(out_dirname, fn), 'wb')) | |||
@@ -1,167 +0,0 @@ | |||
import os | |||
import pickle | |||
import nltk | |||
import numpy as np | |||
import torch | |||
from model import * | |||
class SentIter: | |||
def __init__(self, dirname, count): | |||
self.dirname = dirname | |||
self.count = int(count) | |||
def __iter__(self): | |||
for f in os.listdir(self.dirname)[:self.count]: | |||
with open(os.path.join(self.dirname, f), 'rb') as f: | |||
for y, x in pickle.load(f): | |||
for sent in x: | |||
yield sent | |||
def train_word_vec(): | |||
# load data | |||
dirname = 'reviews' | |||
sents = SentIter(dirname, 238) | |||
# define model and train | |||
model = models.Word2Vec(size=200, sg=0, workers=4, min_count=5) | |||
model.build_vocab(sents) | |||
model.train(sents, total_examples=model.corpus_count, epochs=10) | |||
model.save('yelp.word2vec') | |||
print(model.wv.similarity('woman', 'man')) | |||
print(model.wv.similarity('nice', 'awful')) | |||
class Embedding_layer: | |||
def __init__(self, wv, vector_size): | |||
self.wv = wv | |||
self.vector_size = vector_size | |||
def get_vec(self, w): | |||
try: | |||
v = self.wv[w] | |||
except KeyError as e: | |||
v = np.random.randn(self.vector_size) | |||
return v | |||
from torch.utils.data import DataLoader, Dataset | |||
class YelpDocSet(Dataset): | |||
def __init__(self, dirname, start_file, num_files, embedding): | |||
self.dirname = dirname | |||
self.num_files = num_files | |||
self._files = os.listdir(dirname)[start_file:start_file + num_files] | |||
self.embedding = embedding | |||
self._cache = [(-1, None) for i in range(5)] | |||
def get_doc(self, n): | |||
file_id = n // 5000 | |||
idx = file_id % 5 | |||
if self._cache[idx][0] != file_id: | |||
with open(os.path.join(self.dirname, self._files[file_id]), 'rb') as f: | |||
self._cache[idx] = (file_id, pickle.load(f)) | |||
y, x = self._cache[idx][1][n % 5000] | |||
sents = [] | |||
for s_list in x: | |||
sents.append(' '.join(s_list)) | |||
x = '\n'.join(sents) | |||
return x, y-1 | |||
def __len__(self): | |||
return len(self._files)*5000 | |||
def __getitem__(self, n): | |||
file_id = n // 5000 | |||
idx = file_id % 5 | |||
if self._cache[idx][0] != file_id: | |||
print('load {} to {}'.format(file_id, idx)) | |||
with open(os.path.join(self.dirname, self._files[file_id]), 'rb') as f: | |||
self._cache[idx] = (file_id, pickle.load(f)) | |||
y, x = self._cache[idx][1][n % 5000] | |||
doc = [] | |||
for sent in x: | |||
if len(sent) == 0: | |||
continue | |||
sent_vec = [] | |||
for word in sent: | |||
vec = self.embedding.get_vec(word) | |||
sent_vec.append(vec.tolist()) | |||
sent_vec = torch.Tensor(sent_vec) | |||
doc.append(sent_vec) | |||
if len(doc) == 0: | |||
doc = [torch.zeros(1,200)] | |||
return doc, y-1 | |||
def collate(iterable): | |||
y_list = [] | |||
x_list = [] | |||
for x, y in iterable: | |||
y_list.append(y) | |||
x_list.append(x) | |||
return x_list, torch.LongTensor(y_list) | |||
def train(net, dataset, num_epoch, batch_size, print_size=10, use_cuda=False): | |||
optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9) | |||
criterion = nn.NLLLoss() | |||
dataloader = DataLoader(dataset, | |||
batch_size=batch_size, | |||
collate_fn=collate, | |||
num_workers=0) | |||
running_loss = 0.0 | |||
if use_cuda: | |||
net.cuda() | |||
print('start training') | |||
for epoch in range(num_epoch): | |||
for i, batch_samples in enumerate(dataloader): | |||
x, y = batch_samples | |||
doc_list = [] | |||
for sample in x: | |||
doc = [] | |||
for sent_vec in sample: | |||
if use_cuda: | |||
sent_vec = sent_vec.cuda() | |||
doc.append(Variable(sent_vec)) | |||
doc_list.append(pack_sequence(doc)) | |||
if use_cuda: | |||
y = y.cuda() | |||
y = Variable(y) | |||
predict = net(doc_list) | |||
loss = criterion(predict, y) | |||
optimizer.zero_grad() | |||
loss.backward() | |||
optimizer.step() | |||
running_loss += loss.data[0] | |||
if i % print_size == print_size-1: | |||
print('{}, {}'.format(i+1, running_loss/print_size)) | |||
running_loss = 0.0 | |||
torch.save(net.state_dict(), 'model.dict') | |||
torch.save(net.state_dict(), 'model.dict') | |||
if __name__ == '__main__': | |||
''' | |||
Train process | |||
''' | |||
from gensim.models import Word2Vec | |||
import gensim | |||
from gensim import models | |||
train_word_vec() | |||
embed_model = Word2Vec.load('yelp.word2vec') | |||
embedding = Embedding_layer(embed_model.wv, embed_model.wv.vector_size) | |||
del embed_model | |||
start_file = 0 | |||
dataset = YelpDocSet('reviews', start_file, 120-start_file, embedding) | |||
print('training data size {}'.format(len(dataset))) | |||
net = HAN(input_size=200, output_size=5, | |||
word_hidden_size=50, word_num_layers=1, word_context_size=100, | |||
sent_hidden_size=50, sent_num_layers=1, sent_context_size=100) | |||
try: | |||
net.load_state_dict(torch.load('model.dict')) | |||
print("last time trained model has loaded") | |||
except Exception: | |||
print("cannot load model, train the inital model") | |||
train(net, dataset, num_epoch=5, batch_size=64, use_cuda=True) |
@@ -1,14 +0,0 @@ | |||
class BaseSaver(object): | |||
"""base class for all savers""" | |||
def __init__(self, save_path): | |||
self.save_path = save_path | |||
def save_bytes(self): | |||
raise NotImplementedError | |||
def save_str(self): | |||
raise NotImplementedError | |||
def compress(self): | |||
raise NotImplementedError |
@@ -1,12 +0,0 @@ | |||
from saver.base_saver import BaseSaver | |||
class Logger(BaseSaver): | |||
"""Logging""" | |||
def __init__(self, save_path): | |||
super(Logger, self).__init__(save_path) | |||
def log(self, string): | |||
with open(self.save_path, "a") as f: | |||
f.write(string) |
@@ -1,8 +0,0 @@ | |||
from saver.base_saver import BaseSaver | |||
class ModelSaver(BaseSaver): | |||
"""Save a model""" | |||
def __init__(self, save_path): | |||
super(ModelSaver, self).__init__(save_path) |
@@ -1,8 +1,9 @@ | |||
from action.tester import Tester | |||
from action.trainer import Trainer | |||
from loader.base_loader import ToyLoader0 | |||
from model.char_language_model import CharLM | |||
from fastNLP.action import Tester | |||
from fastNLP.action.trainer import Trainer | |||
def test_charlm(): | |||
train_config = Trainer.TrainConfig(epochs=1, validate=True, save_when_better=True, |
@@ -1,10 +1,10 @@ | |||
from collections import namedtuple | |||
import numpy as np | |||
from action.trainer import Trainer | |||
from model.base_model import ToyModel | |||
from fastNLP.action.trainer import Trainer | |||
def test_trainer(): | |||
Config = namedtuple("config", ["epochs", "validate", "save_when_better"]) |
@@ -1,8 +1,9 @@ | |||
from action.tester import Tester | |||
from action.trainer import Trainer | |||
from loader.base_loader import BaseLoader | |||
from model.word_seg_model import WordSegModel | |||
from fastNLP.action import Tester | |||
from fastNLP.action.trainer import Trainer | |||
def test_charlm(): | |||
train_config = Trainer.TrainConfig(epochs=5, validate=False, save_when_better=False, |