@@ -11,7 +11,10 @@ __all__ = [ | |||
'RichCallback', | |||
"LRSchedCallback", | |||
'LoadBestModelCallback', | |||
"EarlyStopCallback" | |||
"EarlyStopCallback", | |||
"TorchWarmupCallback", | |||
"TorchGradClipCallback" | |||
] | |||
@@ -23,4 +26,5 @@ from .progress_callback import choose_progress_callback, ProgressCallback, RichC | |||
from .lr_scheduler_callback import LRSchedCallback | |||
from .load_best_model_callback import LoadBestModelCallback | |||
from .early_stop_callback import EarlyStopCallback | |||
from .torch_callbacks import * | |||
@@ -1,16 +1,12 @@ | |||
from typing import Union, Callable, Dict, Optional, Any | |||
from abc import ABC | |||
__all__ = [ | |||
'Callback', | |||
] | |||
from typing import Union, Callable, Dict, Optional, Any | |||
from .callback_events import Events, EventsList, Filter | |||
from .utils import _get_monitor_value | |||
from fastNLP.core.callbacks.callback_events import _SingleEventState | |||
from fastNLP.core.log import logger | |||
from fastNLP.core.utils import apply_to_collection | |||
from fastNLP.core.utils.utils import _check_valid_parameters_number | |||
class Callback: | |||
@@ -278,135 +274,3 @@ class _CallbackWrapper(Callback): | |||
@property | |||
def callback_name(self): | |||
return self.fn.__name__ | |||
class CanItemDataType(ABC): | |||
""" | |||
检测可以进行传输的对象。 | |||
""" | |||
@classmethod | |||
def __subclasshook__(cls, subclass: Any) -> Union[bool, Any]: | |||
if cls is CanItemDataType: | |||
item = getattr(subclass, 'item', None) | |||
return callable(item) | |||
return NotImplemented | |||
class HasMonitorCallback(Callback): | |||
def __init__(self, monitor, larger_better, must_have_monitor=False): | |||
self.set_monitor(monitor, larger_better) | |||
self.must_have_moinitor = must_have_monitor | |||
def set_monitor(self, monitor, larger_better): | |||
if callable(monitor): # 检查是否能够接受一个参数 | |||
_check_valid_parameters_number(monitor, expected_params=['results'], fn_name='monitor') | |||
self.monitor = monitor | |||
else: | |||
self.monitor = str(monitor) if monitor is not None else None | |||
self.larger_better = bool(larger_better) | |||
if larger_better: | |||
self.monitor_value = float('-inf') | |||
else: | |||
self.monitor_value = float('inf') | |||
self._real_monitor = self.monitor | |||
def on_after_trainer_initialized(self, trainer, driver): | |||
""" | |||
如果本身的 monitor 没有设置,则根据 Trainer 中的 monitor 设置 monitor 。 | |||
同时对于必须要有 monitor 设置的 callback ,该函数会进行检查。 | |||
:param trainer: | |||
:param driver: | |||
:return: | |||
""" | |||
if self.monitor is None and trainer.monitor is not None: | |||
self.set_monitor(monitor=trainer.monitor, larger_better=trainer.larger_better) | |||
if self.must_have_moinitor and self.monitor is None: | |||
raise RuntimeError(f"No `monitor` is set for {self.__class__.__name__}. " | |||
f"You can set it in the initialization or through Trainer.") | |||
def get_monitor_value(self, results:Dict)->Union[float, None]: | |||
""" | |||
获取 monitor 的值,如果 monitor 没有直接找到,会尝试使用匹配的方式寻找,并把匹配到的设置到 self._real_monitor 属性上。 | |||
:param results: | |||
:return: 如果为 None ,表明此次没有找到合适的monitor | |||
""" | |||
if len(results)==0: | |||
return None | |||
# 保证所有的 tensor 都被转换为了 python 特定的类型 | |||
results = apply_to_collection(results, dtype=CanItemDataType, function=lambda x: x.item()) | |||
use_monitor, monitor_value = _get_monitor_value(monitor=self.monitor, | |||
real_monitor=self._real_monitor, | |||
res=results) | |||
if monitor_value is None: | |||
return monitor_value | |||
# 第一次运行 | |||
if isinstance(self.monitor, str) and self._real_monitor == self.monitor and use_monitor != self.monitor: | |||
logger.warning(f"We can not find `{self.monitor}` in the evaluation result (with keys as {list(results.keys())}), " | |||
f"we use the `{use_monitor}` as the monitor for `{self.__class__.__name__}`.") | |||
# 检测到此次和上次不同。 | |||
elif isinstance(self.monitor, str) and self._real_monitor != self.monitor and use_monitor != self._real_monitor: | |||
logger.warning(f"Change of monitor detected for `{self.__class__.__name__}`. " | |||
f"The expected monitor is:`{self.monitor}`, last used monitor is:" | |||
f"`{self._real_monitor}` and current monitor is:`{use_monitor}`. Please consider using a " | |||
f"customized monitor function when the evaluation results are varying between validation.") | |||
self._real_monitor = use_monitor | |||
return monitor_value | |||
def is_better_monitor_value(self, monitor_value: float, keep_if_better=True): | |||
""" | |||
检测 monitor_value 是否是更好的 | |||
:param monitor_value: 待检查的 monitor_value 。如果为 None ,返回 False | |||
:param keep_if_better: 如果传入的 monitor_value 值更好,则将其保存下来。 | |||
:return: | |||
""" | |||
if monitor_value is None: | |||
return False | |||
better = self.is_former_monitor_value_better(monitor_value, self.monitor_value) | |||
if keep_if_better and better: | |||
self.monitor_value = monitor_value | |||
return better | |||
def is_former_monitor_value_better(self, monitor_value1, monitor_value2): | |||
""" | |||
传入的两个值中,是否monitor_value1的结果更好。 | |||
:param monitor_value1: | |||
:param monitor_value2: | |||
:return: | |||
""" | |||
if monitor_value1 is None and monitor_value2 is None: | |||
return True | |||
if monitor_value1 is None: | |||
return False | |||
if monitor_value2 is None: | |||
return True | |||
better = False | |||
if (self.larger_better and monitor_value1 > monitor_value2) or \ | |||
(not self.larger_better and monitor_value1 < monitor_value2): | |||
better = True | |||
return better | |||
@property | |||
def monitor_name(self): | |||
""" | |||
返回 monitor 的名字,如果 monitor 是个 callable 的函数,则返回该函数的名称。 | |||
:return: | |||
""" | |||
if callable(self.monitor): | |||
try: | |||
monitor_name = self.monitor.__qualname__ | |||
except: | |||
monitor_name = self.monitor.__name__ | |||
elif self.monitor is None: | |||
return None | |||
else: | |||
# 这里是能是monitor,而不能是real_monitor,因为用户再次运行的时候real_monitor被初始化为monitor了 | |||
monitor_name = str(self.monitor) | |||
return monitor_name |
@@ -10,9 +10,9 @@ from copy import deepcopy | |||
import fastNLP | |||
from .callback import HasMonitorCallback | |||
from .has_monitor_callback import HasMonitorCallback | |||
from fastNLP.core.log import logger | |||
from fastNLP.envs import FASTNLP_LAUNCH_TIME | |||
from fastNLP.envs import FASTNLP_LAUNCH_TIME, FASTNLP_GLOBAL_RANK | |||
from fastNLP.core.utils import synchronize_safe_rm, synchronize_mkdir | |||
@@ -217,7 +217,8 @@ class CheckpointCallback(HasMonitorCallback): | |||
:return: | |||
""" | |||
folder = self.timestamp_path.joinpath(folder_name) | |||
synchronize_mkdir(folder) | |||
if int(os.environ.get(FASTNLP_GLOBAL_RANK, 0)) == 0: # 只在进程0上创建 | |||
synchronize_mkdir(folder) | |||
_fn = getattr(trainer, self.save_fn_name) | |||
_fn( | |||
folder=folder, | |||
@@ -4,7 +4,7 @@ __all__ = [ | |||
from typing import Dict, Union, Callable | |||
from .callback import HasMonitorCallback | |||
from .has_monitor_callback import HasMonitorCallback | |||
from fastNLP.core.utils.exceptions import EarlyStopException | |||
@@ -0,0 +1,189 @@ | |||
__all__ = [ | |||
'HasMonitorCallback', | |||
'ExecuteOnceBetterMonitor' | |||
] | |||
from typing import Dict, Union, Any | |||
from abc import ABC | |||
from fastNLP.core.utils import apply_to_collection | |||
from fastNLP.core.callbacks import Callback | |||
from fastNLP.core.callbacks.utils import _get_monitor_value | |||
from fastNLP.core.log import logger | |||
from fastNLP.core.utils.utils import _check_valid_parameters_number | |||
class CanItemDataType(ABC): | |||
""" | |||
检测可以进行传输的对象。 | |||
""" | |||
@classmethod | |||
def __subclasshook__(cls, subclass: Any) -> Union[bool, Any]: | |||
if cls is CanItemDataType: | |||
item = getattr(subclass, 'item', None) | |||
return callable(item) | |||
return NotImplemented | |||
class HasMonitorCallback(Callback): | |||
def __init__(self, monitor, larger_better, must_have_monitor=False): | |||
""" | |||
该 callback 不直接进行使用,作为其它相关 callback 的父类使用,如果 callback 有使用 monitor 可以继承该函数里面实现了 | |||
(1)判断monitor合法性;(2)在需要时, 根据trainer的monitor设置自己的monitor名称。 | |||
:param monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | |||
的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | |||
果(字典类型),返回一个 float 值作为 monitor 的结果。 | |||
:param larger_better: monitor 是否时越大越好 | |||
:param must_have_monitor: 这个 callback 是否必须有 monitor 设置。如果设置为 True ,且没检测到设置 monitor 会报错。 | |||
""" | |||
self.set_monitor(monitor, larger_better) | |||
self.must_have_moinitor = must_have_monitor | |||
def set_monitor(self, monitor, larger_better): | |||
if callable(monitor): # 检查是否能够接受一个参数 | |||
_check_valid_parameters_number(monitor, expected_params=['results'], fn_name='monitor') | |||
self.monitor = monitor | |||
else: | |||
self.monitor = str(monitor) if monitor is not None else None | |||
self.larger_better = bool(larger_better) | |||
if larger_better: | |||
self.monitor_value = float('-inf') | |||
else: | |||
self.monitor_value = float('inf') | |||
self._real_monitor = self.monitor | |||
def on_after_trainer_initialized(self, trainer, driver): | |||
""" | |||
如果本身的 monitor 没有设置,则根据 Trainer 中的 monitor 设置 monitor 。 | |||
同时对于必须要有 monitor 设置的 callback ,该函数会进行检查。 | |||
:param trainer: | |||
:param driver: | |||
:return: | |||
""" | |||
if self.monitor is None and trainer.monitor is not None: | |||
self.set_monitor(monitor=trainer.monitor, larger_better=trainer.larger_better) | |||
if self.must_have_moinitor and self.monitor is None: | |||
raise RuntimeError(f"No `monitor` is set for {self.__class__.__name__}. " | |||
f"You can set it in the initialization or through Trainer.") | |||
def get_monitor_value(self, results:Dict)->Union[float, None]: | |||
""" | |||
获取 monitor 的值,如果 monitor 没有直接找到,会尝试使用匹配的方式寻找,并把匹配到的设置到 self._real_monitor 属性上。 | |||
:param results: | |||
:return: 如果为 None ,表明此次没有找到合适的monitor | |||
""" | |||
if len(results)==0: | |||
return None | |||
# 保证所有的 tensor 都被转换为了 python 特定的类型 | |||
results = apply_to_collection(results, dtype=CanItemDataType, function=lambda x: x.item()) | |||
use_monitor, monitor_value = _get_monitor_value(monitor=self.monitor, | |||
real_monitor=self._real_monitor, | |||
res=results) | |||
if monitor_value is None: | |||
return monitor_value | |||
# 第一次运行 | |||
if isinstance(self.monitor, str) and self._real_monitor == self.monitor and use_monitor != self.monitor: | |||
logger.warning(f"We can not find `{self.monitor}` in the evaluation result (with keys as {list(results.keys())}), " | |||
f"we use the `{use_monitor}` as the monitor for `{self.__class__.__name__}`.") | |||
# 检测到此次和上次不同。 | |||
elif isinstance(self.monitor, str) and self._real_monitor != self.monitor and use_monitor != self._real_monitor: | |||
logger.warning(f"Change of monitor detected for `{self.__class__.__name__}`. " | |||
f"The expected monitor is:`{self.monitor}`, last used monitor is:" | |||
f"`{self._real_monitor}` and current monitor is:`{use_monitor}`. Please consider using a " | |||
f"customized monitor function when the evaluation results are varying between validation.") | |||
self._real_monitor = use_monitor | |||
return monitor_value | |||
def is_better_monitor_value(self, monitor_value: float, keep_if_better=True): | |||
""" | |||
检测 monitor_value 是否是更好的 | |||
:param monitor_value: 待检查的 monitor_value 。如果为 None ,返回 False | |||
:param keep_if_better: 如果传入的 monitor_value 值更好,则将其保存下来。 | |||
:return: | |||
""" | |||
if monitor_value is None: | |||
return False | |||
better = self.is_former_monitor_value_better(monitor_value, self.monitor_value) | |||
if keep_if_better and better: | |||
self.monitor_value = monitor_value | |||
return better | |||
def is_better_results(self, results, keep_if_better=True): | |||
""" | |||
检测给定的 results 是否比上一次更好,如果本次 results 中没有找到相关的monitor 返回 False。 | |||
:param results: on_valid_ends() 接口中传入的 evaluation 结果。 | |||
:param keep_if_better: 当返回为 True 时,是否保存到 self.monitor_value 中。 | |||
:return: | |||
""" | |||
monitor_value = self.get_monitor_value(results) | |||
if monitor_value is None: | |||
return False | |||
return self.is_better_monitor_value(monitor_value, keep_if_better=keep_if_better) | |||
def is_former_monitor_value_better(self, monitor_value1, monitor_value2): | |||
""" | |||
传入的两个值中,是否monitor_value1的结果更好。 | |||
:param monitor_value1: | |||
:param monitor_value2: | |||
:return: | |||
""" | |||
if monitor_value1 is None and monitor_value2 is None: | |||
return True | |||
if monitor_value1 is None: | |||
return False | |||
if monitor_value2 is None: | |||
return True | |||
better = False | |||
if (self.larger_better and monitor_value1 > monitor_value2) or \ | |||
(not self.larger_better and monitor_value1 < monitor_value2): | |||
better = True | |||
return better | |||
@property | |||
def monitor_name(self): | |||
""" | |||
返回 monitor 的名字,如果 monitor 是个 callable 的函数,则返回该函数的名称。 | |||
:return: | |||
""" | |||
if callable(self.monitor): | |||
try: | |||
monitor_name = self.monitor.__qualname__ | |||
except: | |||
monitor_name = self.monitor.__name__ | |||
elif self.monitor is None: | |||
return None | |||
else: | |||
# 这里是能是monitor,而不能是real_monitor,因为用户再次运行的时候real_monitor被初始化为monitor了 | |||
monitor_name = str(self.monitor) | |||
return monitor_name | |||
class ExecuteOnceBetterMonitor(HasMonitorCallback): | |||
def __init__(self, monitor, larger_better, execute_fn): | |||
""" | |||
当监控的 monitor 结果更好的时候,调用 execute_fn 函数。 | |||
:param monitor: 监控的 metric 值。如果在 evaluation 结果中没有找到完全一致的名称,将使用 最短公共字符串算法 找到最匹配 | |||
的那个作为 monitor 。如果为 None,将尝试使用 Trainer 设置的 monitor 。也可以传入一个函数,接受参数为 evaluation 的结 | |||
果(字典类型),返回一个 float 值作为 monitor 的结果。 | |||
:param larger_better: monitor 是否时越大越好 | |||
:param execute_fn: 一个可执行的函数,不接受任何参数,不反回值。在 monitor 取得更好结果的时候会调用。 | |||
""" | |||
super().__init__(monitor, larger_better, must_have_monitor=True) | |||
_check_valid_parameters_number(execute_fn, expected_params=[], fn_name='execute_fn') | |||
self.execute_fn = execute_fn() | |||
def on_validate_end(self, trainer, results): | |||
if self.is_better_results(results): | |||
self.execute_fn() |
@@ -4,7 +4,7 @@ __all__ = [ | |||
import os | |||
from typing import Optional, Callable, Union | |||
from .callback import HasMonitorCallback | |||
from .has_monitor_callback import HasMonitorCallback | |||
from io import BytesIO | |||
import shutil | |||
@@ -80,10 +80,7 @@ class LoadBestModelCallback(HasMonitorCallback): | |||
self.get_monitor_value(sanity_check_res) | |||
def on_validate_end(self, trainer, results): | |||
monitor_value = self.get_monitor_value(results) | |||
if monitor_value is None: | |||
return | |||
if self.is_better_monitor_value(monitor_value, keep_if_better=True): | |||
if self.is_better_results(results, keep_if_better=True): | |||
if self.real_save_folder: | |||
trainer.save_model(folder=self.real_save_folder, only_state_dict=self.only_state_dict, | |||
model_save_fn=self.model_save_fn) | |||
@@ -8,7 +8,7 @@ __all__ = [ | |||
'RichCallback' | |||
] | |||
from .callback import HasMonitorCallback | |||
from .has_monitor_callback import HasMonitorCallback | |||
from fastNLP.core.callbacks.utils import _get_monitor_value | |||
from fastNLP.core.utils import f_rich_progress | |||
from fastNLP.core.log import logger | |||
@@ -0,0 +1,8 @@ | |||
__all__ = [ | |||
'TorchWarmupCallback', | |||
'TorchGradClipCallback' | |||
] | |||
from .torch_lr_sched_callback import TorchWarmupCallback | |||
from .torch_grad_clip_callback import TorchGradClipCallback |
@@ -0,0 +1,52 @@ | |||
__all__ = [ | |||
'TorchGradClipCallback' | |||
] | |||
from ..callback import Callback | |||
class TorchGradClipCallback(Callback): | |||
def __init__(self, clip_value=1, clip_type='norm', parameters=None): | |||
r""" | |||
在每次 optimizer update 之前将 parameter 进行 clip | |||
:param float clip_value: 将gradient 限制到[-clip_value, clip_value]。clip_value应该为正数 | |||
:param str clip_type: 支持'norm', 'value' | |||
两种:: | |||
1 'norm', 将gradient的norm rescale到[-clip_value, clip_value] | |||
2 'value', 将gradient限制在[-clip_value, clip_value], | |||
小于-clip_value的gradient被赋值为-clip_value; | |||
大于clip_value的gradient被赋值为clip_value. | |||
:param None,torch.Tensor,List[torch.Tensor] parameters: 一般通过model.parameters()获得。 | |||
如果为None则默认对 Trainer 的 optimizers 中所有参数进行梯度裁剪。 | |||
""" | |||
super().__init__() | |||
from torch import nn | |||
if clip_type == 'norm': | |||
self.clip_fun = nn.utils.clip_grad_norm_ | |||
elif clip_type == 'value': | |||
self.clip_fun = nn.utils.clip_grad_value_ | |||
else: | |||
raise ValueError("Only supports `norm` or `value` right now.") | |||
if parameters is not None: | |||
self.parameters = list(parameters) | |||
else: | |||
self.parameters = None | |||
self.clip_value = clip_value | |||
def on_after_trainer_initialized(self, trainer, driver): | |||
assert 'torch' in driver.__class__.__name__.lower(), f"Callback:{self.__class__.__name__} only supports torch " \ | |||
f"related drivers for now." | |||
parameters = [] | |||
for optimizer in trainer.driver.optimizers: | |||
for param_group in optimizer.param_groups: | |||
parameters.extend(param_group['params']) | |||
self.parameters = parameters | |||
assert len(self.parameters), "There is no parameters need to be clipped." | |||
def on_before_optimizers_step(self, trainer, optimizers): | |||
for optimizer in trainer.driver.optimizers: | |||
trainer.driver.grad_scaler.unscale_(optimizer) | |||
self.clip_fun(self.parameters, self.clip_value) |
@@ -0,0 +1,58 @@ | |||
__all__ = [ | |||
'TorchWarmupCallback' | |||
] | |||
import math | |||
from ..callback import Callback | |||
class TorchWarmupCallback(Callback): | |||
def __init__(self, warmup=0.1, schedule='constant'): | |||
r""" | |||
调整 learning rate 的 callback 。仅在实际发生参数更新的情况下 | |||
:param int,float warmup: 如果warmup为int,则在该step之前,learning rate根据schedule的策略变化; 如果warmup为float, | |||
如0.1, 则前10%的step是按照schedule策略调整learning rate。 | |||
:param str schedule: 以哪种方式调整。 | |||
linear: 前warmup的step上升到指定的learning rate(从Trainer中的optimizer处获取的), 后warmup的step下降到0; | |||
constant前warmup的step上升到指定learning rate,后面的step保持learning rate. | |||
""" | |||
super().__init__() | |||
self.warmup = max(warmup, 0.) | |||
self.initial_lrs = [] # 存放param_group的learning rate | |||
if schedule == 'constant': | |||
self.get_lr = self._get_constant_lr | |||
elif schedule == 'linear': | |||
self.get_lr = self._get_linear_lr | |||
else: | |||
raise RuntimeError("Only support 'linear', 'constant'.") | |||
def _get_constant_lr(self, progress): | |||
if progress <self.warmup: | |||
return progress /self.warmup | |||
return 1 | |||
def _get_linear_lr(self, progress): | |||
if progress <self.warmup: | |||
return progress /self.warmup | |||
return max((progress - 1.) / (self.warmup - 1.), 0.) | |||
def on_train_begin(self, trainer): | |||
self.t_steps = trainer.total_batches | |||
if self.warmup >1: | |||
self.warmup = self.warmup / self.t_steps | |||
self.t_steps = max(2, self.t_steps) # 不能小于2 | |||
# 防止 t_steps 不能整除 accumulation_steps | |||
self.t_steps = math.ceil(self.t_steps/trainer.accumulation_steps) * trainer.accumulation_steps | |||
# 获取param_group的初始learning rate | |||
for optimizer in trainer.driver.optimizers: | |||
for group in optimizer.param_groups: | |||
self.initial_lrs.append(group['lr']) | |||
def on_before_optimizers_step(self, trainer, optimizers): | |||
# 这里需要加 accumulation_steps 是防止 lr 从 0 开始 | |||
progress = (trainer.global_forward_batches + trainer.accumulation_steps) / self.t_steps | |||
for optimizer in trainer.driver.optimizers: | |||
for lr, group in zip(self.initial_lrs, optimizer.param_groups): | |||
group['lr'] = lr * self.get_lr(progress) |
@@ -219,10 +219,10 @@ class Trainer(TrainerEventTrigger): | |||
""" 设置内部的 Evaluator """ | |||
if metrics is None and evaluate_dataloaders is not None: | |||
raise ValueError("You have set 'validate_dataloader' but forget to set 'metrics'.") | |||
raise ValueError("You have set 'evaluate_dataloader' but forget to set 'metrics'.") | |||
if metrics is not None and evaluate_dataloaders is None: | |||
raise ValueError("You have set 'metrics' but forget to set 'validate_dataloader'.") | |||
raise ValueError("You have set 'metrics' but forget to set 'evaluate_dataloader'.") | |||
self.evaluator = None | |||
self.monitor = monitor | |||
@@ -129,7 +129,7 @@ class Driver(ABC): | |||
@property | |||
def optimizers(self) -> List: | |||
r""" | |||
如下所示,driver 返回的 optimizers 一定是一个 List,如果用户直接向 Trainer 传入一个单独的 optimzer,我们会使用一个 List 将其 | |||
如下所示,driver 返回的 optimizers 一定是一个 List,如果用户直接向 Trainer 传入一个单独的 optimizer,我们会使用一个 List 将其 | |||
包裹; | |||
:return: List[optimizer0, optimizer1, optimizer2, ...] | |||
@@ -1,5 +1,5 @@ | |||
import os | |||
from typing import Optional, Union | |||
from typing import Optional, Union, Callable, Dict, Tuple | |||
from .jittor_driver import JittorDriver | |||
from fastNLP.envs.imports import _NEED_IMPORT_JITTOR | |||
@@ -61,14 +61,11 @@ class JittorMPIDriver(JittorDriver): | |||
return self._data_device | |||
return self.model_device | |||
def train_step(self, batch): | |||
return self._train_step(batch) | |||
def validate_step(self, batch): | |||
return self._validate_step(batch) | |||
def model_call(self, batch, fn: Callable, signature_fn: Optional[Callable]) -> Dict: | |||
pass | |||
def test_step(self, batch): | |||
return self._test_step(batch) | |||
def get_model_call_fn(self, fn: str) -> Tuple: | |||
pass | |||
def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleSampler]], | |||
reproducible: bool = False, sampler_or_batch_sampler=None): | |||
@@ -1,9 +1,11 @@ | |||
from typing import Dict, Union | |||
from typing import Dict, Union, Tuple, Callable, Optional | |||
from .jittor_driver import JittorDriver | |||
from fastNLP.core.utils import auto_param_call | |||
from fastNLP.core.utils.utils import _get_fun_msg | |||
from fastNLP.envs.imports import _NEED_IMPORT_JITTOR | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler | |||
from fastNLP.core.log import logger | |||
if _NEED_IMPORT_JITTOR: | |||
import jittor | |||
@@ -27,42 +29,6 @@ class JittorSingleDriver(JittorDriver): | |||
self.global_rank = 0 | |||
self.world_size = 1 | |||
if hasattr(self.model, "train_step"): | |||
self._train_step = self.model.train_step | |||
self._train_signature_fn = None | |||
else: | |||
self._train_step = self.model | |||
model = self.unwrap_model() | |||
self._train_signature_fn = model.execute | |||
if hasattr(self.model, "evaluate_step"): | |||
self._validate_step = self.model.evaluate_step | |||
self._validate_signature_fn = None | |||
elif hasattr(self.model, "test_step"): | |||
self._validate_step = self.model.test_step | |||
self._validate_signature_fn = self.model.test_step | |||
else: | |||
self._validate_step = self.model | |||
model = self.unwrap_model() | |||
self._validate_signature_fn = model.execute | |||
if hasattr(self.model, "test_step"): | |||
self._test_step = self.model.test_step | |||
self._test_signature_fn = None | |||
elif hasattr(self.model, "evaluate_step"): | |||
self._test_step = self.model.evaluate_step | |||
self._test_signature_fn = self.model.evaluate_step | |||
else: | |||
self._test_step = self.model | |||
model = self.unwrap_model() | |||
self._test_signature_fn = model.execute | |||
def train_step(self, batch) -> Dict: | |||
if isinstance(batch, Dict): | |||
return auto_param_call(self._train_step, batch, signature_fn=self._train_signature_fn) | |||
else: | |||
return self._train_step(batch) | |||
def step(self): | |||
""" | |||
jittor optimizers 的step函数可以传入参数loss | |||
@@ -80,18 +46,24 @@ class JittorSingleDriver(JittorDriver): | |||
for optimizer in self.optimizers: | |||
optimizer.zero_grad() | |||
def validate_step(self, batch): | |||
if isinstance(batch, Dict): | |||
return auto_param_call(self._validate_step, batch, signature_fn=self._validate_signature_fn) | |||
def model_call(self, batch, fn: Callable, signature_fn: Optional[Callable]) -> Dict: | |||
if isinstance(batch, Dict) and not self.wo_auto_param_call: | |||
return auto_param_call(fn, batch, signature_fn=signature_fn) | |||
else: | |||
return self._validate_step(batch) | |||
def test_step(self, batch): | |||
if isinstance(batch, Dict): | |||
return auto_param_call(self._test_step, batch, signature_fn=self._test_signature_fn) | |||
return fn(batch) | |||
def get_model_call_fn(self, fn: str) -> Tuple: | |||
if hasattr(self.model, fn): | |||
fn = getattr(self.model, fn) | |||
if not callable(fn): | |||
raise RuntimeError(f"The `{fn}` attribute is not `Callable`.") | |||
logger.debug(f'Use {_get_fun_msg(fn, with_fp=False)}...') | |||
return fn, None | |||
elif fn in {"train_step", "evaluate_step"}: | |||
logger.debug(f'Use {_get_fun_msg(self.model.forward, with_fp=False)}...') | |||
return self.model, self.model.forward | |||
else: | |||
return self._test_step(batch) | |||
raise RuntimeError(f"There is no `{fn}` method in your {type(self.model)}.") | |||
def unwrap_model(self): | |||
return self.model | |||
@@ -0,0 +1,376 @@ | |||
import io | |||
import pickle | |||
_pickler = pickle.Pickler | |||
_unpickler = pickle.Unpickler | |||
from typing import Any, List | |||
from fastNLP.envs.imports import _TORCH_GREATER_EQUAL_1_8 | |||
from fastNLP.core.utils.torch_utils import DEFAULT_TORCH_GROUP | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
from torch import distributed as dist | |||
if _TORCH_GREATER_EQUAL_1_8: | |||
try: | |||
from torch._C._distributed_c10d import ProcessGroupGloo | |||
from torch._C._distributed_c10d import _ProcessGroupWrapper | |||
except ImportError: | |||
pass | |||
from fastNLP.core.utils import apply_to_collection | |||
def _validate_output_list_for_rank(my_rank, dst, gather_list): | |||
if dst == my_rank: | |||
if not gather_list: | |||
raise ValueError( | |||
"Argument ``gather_list`` must be specified on destination rank." | |||
) | |||
elif gather_list: | |||
raise ValueError( | |||
"Argument ``gather_list`` must NOT be specified " | |||
"on non-destination ranks." | |||
) | |||
def fastnlp_paddle_gather_object(obj, object_gather_list=None, dst=0, group=DEFAULT_TORCH_GROUP): | |||
""" | |||
从其它 rank gather 东西到 dst rank 。 | |||
Gathers picklable objects from the whole group in a single process. | |||
Similar to :func:`gather`, but Python objects can be passed in. Note that the | |||
object must be picklable in order to be gathered. | |||
Args: | |||
obj (Any): Input object. Must be picklable. | |||
object_gather_list (list[Any]): Output list. On the ``dst`` rank, it | |||
should be correctly sized as the size of the group for this | |||
collective and will contain the output. Must be ``None`` on non-dst | |||
ranks. (default is ``None``) | |||
dst (int, optional): Destination rank. (default is 0) | |||
group: (ProcessGroup, optional): The process group to work on. If None, | |||
the default process group will be used. Default is ``None``. | |||
Returns: | |||
None. On the ``dst`` rank, ``object_gather_list`` will contain the | |||
output of the collective. | |||
.. note:: Note that this API differs slightly from the gather collective | |||
since it does not provide an async_op handle and thus will be a blocking | |||
call. | |||
.. note:: Note that this API is not supported when using the NCCL backend. | |||
.. warning:: | |||
:func:`gather_object` uses ``pickle`` module implicitly, which is | |||
known to be insecure. It is possible to construct malicious pickle data | |||
which will execute arbitrary code during unpickling. Only call this | |||
function with data you trust. | |||
Example:: | |||
>>> # Note: Process group initialization omitted on each rank. | |||
>>> import torch.distributed as dist | |||
>>> # Assumes world_size of 3. | |||
>>> gather_objects = ["foo", 12, {1: 2}] # any picklable object | |||
>>> output = [None for _ in gather_objects] | |||
>>> dist.gather_object( | |||
gather_objects[dist.get_rank()], | |||
output if dist.get_rank() == 0 else None, | |||
dst=0 | |||
) | |||
>>> # On rank 0 | |||
>>> output | |||
['foo', 12, {1: 2}] | |||
""" | |||
if group is None: | |||
group = DEFAULT_TORCH_GROUP | |||
if dist.distributed_c10d._rank_not_in_group(group): | |||
return | |||
# Ensure object_gather_list is specified appopriately. | |||
my_rank = dist.get_rank() | |||
_validate_output_list_for_rank(my_rank, dst, object_gather_list) | |||
# 防止 unpickle 的时候出现在了发送的 gpu 上。 | |||
obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu')) | |||
input_tensor, local_size = _object_to_tensor(obj) | |||
group_backend = dist.get_backend(group) | |||
current_device = torch.device("cpu") | |||
is_nccl_backend = group_backend == dist.Backend.NCCL | |||
if is_nccl_backend: | |||
current_device = torch.device('cuda', torch.cuda.current_device()) | |||
input_tensor = input_tensor.to(current_device) | |||
local_size = local_size.to(current_device) | |||
# Gather all local sizes. This is so that we can find the max size, and index | |||
# until the correct size when deserializing the tensors. | |||
group_size = dist.get_world_size(group=group) | |||
object_sizes_tensor = torch.zeros(group_size, dtype=torch.long, device=current_device) | |||
object_size_list = [ | |||
object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size) | |||
] | |||
# Allgather tensor sizes. An all-gather is needed here despite this being a | |||
# gather, since each rank needs to broadcast a tensor of the same (maximal) | |||
# size. | |||
dist.all_gather(object_size_list, local_size, group=group) | |||
max_object_size = int(max(object_size_list).item()) # type: ignore[type-var] | |||
# Resize tensor to max size across all ranks. | |||
input_tensor.resize_(max_object_size) | |||
# Avoid populating output tensors if the result won't be gathered on this rank. | |||
if my_rank == dst: | |||
coalesced_output_tensor = torch.empty( | |||
max_object_size * group_size, dtype=torch.uint8, device=current_device | |||
) | |||
# Output tensors are nonoverlapping views of coalesced_output_tensor | |||
output_tensors = [ | |||
coalesced_output_tensor[max_object_size * i : max_object_size * (i + 1)] | |||
for i in range(group_size) | |||
] | |||
# All ranks call gather with equal-sized tensors. | |||
dist.gather( | |||
input_tensor, | |||
gather_list=output_tensors if my_rank == dst else None, | |||
dst=dst, | |||
group=group, | |||
) | |||
if my_rank != dst: | |||
return | |||
for i, tensor in enumerate(output_tensors): | |||
tensor = tensor.type(torch.uint8) # type: ignore[call-overload] | |||
tensor_size = object_size_list[i] | |||
object_gather_list[i] = _tensor_to_object(tensor, tensor_size) | |||
def _object_to_tensor(obj, device=None): | |||
f = io.BytesIO() | |||
_pickler(f).dump(obj) | |||
byte_storage = torch.ByteStorage.from_buffer(f.getvalue()) # type: ignore[attr-defined] | |||
# Do not replace `torch.ByteTensor` or `torch.LongTensor` with torch.tensor and specifying dtype. | |||
# Otherwise, it will casue 100X slowdown. | |||
# See: https://github.com/pytorch/pytorch/issues/65696 | |||
byte_tensor = torch.ByteTensor(byte_storage) | |||
local_size = torch.LongTensor([byte_tensor.numel()]) | |||
if device is not None: | |||
byte_tensor = byte_tensor.to(device) | |||
local_size = local_size.to(device) | |||
return byte_tensor, local_size | |||
def _tensor_to_object(tensor, tensor_size): | |||
buf = tensor.detach().cpu().numpy().tobytes()[:tensor_size] | |||
return _unpickler(io.BytesIO(buf)).load() | |||
def send_recv_object(obj, src, cur_rank, device, group=None, tag=0): | |||
# src rank send to all other ranks | |||
size = torch.LongTensor([0]).to(device) | |||
if cur_rank == src: | |||
world_size = dist.get_world_size(group=group) | |||
tensor, size = _object_to_tensor(obj) | |||
tensor = tensor.to(device) | |||
size = size.to(device) | |||
# 首先同步 obj 的 size 的信息; | |||
dist.broadcast(size, src, group=group) | |||
for subrank in range(world_size): | |||
if subrank != src: | |||
dist.send(tensor=tensor, dst=subrank, group=group, tag=tag) | |||
else: | |||
dist.broadcast(size, src, group=group) | |||
tensor = torch.ByteTensor([0] * size).to(device) | |||
dist.recv(tensor=tensor, src=src, group=group, tag=tag) | |||
return _tensor_to_object(tensor.cpu(), size) | |||
def fastnlp_paddle_all_gather(obj: Any, device=None, group=DEFAULT_TORCH_GROUP) ->List: | |||
""" | |||
实现任何类型的数据都使用该接口可以进行 all_gather 操作。对于非 tensor 类型的数据,通过 pickle 序列化再反序列化的方式进行传输。 | |||
example: | |||
obj = { | |||
'a': [1, 1], | |||
'b': [[1, 2], [1, 2]], | |||
'c': { | |||
'd': [1, 2] | |||
} | |||
} | |||
-> | |||
[ | |||
{'a': 1, 'b':[1, 2], 'c':{'d': 1}}, | |||
{'a': 1, 'b':[1, 2], 'c':{'d': 2}} | |||
] | |||
:param obj: 任意结构的数据,如果为 tensor ,需要保证每个显卡上的 tensor 的形状是一样的。如果传入的是非 tensor 对象都将直接进行 | |||
序列化之后进行传输。 | |||
:param device: 当前该参数无意义。 | |||
:param group: | |||
:return: 返回的结果是 [obj0, obj1, ...],其中 obj_i 即为第 i 个 rank 上的 obj 。 | |||
""" | |||
if group is None: | |||
group = DEFAULT_TORCH_GROUP | |||
if isinstance(obj, torch.Tensor): | |||
objs = [torch.zeros_like(obj) for _ in range(dist.get_world_size(group))] | |||
dist.all_gather(objs, obj, group=group) | |||
else: | |||
objs = [None for _ in range(dist.get_world_size(group))] | |||
# 防止 unpickle 的时候弄到发送的 gpu 上了 | |||
obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu')) | |||
if _TORCH_GREATER_EQUAL_1_8: | |||
dist.all_gather_object(objs, obj, group=group) | |||
else: | |||
objs = all_gather_object(objs, obj, group=group) | |||
return objs | |||
def fastnlp_torch_broadcast_object(obj, src, device=None, group=DEFAULT_TORCH_GROUP): | |||
""" | |||
将 src 上的 obj 对象广播到其它 rank 上。 | |||
:param obj: | |||
:param src: | |||
:param device: | |||
:param group: | |||
:return: | |||
""" | |||
if group is None: | |||
group = DEFAULT_TORCH_GROUP | |||
cur_rank = dist.get_rank(group) | |||
if cur_rank == src: | |||
# 如果有 tensor 全部移动到 cpu 上,方便 pickle , 不然 unpickle 的时候可能会 pickle 到发送过来的卡那里 | |||
obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu')) | |||
if _TORCH_GREATER_EQUAL_1_8: | |||
if cur_rank!=src: | |||
get_obj = [None] | |||
dist.broadcast_object_list(get_obj, src=src, group=group) | |||
return get_obj[0] | |||
else: | |||
dist.broadcast_object_list([obj], src=src, group=group) | |||
return obj | |||
if device is None: | |||
device = torch.cuda.current_device() | |||
if cur_rank == src: | |||
tensor, size = _object_to_tensor(obj, device=device) | |||
else: | |||
size = torch.LongTensor([0]).to(device) | |||
dist.broadcast(size, src=src, group=group) | |||
if cur_rank != src: | |||
tensor = torch.empty( | |||
size.int().item(), # type: ignore[arg-type] | |||
dtype=torch.uint8, | |||
device=device | |||
) | |||
dist.broadcast(tensor, src=src, group=group) | |||
return _tensor_to_object(tensor, tensor_size=size.item()) | |||
def _check_for_nccl_backend(group): | |||
pg = group or dist.distributed_c10d._get_default_group() | |||
# It is not expected for PG to be wrapped many times, but support it just | |||
# in case | |||
while isinstance(pg, _ProcessGroupWrapper): | |||
pg = pg.wrapped_pg | |||
return ( | |||
dist.is_nccl_available() and | |||
isinstance(pg, dist.ProcessGroupNCCL) | |||
) | |||
def all_gather_object(object_list, obj, group=None): | |||
""" | |||
复制 pytorch 的代码,使得可以版本兼容低版本的 pytorch 。 | |||
Gathers picklable objects from the whole group into a list. Similar to | |||
:func:`all_gather`, but Python objects can be passed in. Note that the object | |||
must be picklable in order to be gathered. | |||
Args: | |||
object_list (list[Any]): Output list. It should be correctly sized as the | |||
size of the group for this collective and will contain the output. | |||
object (Any): Pickable Python object to be broadcast from current process. | |||
group (ProcessGroup, optional): The process group to work on. If None, | |||
the default process group will be used. Default is ``None``. | |||
Returns: | |||
None. If the calling rank is part of this group, the output of the | |||
collective will be populated into the input ``object_list``. If the | |||
calling rank is not part of the group, the passed in ``object_list`` will | |||
be unmodified. | |||
.. note:: Note that this API differs slightly from the :func:`all_gather` | |||
collective since it does not provide an ``async_op`` handle and thus | |||
will be a blocking call. | |||
.. note:: For NCCL-based processed groups, internal tensor representations | |||
of objects must be moved to the GPU device before communication takes | |||
place. In this case, the device used is given by | |||
``torch.cuda.current_device()`` and it is the user's responsiblity to | |||
ensure that this is set so that each rank has an individual GPU, via | |||
``torch.cuda.set_device()``. | |||
.. warning:: | |||
:func:`all_gather_object` uses ``pickle`` module implicitly, which is | |||
known to be insecure. It is possible to construct malicious pickle data | |||
which will execute arbitrary code during unpickling. Only call this | |||
function with data you trust. | |||
Example:: | |||
>>> # Note: Process group initialization omitted on each rank. | |||
>>> import torch.distributed as dist | |||
>>> # Assumes world_size of 3. | |||
>>> gather_objects = ["foo", 12, {1: 2}] # any picklable object | |||
>>> output = [None for _ in gather_objects] | |||
>>> dist.all_gather_object(output, gather_objects[dist.get_rank()]) | |||
>>> output | |||
['foo', 12, {1: 2}] | |||
""" | |||
if dist.distributed_c10d._rank_not_in_group(group): | |||
return | |||
if _TORCH_GREATER_EQUAL_1_8: | |||
current_device = torch.device("cpu") | |||
is_nccl_backend = _check_for_nccl_backend(group) | |||
if is_nccl_backend: | |||
# See note about using torch.cuda.current_device() here in docstring. | |||
# We cannot simply use my_rank since rank == device is not necessarily | |||
# true. | |||
current_device = torch.device("cuda", torch.cuda.current_device()) | |||
else: | |||
current_device = torch.cuda.current_device() | |||
input_tensor, local_size = _object_to_tensor(obj, device=current_device) | |||
# Gather all local sizes. This is so that we can find the max size, and index | |||
# until the correct size when deserializing the tensors. | |||
group_size = dist.get_world_size(group=group) | |||
object_sizes_tensor = torch.zeros( | |||
group_size, dtype=torch.long, device=current_device | |||
) | |||
object_size_list = [ | |||
object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size) | |||
] | |||
# Allgather tensor sizes | |||
dist.all_gather(object_size_list, local_size, group=group) | |||
max_object_size = int(max(object_size_list).item()) # type: ignore[type-var] | |||
# Resize tensor to max size across all ranks. | |||
input_tensor.resize_(max_object_size) | |||
coalesced_output_tensor = torch.empty( | |||
max_object_size * group_size, dtype=torch.uint8, device=current_device | |||
) | |||
# Output tensors are nonoverlapping views of coalesced_output_tensor | |||
output_tensors = [ | |||
coalesced_output_tensor[max_object_size * i : max_object_size * (i + 1)] | |||
for i in range(group_size) | |||
] | |||
dist.all_gather(output_tensors, input_tensor, group=group) | |||
# Deserialize outputs back to object. | |||
for i, tensor in enumerate(output_tensors): | |||
tensor = tensor.type(torch.uint8) | |||
if tensor.device != torch.device("cpu"): | |||
tensor = tensor.cpu() | |||
tensor_size = object_size_list[i] | |||
object_list[i] = _tensor_to_object(tensor, tensor_size) | |||
return object_list |
@@ -1,13 +1,12 @@ | |||
import os | |||
import shutil | |||
from functools import partial | |||
from typing import List, Union, Optional, Dict | |||
from typing import List, Union, Optional, Dict, Tuple, Callable | |||
from .paddle_driver import PaddleDriver | |||
from .fleet_launcher import FleetLauncher | |||
from .utils import ( | |||
_FleetWrappingModel, | |||
ForwardState, | |||
_MODE_PARAMETER, | |||
get_device_from_visible, | |||
reset_seed, | |||
replace_sampler, | |||
@@ -47,8 +46,7 @@ if _NEED_IMPORT_PADDLE: | |||
__all__ = [ | |||
"PaddleFleetDriver", | |||
] | |||
# if os.path.exists(self.gloo_rendezvous_dir): | |||
# shutil.rmtree(self.gloo_rendezvous_dir) | |||
class PaddleFleetDriver(PaddleDriver): | |||
def __init__( | |||
self, | |||
@@ -104,34 +102,6 @@ class PaddleFleetDriver(PaddleDriver): | |||
# 我们就直接将 model_device 置为 None; | |||
self._model_device = None | |||
def _running_fn_(batch, step_fn, signature_fn, wo_auto_param_call): | |||
if isinstance(batch, Dict) and not wo_auto_param_call: | |||
return auto_param_call(step_fn, batch, signature_fn=signature_fn) | |||
else: | |||
return self._validate_step(batch) | |||
model = model._layers | |||
if hasattr(model, "train_step"): | |||
logger.warning( | |||
"Notice your model is a `paddle.DataParallel` model. And your " | |||
"model also implements the `train_step` method, which we can not call actually, we will" | |||
" call `forward` function instead of `train_step` and you should note that.") | |||
self._train_step = partial(_running_fn_, step_fn=self.model, signature_fn=model.forward, wo_auto_param_call=self.wo_auto_param_call) | |||
if hasattr(model, "evaluate_step"): | |||
logger.warning( | |||
"Notice your model is a `paddle.DataParallel` model. And your " | |||
"model also implements the `evaluate_step` method, which we can not call actually, " | |||
"we will call `forward` function instead of `evaluate_step` and you should note that.") | |||
self._validate_step = partial(_running_fn_, step_fn=self.model, signature_fn=model.forward, wo_auto_param_call=self.wo_auto_param_call) | |||
if hasattr(model, "test_step"): | |||
logger.warning( | |||
"Notice your model is a `paddle.DataParallel` model. And your " | |||
"model also implements the `test_step` method, which we can not call actually, we will" | |||
" call `forward` function instead of `test_step` and you should note that.") | |||
self._test_step = partial(_running_fn_, step_fn=self.model, signature_fn=model.forward, wo_auto_param_call=self.wo_auto_param_call) | |||
# 当参数 `device` 为 None 时并且该参数不为 None,表示将对应的数据移到指定的机器上; | |||
self._data_device = kwargs.get("data_device", None) | |||
if self._data_device is not None: | |||
@@ -150,8 +120,6 @@ class PaddleFleetDriver(PaddleDriver): | |||
self.world_size = None | |||
self.global_rank = 0 | |||
self._configured = False # 防止重复调用 configure_ddp() 函数使用 | |||
self._has_setup = False # 防止重复调用 setup() 函数 | |||
self._fleet_kwargs = kwargs.get("paddle_fleet_kwargs", {}) | |||
check_user_specific_params(self._fleet_kwargs, DataParallel.__init__) | |||
@@ -173,6 +141,9 @@ class PaddleFleetDriver(PaddleDriver): | |||
os.makedirs(name=self.output_from_new_proc, exist_ok=True) | |||
self.output_from_new_proc = os.path.abspath(self.output_from_new_proc) | |||
self._has_setup = False # 设置这一参数是因为 evaluator 中也会进行 setup 操作,但是显然是不需要的也不应该的; | |||
self._has_fleetwrapped = False # 判断传入的模型是否经过 _has_fleetwrapped 包裹; | |||
def setup(self): | |||
""" | |||
在主进程拉起其它子进程,将主进程作为rank 0 | |||
@@ -268,17 +239,17 @@ class PaddleFleetDriver(PaddleDriver): | |||
dist.barrier() | |||
def configure_fleet(self): | |||
if not self._configured and not isinstance(self.model, DataParallel): | |||
if not self._has_fleetwrapped and not isinstance(self.model, DataParallel): | |||
self.model = DataParallel( | |||
_FleetWrappingModel(self.model), | |||
**self._fleet_kwargs | |||
) | |||
self._has_fleetwrapped = True | |||
self._train_step = partial(self.model, **{_MODE_PARAMETER: ForwardState.TRAIN}, wo_auto_param_call=self.wo_auto_param_call) | |||
self._validate_step = partial(self.model, **{_MODE_PARAMETER: ForwardState.VALIDATE}, wo_auto_param_call=self.wo_auto_param_call) | |||
self._test_step = partial(self.model, **{_MODE_PARAMETER: ForwardState.TEST}, wo_auto_param_call=self.wo_auto_param_call) | |||
self._configured = True | |||
def on_exception(self): | |||
if os.path.exists(self.gloo_rendezvous_dir): | |||
shutil.rmtree(self.gloo_rendezvous_dir) | |||
super().on_exception() | |||
@property | |||
def world_size(self) -> int: | |||
@@ -310,14 +281,39 @@ class PaddleFleetDriver(PaddleDriver): | |||
return self._data_device | |||
return self.model_device | |||
def train_step(self, batch): | |||
return self._train_step(batch) | |||
def validate_step(self, batch): | |||
return self._validate_step(batch) | |||
def model_call(self, batch, fn: Callable, signature_fn: Optional[Callable]) -> Dict: | |||
if self._has_fleetwrapped: | |||
return self.model(batch, fastnlp_fn=fn, fastnlp_signature_fn=signature_fn, | |||
wo_auto_param_call=self.wo_auto_param_call) | |||
else: | |||
if isinstance(batch, Dict) and not self.wo_auto_param_call: | |||
return auto_param_call(fn, batch, signature_fn=signature_fn) | |||
else: | |||
return fn(batch) | |||
def get_model_call_fn(self, fn: str) -> Tuple: | |||
model = self.unwrap_model() | |||
if self._has_fleetwrapped: | |||
if hasattr(model, fn): | |||
fn = getattr(model, fn) | |||
if not callable(fn): | |||
raise RuntimeError(f"The `{fn}` attribute of model is not `Callable`.") | |||
return fn, None | |||
elif fn in {"train_step", "evaluate_step"}: | |||
return model, model.forward | |||
else: | |||
raise RuntimeError(f"There is no `{fn}` method in your model.") | |||
else: | |||
if hasattr(model, fn): | |||
logger.warning("Notice your model is a `DistributedDataParallel` model. And your model also implements " | |||
f"the `{fn}` method, which we can not call actually, we will" | |||
" call `forward` function instead of `train_step` and you should note that.") | |||
elif fn not in {"train_step", "evaluate_step"}: | |||
raise RuntimeError(f"There is no `{fn}` method in your model. And also notice that your model is a " | |||
"`DistributedDataParallel` model, which means that we will only call model.forward " | |||
"function when we are in forward propagation.") | |||
def test_step(self, batch): | |||
return self._test_step(batch) | |||
return self.model, model.forward | |||
def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleSampler, RandomBatchSampler]], | |||
reproducible: bool = False, sampler_or_batch_sampler=None): | |||
@@ -406,14 +402,6 @@ class PaddleFleetDriver(PaddleDriver): | |||
else: | |||
raise ValueError("Parameter `dist_sampler` can only be one of three values: ('dist', 'unrepeatdist', None).") | |||
def backward(self, loss): | |||
self.grad_scaler.scale(loss).backward() | |||
def step(self): | |||
for optimizer in self.optimizers: | |||
self.grad_scaler.step(optimizer) | |||
self.grad_scaler.update() | |||
def is_global_zero(self): | |||
return self.global_rank == 0 | |||
@@ -450,3 +438,45 @@ class PaddleFleetDriver(PaddleDriver): | |||
if not isinstance(each_optimizer, (Optimizer, DistribuedOptimizer)): | |||
raise ValueError(f"Each optimizer of parameter `optimizers` should be 'paddle.optimizer.Optimizer' type, " | |||
f"not {type(each_optimizer)}.") | |||
def broadcast_object(self, obj, src:int=0, group=None, **kwargs): | |||
""" | |||
从 src 端将 obj 对象(可能是 tensor ,可能是 object )发送到 dst 处。如果是非 tensor 的对象会尝试使用 pickle 进行打包进行 | |||
传输,然后再 dst 处再加载回来。仅在分布式的 driver 中有实际意义。 | |||
:param obj: obj,可能是 Tensor 或 嵌套类型的数据 | |||
:param int src: source 的 global rank 。 | |||
:param int dst: target 的 global rank,可以是多个目标 rank | |||
:param group: 所属的 group | |||
:param kwargs: | |||
:return: 如果当前不是分布式 driver 直接返回输入的 obj 。如果当前 rank 是接收端(其 global rank 包含在了 dst 中),则返回 | |||
接收到的参数;如果是 source 端则返回发射的内容;既不是发送端、又不是接收端,则返回 None 。 | |||
""" | |||
return | |||
return fastnlp_paddle_broadcast_object(obj, src, device=self.data_device, group=group) | |||
def all_gather(self, obj, group) -> List: | |||
""" | |||
将 obj 互相传送到其它所有的 rank 上,其中 obj 可能是 Tensor,也可能是嵌套结构的 object 。如果不是基础类型的数据,尝试通过 | |||
pickle 进行序列化,接收到之后再反序列化。 | |||
example: | |||
obj = { | |||
'a': [1, 1], | |||
'b': [[1, 2], [1, 2]], | |||
'c': { | |||
'd': [1, 2] | |||
} | |||
} | |||
-> | |||
[ | |||
{'a': 1, 'b':[1, 2], 'c':{'d': 1}}, | |||
{'a': 1, 'b':[1, 2], 'c':{'d': 2}} | |||
] | |||
:param obj: 需要传输的对象,在每个rank上都应该保持相同的结构。 | |||
:param group: | |||
:return: | |||
""" | |||
return | |||
return fastnlp_paddle_all_gather(obj, group=group) |
@@ -71,6 +71,14 @@ class PaddleDriver(Driver): | |||
for optimizer in self.optimizers: | |||
optimizer.clear_grad() | |||
def backward(self, loss): | |||
self.grad_scaler.scale(loss).backward() | |||
def step(self): | |||
for optimizer in self.optimizers: | |||
self.grad_scaler.step(optimizer) | |||
self.grad_scaler.update() | |||
@staticmethod | |||
def check_dataloader_legality(dataloader, dataloader_name, is_train: bool = False): | |||
r""" | |||
@@ -115,28 +123,6 @@ class PaddleDriver(Driver): | |||
raise ValueError(f"Each optimizer of parameter `optimizers` should be 'paddle.optimizer.Optimizer' type, " | |||
f"not {type(each_optimizer)}.") | |||
def check_evaluator_mode(self, mode: str): | |||
r""" | |||
因为我们在具体的 driver 的 evaluate_step 和 test_step 的逻辑是如果模型没有实现本函数,那么就去检测模型是否实现了另一个函数; | |||
因此如果用户的 evaluator evaluate_fn 是 validate,但是传入的 model 却没有实现 evaluate_step 函数,而是实现了 test_step 函数,那么 | |||
我们应当提醒用户这一行为; | |||
""" | |||
model = self.unwrap_model() | |||
if mode == "validate": | |||
if not hasattr(model, "evaluate_step"): | |||
if hasattr(model, "test_step"): | |||
logger.warning( | |||
"Your model does not have 'evaluate_step' method but has 'test_step' method, but you" | |||
"are using 'Evaluator.validate', we are going to use 'test_step' to substitute for" | |||
"'evaluate_step'.") | |||
else: | |||
if not hasattr(model, "test_step"): | |||
if hasattr(model, "evaluate_step"): | |||
logger.warning_once("Your model does not have 'test_step' method but has 'validate' method, but you" | |||
"are using 'Evaluator.test', we are going to use 'evaluate_step' to substitute for" | |||
"'test_step'.") | |||
@staticmethod | |||
def tensor_to_numeric(tensor, reduce=None): | |||
r""" | |||
@@ -258,20 +244,21 @@ class PaddleDriver(Driver): | |||
if hasattr(sampler, "state_dict") and callable(sampler.state_dict): | |||
sampler_states = sampler.state_dict() | |||
# 如果有,需要针对 num_consumed_samples 做特殊的处理。因为DataLoader存在预取行为,直接使用sampler中的num_consumed_samples | |||
# 会造成多余实际消耗的问题。 | |||
num_consumed_samples_array = sampler_states.pop("num_consumed_samples_array", None) | |||
# 会造成多余实际消耗的问题。 | |||
num_consumed_samples_array = sampler_states.pop('num_consumed_samples_array', None) | |||
if num_consumed_samples_array is not None: | |||
sampler_states["num_consumed_samples"] = num_consumed_samples_array[num_consumed_batches] | |||
else: | |||
try: | |||
sampler_states["num_consumed_samples"] = num_consumed_batches * dataloader_args.batch_size | |||
except: # 有可能 batch_size 为 None,就只有损失精度了 | |||
pass | |||
assert sampler_states["num_consumed_samples"] != -1, "This is a bug, please report." | |||
if isinstance(sampler, ReproducibleSampler): | |||
# 如果是 sampler 的话,需要计算出实际的 sample 数目 | |||
try: | |||
num_consumed_batches = num_consumed_batches * dataloader_args.batch_size | |||
except: # 有可能 batch_size 为 None,就只有损失精度了 | |||
num_consumed_batches = sampler_states['num_consumed_samples'] | |||
sampler_states['num_consumed_samples'] = num_consumed_samples_array[num_consumed_batches] | |||
assert sampler_states['num_consumed_samples'] != -1, "This is a bug, please report." | |||
states['sampler_states'] = sampler_states | |||
else: | |||
raise RuntimeError( | |||
"The sampler has no `state_dict()` method, it will fail to recover to the specific batch.") | |||
states["sampler_states"] = sampler_states | |||
# 2. 保存模型的状态; | |||
if should_save_model: | |||
@@ -1,5 +1,5 @@ | |||
import os | |||
from typing import Optional, Dict, Union | |||
from typing import Optional, Dict, Union, Callable, Tuple | |||
from .paddle_driver import PaddleDriver | |||
from .utils import replace_batch_sampler, replace_sampler, get_device_from_visible | |||
@@ -11,16 +11,19 @@ from fastNLP.core.utils import ( | |||
get_paddle_device_id, | |||
paddle_move_data_to_device, | |||
) | |||
from fastNLP.core.utils.utils import _get_fun_msg | |||
from fastNLP.core.samplers import ( | |||
ReproducibleBatchSampler, | |||
RandomBatchSampler, | |||
ReproducibleSampler, | |||
RandomSampler, | |||
re_instantiate_sampler, | |||
) | |||
from fastNLP.core.log import logger | |||
if _NEED_IMPORT_PADDLE: | |||
import paddle | |||
from paddle import DataParallel | |||
from paddle.fluid.reader import _DatasetKind | |||
__all__ = [ | |||
@@ -28,109 +31,57 @@ __all__ = [ | |||
] | |||
class PaddleSingleDriver(PaddleDriver): | |||
def __init__(self, model, device: str, fp16: Optional[bool] = False, **kwargs): | |||
def __init__(self, model, device: Union[str, int], fp16: Optional[bool] = False, **kwargs): | |||
if isinstance(model, DataParallel): | |||
raise ValueError("`paddle.DataParallel` is not supported in `PaddleSingleDriver`") | |||
cuda_visible_devices = os.environ.get(USER_CUDA_VISIBLE_DEVICES, None) | |||
if cuda_visible_devices == "": | |||
device = "cpu" | |||
logger.info("You have set `CUDA_VISIBLE_DEVICES` to '' in system environment variable, and we are gonna to" | |||
"use `cpu` instead of `gpu` device.") | |||
super(PaddleSingleDriver, self).__init__(model, fp16=fp16, **kwargs) | |||
if device is None: | |||
raise ValueError("Parameter `device` can not be None in `PaddleSingleDriver`.") | |||
if device != "cpu": | |||
if isinstance(device, int): | |||
device_id = device | |||
else: | |||
device_id = get_paddle_device_id(device) | |||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ[USER_CUDA_VISIBLE_DEVICES].split(",")[device_id] | |||
self.model_device = get_paddle_gpu_str(device) | |||
self.local_rank = 0 | |||
self.global_rank = 0 | |||
self.world_size = 1 | |||
if isinstance(model, paddle.DataParallel): | |||
# 注意这里的 unwrap_model 调用的是具体子类的方法; | |||
model = self.unwrap_model() | |||
if hasattr(model, "train_step"): | |||
logger.warning("Notice your model is a `paddle.DataParallel` model. And your model also " | |||
"implements the `train_step` method, which we can not call actually, we will " | |||
" call `forward` function instead of `train_step` and you should note that.") | |||
self._train_step = self.model | |||
self._train_signature_fn = model.forward | |||
if hasattr(model, "evaluate_step"): | |||
logger.warning("Notice your model is a `paddle.DataParallel` model. And your model also " | |||
"implements the `evaluate_step` method, which we can not call actually, we " | |||
"will call `forward` function instead of `evaluate_step` and you should note that.") | |||
self._validate_step = self.model | |||
self._validate_signature_fn = model.forward | |||
if hasattr(model, "test_step"): | |||
logger.warning("Notice your model is a `paddle.DataParallel` model. And your model also " | |||
"implements the `test_step` method, which we can not call actually, we will " | |||
"call `forward` function instead of `test_step` and you should note that.") | |||
self._test_step = self.model | |||
self._test_signature_fn = model.forward | |||
else: | |||
if hasattr(self.model, "train_step"): | |||
self._train_step = self.model.train_step | |||
self._train_signature_fn = None | |||
else: | |||
self._train_step = self.model | |||
# 输入的模型是 `DataParallel`,我们需要保证其 signature_fn 是正确的; | |||
model = self.unwrap_model() | |||
self._train_signature_fn = model.forward | |||
if hasattr(self.model, "evaluate_step"): | |||
self._validate_step = self.model.evaluate_step | |||
self._validate_signature_fn = None | |||
elif hasattr(self.model, "test_step"): | |||
self._validate_step = self.model.test_step | |||
self._validate_signature_fn = self.model.test_step | |||
else: | |||
self._validate_step = self.model | |||
model = self.unwrap_model() | |||
self._validate_signature_fn = model.forward | |||
if hasattr(self.model, "test_step"): | |||
self._test_step = self.model.test_step | |||
self._test_signature_fn = None | |||
elif hasattr(self.model, "evaluate_step"): | |||
self._test_step = self.model.evaluate_step | |||
self._test_signature_fn = self.model.evaluate_step | |||
else: | |||
self._test_step = self.model | |||
model = self.unwrap_model() | |||
self._test_signature_fn = model.forward | |||
def setup(self): | |||
device = self.model_device | |||
if device != "cpu": | |||
device_id = get_paddle_device_id(device) | |||
device_id = os.environ[USER_CUDA_VISIBLE_DEVICES].split(",")[device_id] | |||
os.environ["CUDA_VISIBLE_DEVICES"] = str(device_id) | |||
device = get_device_from_visible(device, output_type=str) | |||
device = get_device_from_visible(device, output_type=str) | |||
paddle.device.set_device(device) | |||
self.model.to(device) | |||
def train_step(self, batch) -> Dict: | |||
# 如果 batch 是一个 Dict,我们就默认帮其做参数匹配,否则就直接传入到 `train_step` 函数中,让用户自己处理; | |||
def model_call(self, batch, fn: Callable, signature_fn: Optional[Callable]) -> Dict: | |||
if isinstance(batch, Dict) and not self.wo_auto_param_call: | |||
return auto_param_call(self._train_step, batch, signature_fn=self._train_signature_fn) | |||
return auto_param_call(fn, batch, signature_fn=signature_fn) | |||
else: | |||
return self._train_step(batch) | |||
def backward(self, loss): | |||
self.grad_scaler.scale(loss).backward() | |||
def step(self): | |||
for optimizer in self.optimizers: | |||
self.grad_scaler.step(optimizer) | |||
self.grad_scaler.update() | |||
def validate_step(self, batch) -> Dict: | |||
if isinstance(batch, Dict) and not self.wo_auto_param_call: | |||
return auto_param_call(self._validate_step, batch, signature_fn=self._validate_signature_fn) | |||
return fn(batch) | |||
def get_model_call_fn(self, fn: str) -> Tuple: | |||
if hasattr(self.model, fn): | |||
fn = getattr(self.model, fn) | |||
if not callable(fn): | |||
raise RuntimeError(f"The `{fn}` attribute is not `Callable`.") | |||
logger.debug(f'Use {_get_fun_msg(fn, with_fp=False)}...') | |||
return fn, None | |||
elif fn in {"train_step", "evaluate_step"}: | |||
logger.debug(f'Use {_get_fun_msg(self.model.forward, with_fp=False)}...') | |||
return self.model, self.model.forward | |||
else: | |||
return self._validate_step(batch) | |||
def test_step(self, batch) -> Dict: | |||
if isinstance(batch, Dict) and not self.wo_auto_param_call: | |||
return auto_param_call(self._test_step, batch, signature_fn=self._test_signature_fn) | |||
else: | |||
return self._test_step(batch) | |||
raise RuntimeError(f"There is no `{fn}` method in your {type(self.model)}.") | |||
def move_data_to_device(self, batch: 'paddle.Tensor'): | |||
r""" | |||
@@ -164,12 +115,18 @@ class PaddleSingleDriver(PaddleDriver): | |||
return replace_sampler(dataloader, sampler) | |||
if reproducible: | |||
batch_sampler = RandomBatchSampler( | |||
batch_sampler=args.batch_sampler, | |||
batch_size=args.batch_size, | |||
drop_last=args.drop_last | |||
) | |||
return replace_batch_sampler(dataloader, batch_sampler) | |||
if isinstance(args.sampler, paddle.io.RandomSampler): | |||
# 如果本来就是随机的,直接替换 | |||
sampler = RandomSampler(args.sampler.data_source) | |||
logger.debug("Replace paddle RandomSampler into fastNLP RandomSampler.") | |||
return replace_sampler(dataloader, sampler) | |||
else: | |||
batch_sampler = RandomBatchSampler( | |||
batch_sampler=args.batch_sampler, | |||
batch_size=args.batch_size, | |||
drop_last=args.drop_last | |||
) | |||
return replace_batch_sampler(dataloader, batch_sampler) | |||
else: | |||
return dataloader | |||
@@ -11,7 +11,6 @@ from typing import Dict, Optional, Union | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
from fastNLP.core.utils import get_paddle_device_id, auto_param_call, paddle_to | |||
from fastNLP.core.samplers import RandomSampler | |||
from fastNLP.envs.env import FASTNLP_GLOBAL_SEED, FASTNLP_SEED_WORKERS, USER_CUDA_VISIBLE_DEVICES | |||
from fastNLP.core.log import logger | |||
@@ -87,8 +86,6 @@ class ForwardState(IntEnum): | |||
TEST = 2 | |||
PREDICT = 3 | |||
_MODE_PARAMETER = "forward_state" | |||
class _FleetWrappingModel(Layer): | |||
""" | |||
参考_DDPWrappingModel,paddle的分布式训练也需要用paddle.nn.DataParallel进行包装,采用和 | |||
@@ -98,83 +95,16 @@ class _FleetWrappingModel(Layer): | |||
super(_FleetWrappingModel, self).__init__() | |||
self.model = model | |||
if isinstance(model, paddle.DataParallel): | |||
model = model._layers | |||
if hasattr(model, "train_step"): | |||
logger.warning( | |||
"Notice your model is a `paddle.DataParallel` model. And your " | |||
"model also implements the `train_step` method, which we can not call actually, we will" | |||
" call `forward` function instead of `train_step` and you should note that.") | |||
self._train_step = self.model | |||
self._train_signature_fn = model.forward | |||
if hasattr(model, "evaluate_step"): | |||
logger.warning( | |||
"Notice your model is a `paddle.DataParallel` model. And your " | |||
"model also implements the `evaluate_step` method, which we can not call actually, " | |||
"we will call `forward` function instead of `evaluate_step` and you should note that.") | |||
self._validate_step = self.model | |||
self._validate_signature_fn = model.forward | |||
if hasattr(model, "test_step"): | |||
logger.warning( | |||
"Notice your model is a `paddle.DataParallel` model. And your " | |||
"model also implements the `test_step` method, which we can not call actually, we will" | |||
" call `forward` function instead of `test_step` and you should note that.") | |||
self._test_step = self.model | |||
self._test_signature_fn = model.forward | |||
else: | |||
if hasattr(model, "train_step"): | |||
self._train_step = model.train_step | |||
self._train_signature_fn = None | |||
else: | |||
self._train_step = model | |||
self._train_signature_fn = model.forward | |||
if hasattr(model, "evaluate_step"): | |||
self._validate_step = model.validate_step | |||
self._validate_signature_fn = None | |||
elif hasattr(model, "test_step"): | |||
self._validate_step = model.test_step | |||
self._validate_signature_fn = None | |||
else: | |||
self._validate_step = model | |||
self._validate_signature_fn = model.forward | |||
if hasattr(model, "test_step"): | |||
self._test_step = model.test_step | |||
self._test_signature_fn = None | |||
elif hasattr(model, "evaluate_step"): | |||
self._test_step = model.validate_step | |||
self._test_signature_fn = None | |||
else: | |||
self._test_step = model | |||
self._test_signature_fn = model.forward | |||
def forward(self, batch, **kwargs) -> Dict: | |||
forward_state = kwargs.pop(_MODE_PARAMETER) | |||
fn = kwargs.pop("fastnlp_fn") | |||
signature_fn = kwargs.pop("fastnlp_signature_fn") | |||
wo_auto_param_call = kwargs.pop("wo_auto_param_call") | |||
if forward_state == ForwardState.TRAIN: | |||
if isinstance(batch, Dict) and not wo_auto_param_call: | |||
return auto_param_call(self._train_step, batch, signature_fn=self._train_signature_fn) | |||
else: | |||
return self._train_step(batch) | |||
elif forward_state == ForwardState.VALIDATE: | |||
if isinstance(batch, Dict) and not wo_auto_param_call: | |||
return auto_param_call(self._validate_step, batch, signature_fn=self._validate_signature_fn) | |||
else: | |||
return self._validate_step(batch) | |||
elif forward_state == ForwardState.TEST: | |||
if isinstance(batch, Dict) and not wo_auto_param_call: | |||
return auto_param_call(self._test_step, batch, signature_fn=self._test_signature_fn) | |||
else: | |||
return self._test_step(batch) | |||
elif forward_state == ForwardState.PREDICT: | |||
raise NotImplementedError("'PREDICT' evaluate_fn has not been implemented.") | |||
if isinstance(batch, Dict) and not wo_auto_param_call: | |||
return auto_param_call(fn, batch, signature_fn=signature_fn) | |||
else: | |||
raise NotImplementedError("You should direct a concrete evaluate_fn.") | |||
return fn(batch) | |||
class DummyGradScaler: | |||
""" | |||
@@ -27,7 +27,7 @@ def initialize_torch_driver(driver: str, device: Optional[Union[str, torch.devic | |||
# world_size 和 rank | |||
if FASTNLP_BACKEND_LAUNCH in os.environ: | |||
if device is not None: | |||
logger.info("Parameter `device` would be ignored when you are using `torch.distributed.run` to pull " | |||
logger.warning_once("Parameter `device` would be ignored when you are using `torch.distributed.run` to pull " | |||
"up your script. And we will directly get the local device via " | |||
"`os.environ['LOCAL_RANK']`.") | |||
return TorchDDPDriver(model, torch.device(f"cuda:{os.environ['LOCAL_RANK']}"), True, **kwargs) | |||
@@ -37,7 +37,12 @@ class TorchSingleDriver(TorchDriver): | |||
super(TorchSingleDriver, self).__init__(model, fp16=fp16, **kwargs) | |||
if device is None: | |||
raise ValueError("Parameter `device` can not be None in `TorchSingleDriver`.") | |||
logger.debug("device is not set, fastNLP will try to automatically get it.") | |||
try: | |||
device = next(model.parameters()).device | |||
assert isinstance(device, torch.device) | |||
except: | |||
raise ValueError("fastNLP cannot get device automatically, please set device explicitly.") | |||
self.model_device = device | |||
@@ -70,6 +75,7 @@ class TorchSingleDriver(TorchDriver): | |||
return self.model, model.forward | |||
else: | |||
# TODO 这种直接调用模型某个接口的方法无法触发hook,也许需要做一个warning,如果用户有钩子,提醒他train_step无法触发。 | |||
if hasattr(self.model, fn): | |||
fn = getattr(self.model, fn) | |||
if not callable(fn): | |||
@@ -25,7 +25,7 @@ __all__ = [ | |||
from .utils import optimizer_state_to_device | |||
from fastNLP.core.drivers.driver import Driver | |||
from fastNLP.core.drivers.torch_driver.utils import _build_fp16_env | |||
from fastNLP.core.drivers.torch_driver.utils import _build_fp16_env, DummyGradScaler | |||
from fastNLP.core.utils import apply_to_collection, torch_move_data_to_device | |||
from fastNLP.envs import rank_zero_call | |||
from fastNLP.envs import FASTNLP_SEED_WORKERS, FASTNLP_GLOBAL_RANK, FASTNLP_MODEL_FILENAME, FASTNLP_CHECKPOINT_FILENAME | |||
@@ -224,6 +224,11 @@ class TorchDriver(Driver): | |||
optimizer_state["state"] = optimizer_state_to_device(optimizer_state["state"], torch.device("cpu")) | |||
optimizers_state_dict[f"optimizer{i}"] = optimizer_state # 注意这里没有使用 deepcopy,测试是不需要的; | |||
# 4. 保存fp16的状态 | |||
if not isinstance(self.grad_scaler, DummyGradScaler): | |||
grad_scaler_state_dict = self.grad_scaler.state_dict() | |||
states['grad_scaler_state_dict'] = grad_scaler_state_dict | |||
logger.debug("Save optimizer state dict") | |||
states["optimizers_state_dict"] = optimizers_state_dict | |||
torch.save(states, Path(folder).joinpath(FASTNLP_CHECKPOINT_FILENAME)) | |||
@@ -232,7 +237,7 @@ class TorchDriver(Driver): | |||
states = torch.load(folder.joinpath(FASTNLP_CHECKPOINT_FILENAME)) | |||
# 1. 加载 optimizers 的状态; | |||
optimizers_state_dict = states["optimizers_state_dict"] | |||
optimizers_state_dict = states.pop("optimizers_state_dict") | |||
for i in range(len(self.optimizers)): | |||
optimizer: torch.optim.Optimizer = self.optimizers[i] | |||
optimizer.load_state_dict(optimizers_state_dict[f"optimizer{i}"]) | |||
@@ -244,26 +249,37 @@ class TorchDriver(Driver): | |||
res = torch.load(folder.joinpath(FASTNLP_MODEL_FILENAME), map_location='cpu') | |||
if only_state_dict: | |||
model.load_state_dict(res) | |||
logger.debug("Load model state dict.") | |||
logger.debug("Load model state dict...") | |||
else: | |||
model.load_state_dict(res.state_dict()) | |||
logger.debug("Load model.") | |||
# 3. 恢复 sampler 的状态; | |||
logger.debug("Load model...") | |||
# 3. 加载fp16的状态 | |||
if 'grad_scaler_state_dict' in states: | |||
grad_scaler_state_dict = states.pop('grad_scaler_state_dict') | |||
if not isinstance(self.grad_scaler, DummyGradScaler): | |||
self.grad_scaler.load_state_dict(grad_scaler_state_dict) | |||
logger.debug("Load grad_scaler state dict...") | |||
elif not isinstance(self.grad_scaler, DummyGradScaler): | |||
logger.warning(f"Checkpoint {folder} is not trained with fp16=True, while resume to a fp16=True training, " | |||
f"the training process may be unstable.") | |||
# 4. 恢复 sampler 的状态; | |||
dataloader_args = self.get_dataloader_args(dataloader) | |||
if isinstance(dataloader_args.batch_sampler, ReproducibleBatchSampler): | |||
sampler = dataloader_args.batch_sampler | |||
elif isinstance(dataloader_args.sampler, ReproducibleSampler): | |||
sampler = dataloader_args.sampler | |||
elif self.is_distributed(): | |||
raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our or `ReproducibleSampler`.") | |||
raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our or " | |||
"`ReproducibleSampler`.") | |||
else: | |||
sampler = RandomBatchSampler( | |||
batch_sampler=dataloader_args.batch_sampler if dataloader_args.batch_sampler is not None else dataloader_args.sampler, | |||
batch_size=dataloader_args.batch_size, | |||
drop_last=dataloader_args.drop_last | |||
) | |||
sampler.load_state_dict(states['sampler_states']) | |||
sampler.load_state_dict(states.pop('sampler_states')) | |||
states["dataloader"] = self.set_dist_repro_dataloader(dataloader, sampler) | |||
# 4. 修改 trainer_state.batch_idx_in_epoch | |||
@@ -1,6 +1,7 @@ | |||
from typing import Optional, Dict, Union, Callable | |||
from typing import Optional, Dict, Union, Callable, Tuple | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE, _NEED_IMPORT_TORCH | |||
from fastNLP.core.utils.utils import _get_fun_msg | |||
if _NEED_IMPORT_PADDLE: | |||
@@ -48,33 +49,6 @@ class TorchPaddleDriver(Driver): | |||
elif self._data_device is not None: | |||
raise ValueError("Parameter `device` is wrong type, please check our documentation for the right use.") | |||
if hasattr(self.model, "train_step"): | |||
self._train_step = self.model.train_step | |||
self._train_signature_fn = None | |||
else: | |||
self._train_step = self.model | |||
self._train_signature_fn = self.model.forward | |||
if hasattr(self.model, "evaluate_step"): | |||
self._validate_step = self.model.evaluate_step | |||
self._validate_signature_fn = None | |||
elif hasattr(self.model, "test_step"): | |||
self._validate_step = self.model.test_step | |||
self._validate_signature_fn = self.model.forward | |||
else: | |||
self._validate_step = self.model | |||
self._validate_signature_fn = self.model.forward | |||
if hasattr(self.model, "test_step"): | |||
self._test_step = self.model.test_step | |||
self._test_signature_fn = None | |||
elif hasattr(self.model, "evaluate_step"): | |||
self._test_step = self.model.evaluate_step | |||
self._test_signature_fn = self.model.forward | |||
else: | |||
self._test_step = self.model | |||
self._test_signature_fn = self.model.forward | |||
def setup(self): | |||
if self.model_device is not None: | |||
paddle.device.set_device(self.model_device.replace("cuda", "gpu")) | |||
@@ -103,12 +77,6 @@ class TorchPaddleDriver(Driver): | |||
f"'torch.optim.Optimizer' or 'paddle.optimizers.Optimizer' type, " | |||
f"not {type(each_optimizer)}.") | |||
def train_step(self, batch) -> Dict: | |||
if isinstance(batch, Dict): | |||
return auto_param_call(self._train_step, batch) | |||
else: | |||
return self._train_step(batch) | |||
def step(self): | |||
for optimizer in self.optimizers: | |||
optimizer.step() | |||
@@ -125,17 +93,24 @@ class TorchPaddleDriver(Driver): | |||
else: | |||
raise ValueError("Unknown optimizers type.") | |||
def validate_step(self, batch): | |||
if isinstance(batch, Dict): | |||
return auto_param_call(self._validate_step, batch) | |||
def model_call(self, batch, fn: Callable, signature_fn: Optional[Callable]) -> Dict: | |||
if isinstance(batch, Dict) and not self.wo_auto_param_call: | |||
return auto_param_call(fn, batch, signature_fn=signature_fn) | |||
else: | |||
return self._validate_step(batch) | |||
def test_step(self, batch): | |||
if isinstance(batch, Dict): | |||
return auto_param_call(self._test_step, batch) | |||
return fn(batch) | |||
def get_model_call_fn(self, fn: str) -> Tuple: | |||
if hasattr(self.model, fn): | |||
fn = getattr(self.model, fn) | |||
if not callable(fn): | |||
raise RuntimeError(f"The `{fn}` attribute is not `Callable`.") | |||
logger.debug(f'Use {_get_fun_msg(fn, with_fp=False)}...') | |||
return fn, None | |||
elif fn in {"train_step", "evaluate_step"}: | |||
logger.debug(f'Use {_get_fun_msg(self.model.forward, with_fp=False)}...') | |||
return self.model, self.model.forward | |||
else: | |||
return self._test_step(batch) | |||
raise RuntimeError(f"There is no `{fn}` method in your {type(self.model)}.") | |||
def predict_step(self, batch): | |||
if isinstance(batch, Dict): | |||
@@ -1,9 +1,4 @@ | |||
__all__ = [ | |||
'BucketSampler', | |||
'SortedSampler', | |||
'ConstTokenNumSampler', | |||
'ConstantTokenNumSampler', | |||
'MixSampler', | |||
'DopedSampler', | |||
'MixSequentialSampler', | |||
@@ -26,7 +21,6 @@ __all__ = [ | |||
"re_instantiate_sampler" | |||
] | |||
from .sampler import BucketSampler, SortedSampler, ConstTokenNumSampler, ConstantTokenNumSampler | |||
from .unrepeated_sampler import UnrepeatedSampler, UnrepeatedRandomSampler, UnrepeatedSortedSampler, UnrepeatedSequentialSampler | |||
from .mix_sampler import MixSampler, DopedSampler, MixSequentialSampler, PollingSampler | |||
from .reproducible_sampler import ReproducibleSampler, RandomSampler, SequentialSampler, SortedSampler | |||
@@ -1,728 +0,0 @@ | |||
r""" | |||
sampler 子类实现了 fastNLP 所需的各种采样器。 | |||
""" | |||
__all__ = [ | |||
"BucketSampler", | |||
"SortedSampler", | |||
'ConstTokenNumSampler', | |||
"ConstantTokenNumSampler", | |||
] | |||
from itertools import chain | |||
from typing import List, Iterable | |||
import numpy as np | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
from torch.utils.data import Sampler | |||
else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as Sampler | |||
# class DopedSampler(Sampler): | |||
# """ | |||
# 定制给MixDataLoader的BatchSampler,其功能是将传入的datasets的list列表混合采样组成一个个batch返回。 | |||
# """ | |||
# | |||
# def __init__(self, dataset: Union[List, Dict], batch_size: int = None, | |||
# sampler: Union[List[Sampler], Dict[str, Sampler]] = None, | |||
# ds_ratio: Union[str, None, List[float], Dict[str, float]] = None, drop_last: bool = False) -> None: | |||
# if batch_size <= 0: | |||
# raise ValueError("batch_size should be a positive integer value, " | |||
# "but got batch_size={}".format(batch_size)) | |||
# if not isinstance(drop_last, bool): | |||
# raise ValueError("drop_last should be a boolean value, but got " | |||
# "drop_last={}".format(drop_last)) | |||
# self.batch_size = batch_size | |||
# self.drop_last = drop_last | |||
# self.ds_ratio = ds_ratio | |||
# if sampler is None: | |||
# if isinstance(dataset, List): | |||
# self.sampler = [SequentialSampler(ds) for ds in dataset] | |||
# elif isinstance(dataset, Dict): | |||
# self.sampler = {name: SequentialSampler(ds) for name, ds in dataset.items()} | |||
# | |||
# elif isinstance(sampler, List): | |||
# if len(sampler) != len(dataset): | |||
# raise ValueError("the length of sampler != the length of sampler") | |||
# self.sampler = sampler | |||
# else: | |||
# self.sampler = sampler | |||
# if ds_ratio == 'pad_to_most' or ds_ratio == 'truncate_to_least' or ds_ratio is None: | |||
# self.ds_ratio = ds_ratio | |||
# elif isinstance(ds_ratio, List): | |||
# if not all(item >= 0 for item in ds_ratio): | |||
# raise ValueError("batch_size should be a positive integer value, " | |||
# "but got batch_size={}".format(ds_ratio)) | |||
# self.ds_ratio = ds_ratio | |||
# else: | |||
# raise ValueError(f"{ds_ratio} must be pad_to_least or truncate_to_least or None") | |||
# | |||
# def __iter__(self): | |||
# samplers, index = [], 0 | |||
# if isinstance(self.sampler, List): | |||
# for idx, sampler in enumerate(self.sampler): | |||
# samplers.append((iter(sampler), self.batch_size, index, 0, idx)) | |||
# index += len(sampler) | |||
# elif isinstance(self.sampler, Dict): | |||
# for name, sampler in self.sampler.items(): | |||
# samplers.append((iter(sampler), self.batch_size, index, 0, name)) | |||
# index += len(sampler) | |||
# | |||
# def __len__(self): | |||
# lens = 0 | |||
# max_len, ds_len = 0, 0 | |||
# if self.ds_ratio == 'truncate_to_least': | |||
# if isinstance(self.sampler, List): | |||
# max_len = min(len(sampler) for sampler in self.sampler) | |||
# ds_len = len(self.sampler) | |||
# elif isinstance(self.sampler, Dict): | |||
# max_len = min(len(sampler) for _, sampler in self.sampler.items()) | |||
# for _, _ in self.sampler.items(): | |||
# ds_len += 1 | |||
# | |||
# elif self.ds_ratio == 'pad_to_most': | |||
# if isinstance(self.sampler, List): | |||
# max_len = max(len(sampler) for sampler in self.sampler) | |||
# ds_len = len(self.sampler) | |||
# elif isinstance(self.sampler, Dict): | |||
# max_len = max(len(sampler) for _, sampler in self.sampler.items()) | |||
# for _, _ in self.sampler.items(): | |||
# ds_len += 1 | |||
# | |||
# if self.ds_ratio is None: | |||
# if isinstance(self.sampler, List): | |||
# for i in range(len(self.sampler)): | |||
# sampler = self.sampler[i] | |||
# if self.drop_last: | |||
# lens += len(sampler) // self.batch_size | |||
# else: | |||
# lens += (len(sampler) + self.batch_size - 1) // self.batch_size | |||
# elif isinstance(self.sampler, Dict): | |||
# for name, sampler in self.sampler.items(): | |||
# if self.drop_last: | |||
# lens += len(sampler) // self.batch_size | |||
# else: | |||
# lens += (len(sampler) + self.batch_size - 1) // self.batch_size | |||
# elif self.ds_ratio == 'truncate_to_least' or self.ds_ratio == 'pad_to_most': | |||
# for i in range(ds_len): | |||
# if self.drop_last: | |||
# lens += max_len // self.batch_size | |||
# else: | |||
# lens += (max_len + self.batch_size - 1) // self.batch_size | |||
# return lens | |||
# | |||
# def demo(self): | |||
# indexes = np.array([0]*self.batch_size + [1]*self.batch_size + [2]*self.batch_size) | |||
# shift = np.array([0]*self.batch_size + [len(ds1)]*self.batch_size + [len(ds1)+len(ds2)]*self.batch_size) | |||
# buffer = np.zeros(self.batch_size*self.num_ds, dtype=int) | |||
# select_sampler = np.random.randint(0, self.batch_size*self.num_ds, num_sample=self.batch_size) | |||
# select_indices = buffer[select_sampler] + shift[select_sampler] | |||
# num_1 = (indexes[select_sampler]==0).sum() | |||
# | |||
# class MixSequentialSampler(Sampler): | |||
# """ | |||
# 定制给MixDataLoader的BatchSampler,其功能是将传入的datasets的list列表顺序采样并返回index,只有处理了上一个dataset才会处理下一个。 | |||
# """ | |||
# | |||
# def __init__(self, dataset: Union[List, Dict], batch_size: int = None, | |||
# sampler: Union[List[Sampler], Dict[str, Sampler], None] = None, | |||
# drop_last: bool = False) -> None: | |||
# """ | |||
# | |||
# :param dataset: 实现了__getitem__和__len__的数据容器列表 | |||
# :param batch_size: 对应dataset的批次大小,可以为list或者为int,当为int时默认所有dataset | |||
# :param sampler: 实例化好的sampler,每个dataset对应一个sampler对象 | |||
# :param drop_last: 是否去掉最后一个batch的数据,其长度小于batch_size | |||
# """ | |||
# # 如果dataset为Dict,则其他参数如collate_fn必须为Dict或者Callable, | |||
# if isinstance(dataset, Dict) and isinstance(sampler, List): | |||
# raise ValueError(f"{sampler} must be dict") | |||
# | |||
# # 判断batch_size是否大于等于0 | |||
# if batch_size <= 0: | |||
# raise ValueError("batch_size should be a positive integer value, " | |||
# "but got batch_size={}".format(batch_size)) | |||
# | |||
# if not isinstance(drop_last, bool): | |||
# raise ValueError("drop_last should be a boolean value, but got " | |||
# "drop_last={}".format(drop_last)) | |||
# self.batch_size = batch_size | |||
# self.drop_last = drop_last | |||
# if sampler is None: | |||
# if isinstance(dataset, List): | |||
# self.sampler = [SequentialSampler(ds) for ds in dataset] | |||
# elif isinstance(dataset, Dict): | |||
# self.sampler = {name: SequentialSampler(ds) for name, ds in dataset.items()} | |||
# elif isinstance(sampler, List): | |||
# if len(sampler) != len(dataset): | |||
# raise ValueError("the length of sampler != the length of sampler") | |||
# self.sampler = sampler | |||
# | |||
# def __iter__(self) -> Iterable[List[int]]: | |||
# """ | |||
# 按照dataset的顺序采样,打包成一个batch后返回 | |||
# :return: | |||
# """ | |||
# index = 0 | |||
# batch = [] | |||
# if isinstance(self. sampler, List): | |||
# for i in range(len(self.sampler)): | |||
# sampler = self.sampler[i] | |||
# for idx in sampler: | |||
# batch.append(idx + index) | |||
# if len(batch) == self.batch_size: | |||
# yield batch | |||
# batch = [] | |||
# if len(batch) > 0 and not self.drop_last: | |||
# yield batch | |||
# batch = [] | |||
# index += len(sampler) | |||
# elif isinstance(self.sampler, Dict): | |||
# for name, sampler in self.sampler.items(): | |||
# for idx in sampler: | |||
# batch.append(idx + index) | |||
# if len(batch) == self.batch_size: | |||
# yield batch | |||
# batch = [] | |||
# if len(batch) > 0 and not self.drop_last: | |||
# yield batch | |||
# batch = [] | |||
# index += len(sampler) | |||
# | |||
# def __len__(self) -> int: | |||
# lens = 0 | |||
# if isinstance(self.sampler, List): | |||
# for i in range(len(self.sampler)): | |||
# sampler = self.sampler[i] | |||
# if self.drop_last: | |||
# lens += len(sampler) // self.batch_size | |||
# else: | |||
# lens += (len(sampler) + self.batch_size - 1) // self.batch_size | |||
# elif isinstance(self.sampler, Dict): | |||
# for _, sampler in self.sampler.items(): | |||
# if self.drop_last: | |||
# lens += len(sampler) // self.batch_size | |||
# else: | |||
# lens += (len(sampler) + self.batch_size - 1) // self.batch_size | |||
# return lens | |||
# class PollingSampler(Sampler): | |||
# """ | |||
# 定制给MixDataLoader的BatchSampler,其功能是将传入的datasets的list列表轮流采样并返回index,处理了上个dataset的一个batch后会处理下一个。 | |||
# """ | |||
# | |||
# def __init__(self, dataset: Union[List, Dict], batch_size: int = 16, | |||
# sampler: Union[List[Sampler], Dict[str, Sampler]] = None, | |||
# drop_last: bool = False, ds_ratio="pad_to_most") -> None: | |||
# """ | |||
# | |||
# :param dataset: 实现了__getitem__和__len__的数据容器列表 | |||
# :param batch_size: 对应dataset的批次大小,可以为list或者为int,当为int时默认所有dataset | |||
# :param sampler: 实例化好的sampler,每个dataset对应一个sampler对象 | |||
# :param drop_last: 是否去掉最后一个batch的数据,其长度小于batch_size | |||
# :param ds_ratio: 当ds_ratio=None时候, 轮流采样dataset列表直至所有的数据集采样完;当ds_ratio='truncate_to_least'时, | |||
# 以dataset列表最短的ds为基准,长的数据集会被截断;当ds_ratio='pad_to_most'时,以dataset列表最长ds为基准,短的数据集会被重采样 | |||
# """ | |||
# # 如果dataset为Dict,则其他参数如collate_fn必须为Dict或者Callable, | |||
# if isinstance(dataset, Dict) and isinstance(sampler, List): | |||
# raise ValueError(f"{sampler} must be dict") | |||
# if isinstance(dataset, List) and isinstance(sampler, Dict): | |||
# raise ValueError(f"{sampler} must be list") | |||
# # 判断batch_size是否大于等于0 | |||
# if batch_size <= 0: | |||
# raise ValueError("batch_size should be a positive integer value, " | |||
# "but got batch_size={}".format(batch_size)) | |||
# | |||
# if not isinstance(drop_last, bool): | |||
# raise ValueError("drop_last should be a boolean value, but got " | |||
# "drop_last={}".format(drop_last)) | |||
# | |||
# self.batch_size = batch_size | |||
# self.drop_last = drop_last | |||
# if sampler is None: | |||
# if isinstance(dataset, List): | |||
# self.sampler = [SequentialSampler(ds) for ds in dataset] | |||
# elif isinstance(dataset, Dict): | |||
# self.sampler = {name: SequentialSampler(ds) for name, ds in dataset.items()} | |||
# | |||
# elif isinstance(sampler, List): | |||
# if len(sampler) != len(dataset): | |||
# raise ValueError("the length of sampler != the length of sampler") | |||
# self.sampler = sampler | |||
# else: | |||
# self.sampler = sampler | |||
# if ds_ratio == 'pad_to_most' or ds_ratio == 'truncate_to_least' or ds_ratio is None: | |||
# self.ds_ratio = ds_ratio | |||
# else: | |||
# raise ValueError(f"{ds_ratio} must be pad_to_least or truncate_to_least or None") | |||
# | |||
# def __iter__(self) -> Iterable[List[int]]: | |||
# # index是数据集下标基址, pointer指向数据集列表的某个数据集 | |||
# index, pointer, samplers, flag = 0, 0, [], False | |||
# | |||
# if isinstance(self.sampler, List): | |||
# for idx, sampler in enumerate(self.sampler): | |||
# samplers.append((iter(sampler), self.batch_size, index, 0, idx)) | |||
# index += len(sampler) | |||
# elif isinstance(self.sampler, Dict): | |||
# for name, sampler in self.sampler.items(): | |||
# samplers.append((iter(sampler), self.batch_size, index, 0, name)) | |||
# index += len(sampler) | |||
# if self.ds_ratio == 'pad_to_most': | |||
# if isinstance(self.sampler, List): | |||
# limit_len = max(len(ds) for ds in self.sampler) | |||
# else: | |||
# limit_len = max(len(ds) for _, ds in self.sampler.items()) | |||
# elif self.ds_ratio == 'truncate_to_least': | |||
# if isinstance(self.sampler, List): | |||
# limit_len = min(len(ds) for ds in self.sampler) | |||
# else: | |||
# limit_len = min(len(ds) for _, ds in self.sampler.items()) | |||
# else: | |||
# limit_len = 0 | |||
# # 最后一个批次的大小 | |||
# last_batch_size = limit_len % self.batch_size | |||
# | |||
# while True: | |||
# # 全部采样完,退出 | |||
# if len(samplers) == 0: | |||
# break | |||
# batch, flag = [], False | |||
# # sampler_len代表已经取出来的数据个数 | |||
# sampler, batch_size, index, sampler_len, name = samplers.pop(0) | |||
# for _ in range(batch_size): | |||
# try: | |||
# batch.append(index + next(sampler)) | |||
# sampler_len += 1 | |||
# except StopIteration: | |||
# flag = True | |||
# # ds_ratio为None,第一种情况,删除掉采样完的数据即可。 | |||
# if self.ds_ratio == 'pad_to_most' and sampler_len < limit_len: | |||
# # 重置sampler,并取足一个batch数据 | |||
# sampler = iter(self.sampler[name]) | |||
# # 由于batch_size一定小于等于ds的长度,故能够取足一个batch_size的数据 | |||
# for _ in range(batch_size-len(batch)): | |||
# batch.append(next(sampler) + index) | |||
# sampler_len += 1 | |||
# break | |||
# | |||
# # ds_ratio不为None情况 | |||
# # 两种情况会触发一下逻辑:1.truncate_to_least时,最短的数据集最后一个batch大小不等于batch_size时, | |||
# # 其他较长的数据集的最后一个batch长度会较长;2. pad_to_most,最长的数据集最后一个batch不等于batch_size时,较短数据集最后一个 | |||
# # batch长度会较长 | |||
# if limit_len != 0 and limit_len < sampler_len: | |||
# batch = batch[:last_batch_size] | |||
# # ds_ratio为任意情况下, 没有取完所有数据,则添加到队列尾部 | |||
# elif (limit_len == 0 and flag == False) or limit_len > sampler_len: | |||
# samplers.append((sampler, batch_size, index, sampler_len, name)) | |||
# if len(batch) == batch_size: | |||
# yield batch | |||
# elif len(batch) > 0 and not self.drop_last: | |||
# yield batch | |||
# | |||
# def __len__(self) -> int: | |||
# lens = 0 | |||
# max_len, ds_len = 0, 0 | |||
# if self.ds_ratio == 'truncate_to_least': | |||
# if isinstance(self.sampler, List): | |||
# max_len = min(len(sampler) for sampler in self.sampler) | |||
# ds_len = len(self.sampler) | |||
# elif isinstance(self.sampler, Dict): | |||
# max_len = min(len(sampler) for _, sampler in self.sampler.items()) | |||
# for _, _ in self.sampler.items(): | |||
# ds_len += 1 | |||
# | |||
# elif self.ds_ratio == 'pad_to_most': | |||
# if isinstance(self.sampler, List): | |||
# max_len = max(len(sampler) for sampler in self.sampler) | |||
# ds_len = len(self.sampler) | |||
# elif isinstance(self.sampler, Dict): | |||
# max_len = max(len(sampler) for _, sampler in self.sampler.items()) | |||
# for _, _ in self.sampler.items(): | |||
# ds_len += 1 | |||
# if self.ds_ratio is None: | |||
# if isinstance(self.sampler, List): | |||
# for i in range(len(self.sampler)): | |||
# sampler = self.sampler[i] | |||
# if self.drop_last: | |||
# lens += len(sampler) // self.batch_size | |||
# else: | |||
# lens += (len(sampler) + self.batch_size - 1) // self.batch_size | |||
# elif isinstance(self.sampler, Dict): | |||
# for name, sampler in self.sampler.items(): | |||
# if self.drop_last: | |||
# lens += len(sampler) // self.batch_size | |||
# else: | |||
# lens += (len(sampler) + self.batch_size - 1) // self.batch_size | |||
# else: | |||
# for i in range(ds_len): | |||
# if self.drop_last: | |||
# lens += max_len // self.batch_size | |||
# else: | |||
# lens += (max_len + self.batch_size - 1) // self.batch_size | |||
# return lens | |||
class BucketSampler(Sampler): | |||
r""" | |||
带Bucket的 `Random Sampler`. 可以随机地取出长度相似的元素 | |||
""" | |||
def __init__(self, dataset, num_buckets=10, batch_size=None, seq_len_field_name='seq_len', drop_last=False) -> None: | |||
r""" | |||
:param int num_buckets: bucket的数量 | |||
:param int batch_size: batch的大小. 默认为None,Trainer/Tester在调用BucketSampler时,会将该值正确设置,如果是非 | |||
Trainer/Tester场景使用,需要显示传递该值 | |||
:param str seq_len_field_name: 对应序列长度的 `field` 的名字 | |||
""" | |||
self.dataset = dataset | |||
self.num_buckets = num_buckets | |||
self.batch_size = batch_size | |||
self.seq_len_field_name = seq_len_field_name | |||
def set_batch_size(self, batch_size) -> None: | |||
r""" | |||
:param int batch_size: 每个batch的大小 | |||
:return: | |||
""" | |||
self.batch_size = batch_size | |||
def __iter__(self): | |||
if self.batch_size is None: | |||
raise RuntimeError("batch_size is None.") | |||
seq_lens = self.dataset.get_all_fields()[self.seq_len_field_name].content | |||
total_sample_num = len(seq_lens) | |||
bucket_indexes = [] | |||
assert total_sample_num >= self.num_buckets, "The number of samples is smaller than the number of buckets." | |||
num_sample_per_bucket = total_sample_num // self.num_buckets | |||
for i in range(self.num_buckets): | |||
bucket_indexes.append([num_sample_per_bucket * i, num_sample_per_bucket * (i + 1)]) | |||
bucket_indexes[-1][1] = total_sample_num | |||
sorted_seq_lens = list(sorted([(idx, seq_len) for | |||
idx, seq_len in zip(range(total_sample_num), seq_lens)], | |||
key=lambda x: x[1])) | |||
batchs = [] | |||
left_init_indexes = [] | |||
for b_idx in range(self.num_buckets): | |||
start_idx = bucket_indexes[b_idx][0] | |||
end_idx = bucket_indexes[b_idx][1] | |||
sorted_bucket_seq_lens = sorted_seq_lens[start_idx:end_idx] | |||
left_init_indexes.extend([tup[0] for tup in sorted_bucket_seq_lens]) | |||
num_batch_per_bucket = len(left_init_indexes) // self.batch_size | |||
np.random.shuffle(left_init_indexes) | |||
for i in range(num_batch_per_bucket): | |||
batchs.append(left_init_indexes[i * self.batch_size:(i + 1) * self.batch_size]) | |||
left_init_indexes = left_init_indexes[num_batch_per_bucket * self.batch_size:] | |||
if (left_init_indexes) != 0: | |||
batchs.append(left_init_indexes) | |||
np.random.shuffle(batchs) | |||
return chain(*batchs) | |||
class ConstTokenNumSampler(Sampler): | |||
""" | |||
尽量保证每个batch的输入token数量是接近的。 | |||
""" | |||
def __init__(self, dataset, seq_len_field_name: List[int], max_token: int = 4096, max_sentence: int = -1, | |||
need_be_multiple_of: int = 1, num_bucket: int = -1) -> None: | |||
""" | |||
:param dataset: | |||
:param List[int] seq_len_field_name: 哪个field指示的sample的长度 | |||
:param int max_token: 每个batch的最大的token数量 | |||
:param int max_sentence: 每个batch最多多少个instance, -1表示根据max_token决定 | |||
:param int need_be_multiple_of: 生成的batch的instance的数量需要是几的倍数,在DataParallel场景下会用到 | |||
:param int num_bucket: 将数据按长度拆分为num_bucket个bucket,batch中的sample尽量在bucket之中进行组合,这样可以减少padding。 | |||
""" | |||
assert (max_sentence != -1 and max_sentence >= need_be_multiple_of) or max_sentence < 1 | |||
self.dataset = dataset | |||
self.seq_len_field_name = seq_len_field_name | |||
self.num_bucket = num_bucket | |||
self.max_token = max_token | |||
self._max_sentence = max_sentence | |||
self.need_be_multiple_of = need_be_multiple_of | |||
assert len(self.dataset) > self.num_bucket, "The number of samples should be larger than buckets." | |||
seq_len = self.dataset.get_field(self.seq_len_field_name) | |||
self.seq_len = seq_len | |||
seq_len_indice = [(length, i) for i, length in enumerate(seq_len)] | |||
seq_len_indice.sort(key=lambda x: x[0]) | |||
indice_in_buckets = [] | |||
if self.num_bucket > 0: | |||
sample_per_bucket = len(seq_len_indice) // self.num_bucket | |||
i = 0 | |||
while len(indice_in_buckets) < len(seq_len_indice): | |||
indice_in_buckets.append(seq_len_indice[i * sample_per_bucket:(i + 1) * sample_per_bucket]) | |||
i += 1 | |||
else: | |||
indice_in_buckets = [seq_len_indice] | |||
self.indice_in_buckets = indice_in_buckets | |||
self.get_new_order() | |||
@property | |||
def max_sentence(self): | |||
if self._max_sentence < 1: | |||
return 100000000 | |||
return self._max_sentence | |||
@max_sentence.setter | |||
def max_sentence(self, max_sentence): | |||
self._max_sentence = max_sentence | |||
def get_new_order(self) -> None: | |||
np.random.shuffle(self.indice_in_buckets) | |||
for bucket in self.indice_in_buckets: | |||
np.random.shuffle(bucket) | |||
indices = list(chain(*self.indice_in_buckets)) | |||
batches = [] | |||
cur_max_len = 0 | |||
batch = [] | |||
for length, i in indices: | |||
max_len = max(length, cur_max_len) | |||
if max_len * (len(batch) + 1) > self.max_token or len(batch) >= self.max_sentence: | |||
left_sample = len(batch) % self.need_be_multiple_of | |||
add_samples = batch.copy() | |||
cur_max_len = length | |||
if left_sample != 0: | |||
add_samples = add_samples[:-left_sample] | |||
batch = batch[-left_sample:] | |||
cur_max_len = max(cur_max_len, max(batch)) | |||
else: | |||
batch = [] | |||
if len(add_samples) == 0: | |||
raise RuntimeError( | |||
f"The sample `{i}` is too long to make a batch with {self.need_be_multiple_of} samples.") | |||
batches.append(add_samples) | |||
else: | |||
cur_max_len = max_len | |||
batch.append(i) | |||
if batch: | |||
left_sample = len(batch) % self.need_be_multiple_of | |||
add_samples = batch.copy() | |||
if left_sample != 0: | |||
add_samples = add_samples[:-left_sample].copy() | |||
if add_samples: | |||
batches.append(add_samples) | |||
np.random.shuffle(batches) | |||
self.batches = batches | |||
def __iter__(self) -> Iterable[int]: | |||
for batch in self.batches: | |||
yield batch | |||
self.get_new_order() | |||
def __len__(self): | |||
return len(self.batches) | |||
class ConstantTokenNumSampler: | |||
""" | |||
尽量保证每个batch的输入token数量是接近的。 | |||
""" | |||
def __init__(self, seq_len, max_token: List[int] = 4096, max_sentence: int = -1, | |||
need_be_multiple_of: int = 1, num_bucket: int = -1) -> None: | |||
""" | |||
:param List[int] seq_len: list[int], 是每个sample的长度。一般可以通过dataset.get_field('seq_len').content传入 | |||
:param int max_token: 每个batch的最大的token数量 | |||
:param int max_sentence: 每个batch最多多少个instance, -1表示根据max_token决定 | |||
:param int need_be_multiple_of: 生成的batch的instance的数量需要是几的倍数,在DataParallel场景下会用到 | |||
:param int num_bucket: 将数据按长度拆分为num_bucket个bucket,batch中的sample尽量在bucket之中进行组合,这样可以减少padding。 | |||
""" | |||
assert (max_sentence != -1 and max_sentence >= need_be_multiple_of) or max_sentence < 1 | |||
assert len(seq_len) > num_bucket, "The number of samples should be larger than buckets." | |||
self.seq_len = seq_len | |||
self.max_token = max_token | |||
self._max_sentence = max_sentence | |||
self.need_be_multiple_of = need_be_multiple_of | |||
seq_len_indice = [(length, i) for i, length in enumerate(seq_len)] | |||
seq_len_indice.sort(key=lambda x: x[0]) | |||
indice_in_buckets = [] | |||
if num_bucket > 0: | |||
sample_per_bucket = len(seq_len_indice) // num_bucket | |||
i = 0 | |||
while len(indice_in_buckets) < len(seq_len_indice): | |||
indice_in_buckets.append(seq_len_indice[i * sample_per_bucket:(i + 1) * sample_per_bucket]) | |||
i += 1 | |||
else: | |||
indice_in_buckets = [seq_len_indice] | |||
self.indice_in_buckets = indice_in_buckets | |||
self.get_new_order() | |||
@property | |||
def max_sentence(self): | |||
if self._max_sentence < 1: | |||
return 100000000 | |||
return self._max_sentence | |||
@max_sentence.setter | |||
def max_sentence(self, max_sentence): | |||
self._max_sentence = max_sentence | |||
def get_new_order(self) -> None: | |||
np.random.shuffle(self.indice_in_buckets) | |||
for bucket in self.indice_in_buckets: | |||
np.random.shuffle(bucket) | |||
indices = list(chain(*self.indice_in_buckets)) | |||
batches = [] | |||
cur_max_len = 0 | |||
batch = [] | |||
for length, i in indices: | |||
max_len = max(length, cur_max_len) | |||
if max_len * (len(batch) + 1) > self.max_token or len(batch) >= self.max_sentence: | |||
left_sample = len(batch) % self.need_be_multiple_of | |||
add_samples = batch.copy() | |||
cur_max_len = length | |||
if left_sample != 0: | |||
add_samples = add_samples[:-left_sample] | |||
batch = batch[-left_sample:] | |||
cur_max_len = max(cur_max_len, max(batch)) | |||
else: | |||
batch = [] | |||
if len(add_samples) == 0: | |||
raise RuntimeError( | |||
f"The sample `{i}` is too long to make a batch with {self.need_be_multiple_of} samples.") | |||
batches.append(add_samples) | |||
else: | |||
cur_max_len = max_len | |||
batch.append(i) | |||
if batch: | |||
left_sample = len(batch) % self.need_be_multiple_of | |||
add_samples = batch.copy() | |||
if left_sample != 0: | |||
add_samples = add_samples[:-left_sample].copy() | |||
if add_samples: | |||
batches.append(add_samples) | |||
np.random.shuffle(batches) | |||
self.batches = batches | |||
def __iter__(self) -> Iterable[int]: | |||
for batch in self.batches: | |||
yield batch | |||
self.get_new_order() | |||
def __len__(self): | |||
return len(self.batches) | |||
class SortedSampler(Sampler): | |||
r""" | |||
按照sample的长度进行排序,主要在测试的时候使用,可以加速测试(因为减少了padding) | |||
""" | |||
def __init__(self, dataset, seq_len_field_name: str = 'seq_len', descending: bool = True) -> None: | |||
""" | |||
:param str seq_len_field_name: 按哪个field进行排序。如果传入的field是数字,则直接按照该数字大小排序;如果传入的field不是 | |||
数字,则使用该field的长度进行排序 | |||
:param bool descending: 是否降序排列 | |||
""" | |||
self.dataset = dataset | |||
self.seq_len_field_name = seq_len_field_name | |||
self.descending = descending | |||
def __iter__(self) -> Iterable[int]: | |||
seq_lens = self.dataset.get_field(self.seq_len_field_name).content | |||
try: | |||
seq_lens = list(map(len, seq_lens)) | |||
except: | |||
pass | |||
orders = np.argsort(seq_lens).tolist() # 从小到大的顺序 | |||
if self.descending: | |||
orders = orders[::-1] | |||
for order in orders: | |||
yield order | |||
def simple_sort_bucketing(lengths): | |||
r""" | |||
:param lengths: list of int, the lengths of all examples. | |||
:return data: 2-level list | |||
:: | |||
[ | |||
[index_11, index_12, ...], # bucket 1 | |||
[index_21, index_22, ...], # bucket 2 | |||
... | |||
] | |||
""" | |||
lengths_mapping = [(idx, length) for idx, length in enumerate(lengths)] | |||
sorted_lengths = sorted(lengths_mapping, key=lambda x: x[1]) | |||
# TODO: need to return buckets | |||
return [idx for idx, _ in sorted_lengths] | |||
def k_means_1d(x, k, max_iter=100): | |||
r"""Perform k-means on 1-D data. | |||
:param x: list of int, representing points in 1-D. | |||
:param k: the number of clusters required. | |||
:param max_iter: maximum iteration | |||
:return centroids: numpy array, centroids of the k clusters | |||
assignment: numpy array, 1-D, the bucket id assigned to each example. | |||
""" | |||
sorted_x = sorted(list(set(x))) | |||
x = np.array(x) | |||
if len(sorted_x) < k: | |||
raise ValueError("too few buckets") | |||
gap = len(sorted_x) / k | |||
centroids = np.array([sorted_x[int(x * gap)] for x in range(k)]) | |||
assign = None | |||
for i in range(max_iter): | |||
# Cluster Assignment step | |||
assign = np.array([np.argmin([np.absolute(x_i - x) for x in centroids]) for x_i in x]) | |||
# Move centroids step | |||
new_centroids = np.array([x[assign == k].mean() for k in range(k)]) | |||
if (new_centroids == centroids).all(): | |||
centroids = new_centroids | |||
break | |||
centroids = new_centroids | |||
return np.array(centroids), assign | |||
def k_means_bucketing(lengths, buckets): | |||
r"""Assign all instances into possible buckets using k-means, such that instances in the same bucket have similar lengths. | |||
:param lengths: list of int, the length of all samples. | |||
:param buckets: list of int. The length of the list is the number of buckets. Each integer is the maximum length | |||
threshold for each bucket (This is usually None.). | |||
:return data: 2-level list | |||
:: | |||
[ | |||
[index_11, index_12, ...], # bucket 1 | |||
[index_21, index_22, ...], # bucket 2 | |||
... | |||
] | |||
""" | |||
bucket_data = [[] for _ in buckets] | |||
num_buckets = len(buckets) | |||
_, assignments = k_means_1d(lengths, num_buckets) | |||
for idx, bucket_id in enumerate(assignments): | |||
if buckets[bucket_id] is None or lengths[idx] <= buckets[bucket_id]: | |||
bucket_data[bucket_id].append(idx) | |||
return bucket_data |
@@ -203,7 +203,7 @@ def _check_valid_parameters_number(fn, expected_params:List[str], fn_name=None): | |||
:return: | |||
""" | |||
if fn_name is not None: | |||
assert callable(fn), f"{fn_name} should be callable, instead of {type(fn)}." | |||
assert callable(fn), f"`{fn_name}` should be callable, instead of `{type(fn)}`." | |||
parameters = list(inspect.signature(fn).parameters.values()) | |||
if inspect.ismethod(fn): | |||
@@ -606,16 +606,38 @@ def seq_len_to_mask(seq_len, max_len=None): | |||
return mask | |||
def wait_to_success(fn, no=False): | |||
def wait_filepath(path, exist=True): | |||
""" | |||
等待当 path 的存在状态为 {exist} 时返回 | |||
:param path: 待检测的 path | |||
:param exist: 为 True 时表明检测这个 path 存在就返回; 为 False 表明检测到这个 path 不存在 返回。 | |||
:return: | |||
""" | |||
if isinstance(path, str): | |||
path = Path(path) | |||
assert isinstance(path, Path) | |||
count = 0 | |||
while True: | |||
sleep(0.01) | |||
if (no and not fn()) or (not no and fn()): | |||
if path.exists() == exist: | |||
break | |||
count += 1 | |||
if count % 1000 == 0: | |||
msg = 'create' if exist else 'delete' | |||
logger.warning(f"Waiting path:{path} to {msg} for {count*0.01} seconds...") | |||
# 这个是因为在分布式文件系统中可能会发生错误,rank0下发删除成功后就运行走了,但实际的删除需要rank0的机器发送到远程文件系统再去执行,这个时候 | |||
# 在rank0那里,确实已经删除成功了,但是在远程文件系统那里这个操作还没完成,rank1读取的时候还是读取到存在这个文件; | |||
def synchronize_safe_rm(path: Optional[Union[str, Path]]): | |||
""" | |||
这个是因为在分布式文件系统中可能会发生错误,rank0下发删除成功后就运行走了,但实际的删除需要rank0的机器发送到远程文件系统再去执行,这个时候 | |||
在rank0那里,确实已经删除成功了,但是在远程文件系统那里这个操作还没完成,rank1读取的时候还是读取到存在这个文件; | |||
该函数会保证所有进程都检测到 path 删除之后才退出,请保证不同进程上 path 是完全一样的,否则会陷入死锁状态。 | |||
:param path: | |||
:return: | |||
""" | |||
if path is None: | |||
return | |||
if isinstance(path, str): | |||
@@ -624,7 +646,7 @@ def synchronize_safe_rm(path: Optional[Union[str, Path]]): | |||
return | |||
if int(os.environ.get(FASTNLP_GLOBAL_RANK, 0)) == 0: | |||
_recursive_rm(path) | |||
wait_to_success(path.exists, no=True) | |||
wait_filepath(path, exist=False) | |||
def _recursive_rm(path: Path): | |||
@@ -643,6 +665,8 @@ def _recursive_rm(path: Path): | |||
def synchronize_mkdir(path: Optional[Union[str, Path]]): | |||
""" | |||
注意该函数是用来创建文件夹,如果需要创建一个文件,不要使用该函数; | |||
该函数会保证所有进程都检测到 path 创建之后才退出,请保证不同进程上 path 是完全一样的,否则会陷入死锁状态。 | |||
""" | |||
if path is None: | |||
return | |||
@@ -652,7 +676,7 @@ def synchronize_mkdir(path: Optional[Union[str, Path]]): | |||
if int(os.environ.get(FASTNLP_GLOBAL_RANK, 0)) == 0: | |||
path.mkdir(parents=True, exist_ok=True) | |||
wait_to_success(path.exists) | |||
wait_filepath(path, exist=True) | |||
def get_class_that_defined_method(method): | |||
@@ -5,7 +5,6 @@ | |||
import os | |||
import json | |||
import sys | |||
import subprocess | |||
from collections import defaultdict | |||
@@ -50,8 +50,6 @@ class ConllLoader(Loader): | |||
ConllLoader返回的DataSet的field由传入的headers确定。 | |||
数据中以"-DOCSTART-"开头的行将被忽略,因为该符号在conll 2003中被用为文档分割符。 | |||
""" | |||
def __init__(self, headers, sep=None, indexes=None, dropna=True): | |||
@@ -93,6 +91,7 @@ class ConllLoader(Loader): | |||
class Conll2003Loader(ConllLoader): | |||
r""" | |||
用于读取conll2003任务的数据。数据的内容应该类似与以下的内容, 第一列为raw_words, 第二列为pos, 第三列为chunking,第四列为ner。 | |||
数据中以"-DOCSTART-"开头的行将被忽略,因为该符号在conll 2003中被用为文档分割符。 | |||
Example:: | |||
@@ -85,7 +85,7 @@ class MixModule: | |||
def test_step(self, batch): | |||
raise NotImplementedError | |||
def validate_step(self, batch): | |||
def evaluate_step(self, batch): | |||
raise NotImplementedError | |||
def train(self): | |||
@@ -0,0 +1,41 @@ | |||
import pytest | |||
import numpy as np | |||
from fastNLP.core.callbacks import TorchGradClipCallback, Callback | |||
from fastNLP import Trainer | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
from tests.helpers.callbacks.prepare_trainer_args_for_torch_test import get_trainer_args | |||
class CheckClipCallback(Callback): | |||
def __init__(self, parameters, clip_type, clip_value): | |||
self.parameters = parameters | |||
self.clip_type = clip_type | |||
self.clip_value = clip_value | |||
def on_after_optimizers_step(self, trainer, optimizers): | |||
for param in self.parameters: | |||
if self.clip_type == 'value': | |||
assert param.grad.max().item()<=self.clip_value | |||
else: | |||
assert np.linalg.norm(param.grad.cpu().view(-1).numpy())<=self.clip_value | |||
@pytest.mark.parametrize('accumulation_steps', [1, 3, 5]) | |||
@pytest.mark.parametrize('fp16', [True, False]) | |||
@pytest.mark.parametrize('clip_type', ['norm', 'value']) | |||
@pytest.mark.parametrize('clip_value', [1, 2]) | |||
def test_torch_grad_clip_callback(accumulation_steps, fp16, clip_type, clip_value): | |||
if not torch.cuda.is_available() and fp16: | |||
pytest.skip("No cuda, cannot test fp16.") | |||
device = 'cuda' if fp16 else 'cpu' | |||
kwargs = get_trainer_args(lr=1, device=device) | |||
callbacks = [] | |||
callbacks.append(TorchGradClipCallback(clip_value=clip_value, clip_type=clip_type)) | |||
callbacks.append(CheckClipCallback(kwargs['model'].parameters(), clip_type, clip_value)) | |||
trainer = Trainer(**kwargs, callbacks=callbacks, fp16=fp16) | |||
trainer.run() |
@@ -0,0 +1,34 @@ | |||
import pytest | |||
import numpy as np | |||
from fastNLP.core.callbacks import TorchWarmupCallback, Callback | |||
from fastNLP import Trainer | |||
from tests.helpers.callbacks.prepare_trainer_args_for_torch_test import get_trainer_args | |||
class RecordLrCallback(Callback): | |||
def __init__(self): | |||
self.lrs = [] | |||
def on_after_optimizers_step(self, trainer, optimizers): | |||
self.lrs.append(trainer.driver.optimizers[0].param_groups[0]['lr']) | |||
@pytest.mark.parametrize('warmup', [5, 0.1]) | |||
@pytest.mark.parametrize('schedule', ['constant', 'linear']) | |||
@pytest.mark.parametrize('accumulation_steps', [1, 3, 4]) | |||
def test_torch_warmup_callback(warmup, schedule, accumulation_steps): | |||
kwargs = get_trainer_args(lr=0.1, bsz=4) | |||
callback = TorchWarmupCallback(warmup, schedule) | |||
r_callback = RecordLrCallback() | |||
kwargs['callbacks'] = [callback, r_callback] | |||
trainer = Trainer(**kwargs, accumulation_steps=accumulation_steps) | |||
trainer.run() | |||
if schedule == 'linear': | |||
assert kwargs['optimizers'].param_groups[0]['lr'] <= 0.01 | |||
elif schedule == 'constant': | |||
assert np.allclose(0.1, kwargs['optimizers'].param_groups[0]['lr']) | |||
assert len(r_callback.lrs)<=trainer.total_batches//accumulation_steps+1 |
@@ -1,13 +1,11 @@ | |||
import pytest | |||
import os | |||
os.environ["FASTNLP_BACKEND"] = "paddle" | |||
from typing import Any | |||
from dataclasses import dataclass | |||
from fastNLP.core.controllers.trainer import Trainer | |||
from fastNLP.core.metrics.accuracy import Accuracy | |||
from fastNLP.core.callbacks.progress_callback import RichCallback | |||
from fastNLP.envs import FASTNLP_DISTRIBUTED_CHECK | |||
from paddle.optimizer import Adam | |||
from paddle.io import DataLoader | |||
@@ -19,40 +17,18 @@ from tests.helpers.callbacks.helper_callbacks import RecordLossCallback, RecordM | |||
from tests.helpers.utils import magic_argv_env_context | |||
@dataclass | |||
class MNISTTrainPaddleConfig: | |||
class TrainPaddleConfig: | |||
num_labels: int = 10 | |||
feature_dimension: int = 784 | |||
feature_dimension: int = 10 | |||
batch_size: int = 32 | |||
batch_size: int = 2 | |||
shuffle: bool = True | |||
validate_every = -5 | |||
evaluate_every = 2 | |||
driver: str = "paddle" | |||
device = "gpu" | |||
@dataclass | |||
class MNISTTrainFleetConfig: | |||
num_labels: int = 10 | |||
feature_dimension: int = 784 | |||
batch_size: int = 32 | |||
shuffle: bool = True | |||
validate_every = -5 | |||
@dataclass | |||
class TrainerParameters: | |||
model: Any = None | |||
optimizers: Any = None | |||
train_dataloader: Any = None | |||
validate_dataloaders: Any = None | |||
input_mapping: Any = None | |||
output_mapping: Any = None | |||
metrics: Any = None | |||
@pytest.mark.parametrize("driver,device", [("paddle", "cpu")("paddle", 1)]) | |||
@pytest.mark.parametrize("driver,device", [("paddle", "cpu"), ("paddle", 1)]) | |||
# @pytest.mark.parametrize("driver,device", [("fleet", [0, 1])]) | |||
@pytest.mark.parametrize("callbacks", [[RecordMetricCallback(monitor="acc#acc", metric_threshold=0.7, larger_better=True), | |||
RichCallback(5), RecordLossCallback(loss_threshold=0.3)]]) | |||
@pytest.mark.parametrize("callbacks", [[RecordMetricCallback(monitor="acc#acc", metric_threshold=0.0, larger_better=True), | |||
RichCallback(5)]]) | |||
@magic_argv_env_context | |||
def test_trainer_paddle( | |||
driver, | |||
@@ -60,38 +36,36 @@ def test_trainer_paddle( | |||
callbacks, | |||
n_epochs=2, | |||
): | |||
trainer_params = TrainerParameters() | |||
trainer_params.model = PaddleNormalModel_Classification_1( | |||
num_labels=MNISTTrainPaddleConfig.num_labels, | |||
feature_dimension=MNISTTrainPaddleConfig.feature_dimension | |||
model = PaddleNormalModel_Classification_1( | |||
num_labels=TrainPaddleConfig.num_labels, | |||
feature_dimension=TrainPaddleConfig.feature_dimension | |||
) | |||
trainer_params.optimizers = Adam(parameters=trainer_params.model.parameters(), learning_rate=0.0001) | |||
optimizers = Adam(parameters=model.parameters(), learning_rate=0.0001) | |||
train_dataloader = DataLoader( | |||
dataset=PaddleRandomMaxDataset(6400, 10), | |||
batch_size=MNISTTrainPaddleConfig.batch_size, | |||
dataset=PaddleRandomMaxDataset(20, 10), | |||
batch_size=TrainPaddleConfig.batch_size, | |||
shuffle=True | |||
) | |||
val_dataloader = DataLoader( | |||
dataset=PaddleRandomMaxDataset(1000, 10), | |||
batch_size=MNISTTrainPaddleConfig.batch_size, | |||
dataset=PaddleRandomMaxDataset(20, 10), | |||
batch_size=TrainPaddleConfig.batch_size, | |||
shuffle=True | |||
) | |||
trainer_params.train_dataloader = train_dataloader | |||
trainer_params.validate_dataloaders = val_dataloader | |||
trainer_params.validate_every = MNISTTrainPaddleConfig.validate_every | |||
trainer_params.metrics = {"acc": Accuracy(backend="paddle")} | |||
train_dataloader = train_dataloader | |||
evaluate_dataloaders = val_dataloader | |||
evaluate_every = TrainPaddleConfig.evaluate_every | |||
metrics = {"acc": Accuracy(backend="paddle")} | |||
trainer = Trainer( | |||
model=trainer_params.model, | |||
model=model, | |||
driver=driver, | |||
device=device, | |||
optimizers=trainer_params.optimizers, | |||
train_dataloader=trainer_params.train_dataloader, | |||
validate_dataloaders=trainer_params.validate_dataloaders, | |||
validate_every=trainer_params.validate_every, | |||
input_mapping=trainer_params.input_mapping, | |||
output_mapping=trainer_params.output_mapping, | |||
metrics=trainer_params.metrics, | |||
optimizers=optimizers, | |||
train_dataloader=train_dataloader, | |||
evaluate_dataloaders=evaluate_dataloaders, | |||
evaluate_every=evaluate_every, | |||
input_mapping=None, | |||
output_mapping=None, | |||
metrics=metrics, | |||
n_epochs=n_epochs, | |||
callbacks=callbacks, | |||
@@ -117,12 +117,13 @@ class TestSetDistReproDataloader: | |||
""" | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_batch_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_batch_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 BucketedBatchSampler 时的表现 | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=True) | |||
batch_sampler = BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=not shuffle) | |||
batch_sampler = BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, batch_sampler, False) | |||
assert not (replaced_loader is dataloader) | |||
@@ -133,12 +134,13 @@ class TestSetDistReproDataloader: | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 RandomSampler 时的表现 | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=True) | |||
sampler = RandomSampler(self.dataset, shuffle=True) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=not shuffle) | |||
sampler = RandomSampler(self.dataset, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, sampler, False) | |||
assert not (replaced_loader is dataloader) | |||
@@ -171,14 +173,15 @@ class TestSetDistReproDataloader: | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_none_reproducible_false_dataloader_reproducible_batch_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_none_reproducible_false_dataloader_reproducible_batch_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 False 、dataloader 有 BucketedBatchSampler | |||
时的表现 | |||
""" | |||
dataloader = DataLoader( | |||
self.dataset, | |||
batch_sampler = BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4), | |||
batch_sampler = BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle), | |||
) | |||
dataloader.batch_sampler.set_distributed( | |||
num_replicas=self.driver.world_size, | |||
@@ -195,12 +198,13 @@ class TestSetDistReproDataloader: | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_none_reproducible_false_dataloader_reproducible_smpler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_none_reproducible_false_dataloader_reproducible_smpler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 False 、dataloader 有 RandomSampler 时的表现 | |||
""" | |||
batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2) | |||
batch_sampler.sampler = RandomSampler(self.dataset, True) | |||
batch_sampler.sampler = RandomSampler(self.dataset, shuffle) | |||
batch_sampler.sampler.set_distributed( | |||
num_replicas=self.driver.world_size, | |||
rank=self.driver.global_rank | |||
@@ -222,11 +226,12 @@ class TestSetDistReproDataloader: | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_none_reproducible_false_dataloader_normal(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_none_reproducible_false_dataloader_normal(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 False 、dataloader 为一般情况时的表现 | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=True) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False) | |||
assert replaced_loader is dataloader | |||
@@ -238,14 +243,15 @@ class TestSetDistReproDataloader: | |||
""" | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_dist_dataloader_reproducible_batch_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_dist_dataloader_reproducible_batch_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 'dist'、dataloader.batch_sampler 为 ReproducibleBatchSampler | |||
的表现 | |||
""" | |||
dataloader = DataLoader( | |||
dataset=self.dataset, | |||
batch_sampler=BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4) | |||
batch_sampler=BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle) | |||
) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
@@ -258,13 +264,14 @@ class TestSetDistReproDataloader: | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_dist_dataloader_reproducible_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_dist_dataloader_reproducible_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 'dist'、dataloader.batch_sampler.sampler 为 ReproducibleSampler | |||
的表现 | |||
""" | |||
batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2) | |||
batch_sampler.sampler = RandomSampler(self.dataset, True) | |||
batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2, shuffle=shuffle) | |||
batch_sampler.sampler = RandomSampler(self.dataset, shuffle) | |||
dataloader = DataLoader( | |||
self.dataset, | |||
batch_sampler=batch_sampler | |||
@@ -276,16 +283,17 @@ class TestSetDistReproDataloader: | |||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
assert not (replaced_loader.batch_sampler.sampler is dataloader.batch_sampler.sampler) | |||
assert replaced_loader.batch_sampler.batch_size == 2 | |||
assert replaced_loader.batch_sampler.sampler.shuffle == True | |||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_dist_dataloader_normal(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_dist_dataloader_normal(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 'dist'、dataloader 为一般情况的表现 | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=True) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
assert not (replaced_loader is dataloader) | |||
@@ -293,7 +301,7 @@ class TestSetDistReproDataloader: | |||
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) | |||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
assert replaced_loader.batch_sampler.sampler.shuffle == True | |||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle | |||
dist.barrier() | |||
""" | |||
@@ -302,13 +310,14 @@ class TestSetDistReproDataloader: | |||
""" | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_unrepeat_dataloader_reproducible_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_unrepeat_dataloader_reproducible_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 'unrepeatdist'、dataloader.batch_sampler.sampler 为 ReproducibleSampler | |||
的表现 | |||
""" | |||
batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2) | |||
batch_sampler.sampler = RandomSampler(self.dataset, True) | |||
batch_sampler.sampler = RandomSampler(self.dataset, shuffle) | |||
dataloader = DataLoader( | |||
self.dataset, | |||
batch_sampler=batch_sampler | |||
@@ -320,18 +329,19 @@ class TestSetDistReproDataloader: | |||
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) | |||
assert isinstance(replaced_loader.batch_sampler.sampler, UnrepeatedRandomSampler) | |||
assert replaced_loader.batch_sampler.batch_size == 2 | |||
assert replaced_loader.batch_sampler.sampler.shuffle == True | |||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_unrepeat_dataloader_unrepreated_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_unrepeat_dataloader_unrepreated_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 'unrepeatdist'、dataloader.batch_sampler.sampler 为 UnrepeatedSampler | |||
的表现 | |||
""" | |||
batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2) | |||
batch_sampler.sampler = UnrepeatedRandomSampler(self.dataset, True) | |||
batch_sampler.sampler = UnrepeatedRandomSampler(self.dataset, shuffle) | |||
dataloader = DataLoader( | |||
self.dataset, | |||
batch_sampler=batch_sampler | |||
@@ -349,11 +359,12 @@ class TestSetDistReproDataloader: | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_unrepeat_dataloader_normal(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_unrepeat_dataloader_normal(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 'unrepeatdist'、dataloader 为一般情况的表现 | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=True) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) | |||
assert not (replaced_loader is dataloader) | |||
@@ -1,4 +1,5 @@ | |||
import os | |||
from re import S | |||
os.environ["FASTNLP_BACKEND"] = "paddle" | |||
import pytest | |||
from pathlib import Path | |||
@@ -56,34 +57,57 @@ def test_save_and_load_with_randombatchsampler(only_state_dict): | |||
dataset=dataset, | |||
batch_sampler=RandomBatchSampler(BatchSampler(dataset, batch_size=4), 4, False) | |||
) | |||
num_consumed_batches = 2 | |||
# TODO 断点重训完善后在这里迭代几次 | |||
already_seen_set = set() | |||
for idx, batch in enumerate(dataloader): | |||
if idx >= num_consumed_batches: | |||
break | |||
already_seen_set.update(batch) | |||
sampler_states = dataloader.batch_sampler.state_dict() | |||
save_states = {"num_consumed_batches": num_consumed_batches} | |||
if only_state_dict: | |||
driver1.save(Path(path), {}, dataloader, only_state_dict, should_save_model=True) | |||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
else: | |||
driver1.save(Path(path), {}, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
# 加载 | |||
# 更改 batch_size | |||
dataloader = DataLoader( | |||
dataset=dataset, | |||
batch_sampler=RandomBatchSampler(BatchSampler(dataset, batch_size=2), 2, False) | |||
) | |||
load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
replaced_loader = load_states.pop("dataloader") | |||
# 1. 检查 optimizer 的状态 | |||
# TODO optimizer 的 state_dict 总是为空 | |||
# 2. 检查 batch_sampler 是否被正确地加载和替换 | |||
replaced_loader = states["dataloader"] | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert replaced_loader.batch_sampler.index_list == sampler_states["index_list"] | |||
assert replaced_loader.batch_sampler.data_idx == sampler_states["data_idx"] | |||
# 3. 检查 model 的参数是否被正确加载 | |||
for batch in dataloader: | |||
res1 = driver1.validate_step(batch) | |||
res2 = driver2.validate_step(batch) | |||
res1 = driver1.model.evaluate_step(**batch) | |||
res2 = driver2.model.evaluate_step(**batch) | |||
assert paddle.equal_all(res1["pred"], res2["pred"]) | |||
# 4. 检查 batch_idx | |||
# TODO | |||
start_batch = load_states.pop('batch_idx_in_epoch') | |||
assert start_batch == 2 * num_consumed_batches | |||
left_batches = set() | |||
for idx, batch in enumerate(replaced_loader): | |||
left_batches.update(batch) | |||
assert len(left_batches) + len(already_seen_set) == len(dataset) | |||
assert len(left_batches | already_seen_set) == len(dataset) | |||
finally: | |||
synchronize_safe_rm(path) | |||
@@ -104,21 +128,36 @@ def test_save_and_load_with_randomsampler(only_state_dict): | |||
dataset, | |||
batch_sampler=batch_sampler | |||
) | |||
num_consumed_batches = 2 | |||
# TODO 断点重训完善后在这里迭代几次 | |||
already_seen_set = set() | |||
for idx, batch in enumerate(dataloader): | |||
if idx >= num_consumed_batches: | |||
break | |||
already_seen_set.update(batch) | |||
sampler_states = dataloader.batch_sampler.sampler.state_dict() | |||
save_states = {"num_consumed_batches": num_consumed_batches} | |||
if only_state_dict: | |||
driver1.save(Path(path), {}, dataloader, only_state_dict, should_save_model=True) | |||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
else: | |||
driver1.save(Path(path), {}, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
# 加载 | |||
# 更改 batch_size | |||
dataloader = DataLoader( | |||
dataset=dataset, | |||
batch_sampler=RandomBatchSampler(BatchSampler(dataset, batch_size=2), 2, False) | |||
) | |||
load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
replaced_loader = load_states.pop("dataloader") | |||
# 1. 检查 optimizer 的状态 | |||
# TODO optimizer 的 state_dict 总是为空 | |||
# 2. 检查 sampler 是否被正确地加载和替换 | |||
replaced_loader = states["dataloader"] | |||
replaced_loader = load_states["dataloader"] | |||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
assert replaced_loader.batch_sampler.sampler.seed == sampler_states["seed"] | |||
@@ -129,60 +168,51 @@ def test_save_and_load_with_randomsampler(only_state_dict): | |||
# 3. 检查 model 的参数是否被正确加载 | |||
for batch in dataloader: | |||
res1 = driver1.validate_step(batch) | |||
res2 = driver2.validate_step(batch) | |||
res1 = driver1.model.evaluate_step(**batch) | |||
res2 = driver2.model.evaluate_step(**batch) | |||
assert paddle.equal_all(res1["pred"], res2["pred"]) | |||
# 4. 检查 batch_idx | |||
# TODO | |||
finally: | |||
synchronize_safe_rm(path) | |||
def test_save_and_load_state_dict(prepare_test_save_load): | |||
""" | |||
测试save和load函数 | |||
TODO optimizer的state_dict为空,暂时不测试 | |||
""" | |||
try: | |||
path = "dict" | |||
driver1, driver2, dataloader = prepare_test_save_load | |||
driver1.save_model(path) | |||
driver2.load_model(path) | |||
for batch in dataloader: | |||
batch = driver1.move_data_to_device(batch) | |||
res1 = driver1.validate_step(batch) | |||
res2 = driver2.validate_step(batch) | |||
start_batch = load_states.pop('batch_idx_in_epoch') | |||
assert start_batch == 2 * num_consumed_batches | |||
left_batches = set() | |||
for idx, batch in enumerate(replaced_loader): | |||
left_batches.update(batch) | |||
assert paddle.equal_all(res1["pred"], res2["pred"]) | |||
assert len(left_batches) + len(already_seen_set) == len(dataset) | |||
assert len(left_batches | already_seen_set) == len(dataset) | |||
finally: | |||
synchronize_safe_rm(path) | |||
def test_save_and_load_whole_model(prepare_test_save_load): | |||
@pytest.mark.parametrize("only_state_dict", ([True, False])) | |||
def test_save_and_load_model(prepare_test_save_load, only_state_dict): | |||
""" | |||
测试save和load函数 | |||
TODO optimizer的state_dict为空,暂时不测试 | |||
测试 save_model 和 load_model 函数 | |||
""" | |||
try: | |||
path = "model" | |||
driver1, driver2, dataloader = prepare_test_save_load | |||
driver1.save_model(path, only_state_dict=False, input_spec=[paddle.ones((32, 10))]) | |||
driver2.load_model(path, only_state_dict=False) | |||
if only_state_dict: | |||
driver1.save_model(path, only_state_dict) | |||
else: | |||
driver1.save_model(path, only_state_dict, input_spec=[paddle.ones((32, 10))]) | |||
driver2.load_model(path, only_state_dict) | |||
for batch in dataloader: | |||
batch = driver1.move_data_to_device(batch) | |||
res1 = driver1.validate_step(batch) | |||
res2 = driver2.validate_step(batch) | |||
res1 = driver1.model.evaluate_step(**batch) | |||
res2 = driver2.model.evaluate_step(**batch) | |||
assert paddle.equal_all(res1["pred"], res2["pred"]) | |||
finally: | |||
synchronize_safe_rm(path + ".pdiparams") | |||
synchronize_safe_rm(path + ".pdiparams.info") | |||
synchronize_safe_rm(path + ".pdmodel") | |||
if only_state_dict: | |||
synchronize_safe_rm(path) | |||
else: | |||
synchronize_safe_rm(path + ".pdiparams") | |||
synchronize_safe_rm(path + ".pdiparams.info") | |||
synchronize_safe_rm(path + ".pdmodel") | |||
class TestSingleDeviceFunction: | |||
""" | |||
@@ -199,13 +229,7 @@ class TestSingleDeviceFunction: | |||
测试能否运行 | |||
""" | |||
res = self.driver.unwrap_model() | |||
def test_check_evaluator_mode(self): | |||
""" | |||
这两个函数没有返回值和抛出异常,仅检查是否有import错误等影响运行的因素 | |||
""" | |||
self.driver.check_evaluator_mode("validate") | |||
self.driver.check_evaluator_mode("test") | |||
assert res is self.driver.model | |||
def test_is_distributed(self): | |||
assert self.driver.is_distributed() == False | |||
@@ -237,44 +261,55 @@ class TestSetDistReproDataloder: | |||
assert replaced_loader is dataloader | |||
def test_set_dist_repro_dataloader_with_reproducible_true(self): | |||
@pytest.mark.parametrize("shuffle", [True, False]) | |||
def test_set_dist_repro_dataloader_with_reproducible_true(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 参数 `reproducible` 为 True 时的表现 | |||
当dist为字符串时,此时应该返回新的 dataloader,且 batch_sampler 为 RandomBatchSampler | |||
当dist为字符串时,此时应该返回新的 dataloader,且如果原 sampler 为 paddle.io.RandomSampler(shuffle=True), | |||
只会替换 Sampler 为 RandomSampler;否则会替换 batch_sampler 为 RandomBatchSampler | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=True) | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=True) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler.batch_sampler, BatchSampler) | |||
if shuffle: | |||
# 此时会替换 sampler | |||
assert isinstance(replaced_loader.batch_sampler, paddle.io.BatchSampler) | |||
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) | |||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
else: | |||
# 此时会替换 batch_sampler | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler.batch_sampler, BatchSampler) | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
# self.check_set_dist_repro_dataloader(dataloader, replaced_loader) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
def test_set_dist_repro_dataloader_with_dist_batch_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_batch_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 参数 dist 不是字符串时的表现,且 dist 是 ReproducibleBatchSampler | |||
应该返回新的 dataloader,并将 batch_sampler 替换为 dist 对应的 Sampler | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=True) | |||
dist = RandomBatchSampler(BatchSampler(self.dataset, batch_size=4), 4, False) | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=not shuffle) | |||
dist = RandomBatchSampler(BatchSampler(self.dataset, batch_size=4, shuffle=shuffle), 4, False) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist=dist, reproducible=False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert replaced_loader.batch_sampler is dist | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
def test_set_dist_repro_dataloader_with_dist_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 参数 dist 不是字符串时的表现 | |||
应该返回新的 dataloader,并将 batch_sampler.sampler 替换为 dist 对应的 Sampler | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=True) | |||
dist = RandomSampler(self.dataset, shuffle=True) | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=not shuffle) | |||
dist = RandomSampler(self.dataset, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist=dist, reproducible=False) | |||
assert not (replaced_loader is dataloader) | |||
@@ -284,16 +319,21 @@ class TestSetDistReproDataloder: | |||
assert replaced_loader.batch_sampler.sampler is dist | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
def test_set_dist_repro_dataloader_with_dataloader_reproducible_batch_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dataloader_reproducible_batch_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 参数 dataloader 已经支持断点重训时的表现 | |||
应该返回新的 dataloader,且其余各项设置和原来相同 | |||
""" | |||
dataloader = DataLoader( | |||
dataset=self.dataset, | |||
batch_sampler=RandomBatchSampler(BatchSampler(self.dataset, batch_size=4), 4, False) | |||
batch_sampler=RandomBatchSampler( | |||
BatchSampler(self.dataset, batch_size=4, shuffle=shuffle), | |||
batch_size=4, | |||
drop_last=False, | |||
) | |||
) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=False) | |||
@@ -303,15 +343,16 @@ class TestSetDistReproDataloder: | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
def test_set_dist_repro_dataloader_with_dataloader_reproducible_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dataloader_reproducible_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 参数 dataloader 已经支持断点重训时的表现 | |||
应该返回新的 dataloader,且其余各项设置和原来相同 | |||
""" | |||
batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2) | |||
batch_sampler.sampler = RandomSampler(self.dataset, True) | |||
batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2, shuffle=shuffle) | |||
batch_sampler.sampler = RandomSampler(self.dataset, shuffle) | |||
dataloader = DataLoader( | |||
self.dataset, | |||
batch_sampler=batch_sampler | |||
@@ -323,11 +364,11 @@ class TestSetDistReproDataloder: | |||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
assert not (replaced_loader.batch_sampler.sampler is dataloader.batch_sampler.sampler) | |||
assert replaced_loader.batch_sampler.batch_size == 2 | |||
assert replaced_loader.batch_sampler.sampler.shuffle == True | |||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
def check_set_dist_repro_dataloader(self, dataloader, replaced_loader): | |||
def check_set_dist_repro_dataloader(self, dataloader, replaced_loader, shuffle): | |||
""" | |||
测试单卡下 set_dist_repro_dataloader 函数的执行结果是否正确 | |||
""" | |||
@@ -346,9 +387,6 @@ class TestSetDistReproDataloder: | |||
# 加载 num_consumed_samples_array,设置正确取出的 batch 数目 | |||
num_consumed_samples_array = sampler_states.pop('num_consumed_samples_array', None) | |||
import time | |||
time.sleep(5) | |||
# 重新加载,应该可以输出剩下的内容,且对于 PaddleNormalDataset 来说,排序后应该是一个 range | |||
left_idxes = set() | |||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler): | |||
@@ -357,16 +395,29 @@ class TestSetDistReproDataloder: | |||
sampler_states["num_consumed_samples"] = num_consumed_samples_array[num_consumed_batches] | |||
else: | |||
sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size | |||
replaced_loader.batch_sampler.load_state_dict(sampler_states) | |||
# 重新改造 dataloader | |||
new_loader = DataLoader( | |||
dataset=replaced_loader.dataset, | |||
batch_sampler=RandomBatchSampler( | |||
BatchSampler(replaced_loader.dataset, shuffle=shuffle, batch_size=batch_size), | |||
batch_size=batch_size, | |||
drop_last=False, | |||
) | |||
) | |||
new_loader.batch_sampler.load_state_dict(sampler_states) | |||
else: | |||
batch_size = replaced_loader.batch_sampler.batch_size | |||
num_consumed_batches = num_consumed_batches * batch_size | |||
if num_consumed_samples_array is not None: | |||
sampler_states["num_consumed_samples"] = num_consumed_samples_array[num_consumed_batches] | |||
else: | |||
sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size | |||
replaced_loader.batch_sampler.sampler.load_state_dict(sampler_states) | |||
replaced_loader.batch_sampler.sampler.set_epoch(0) | |||
for idx, batch in enumerate(replaced_loader): | |||
# 重新构造 dataloader | |||
batch_sampler = BatchSampler(replaced_loader.dataset, shuffle=shuffle, batch_size=batch_size) | |||
batch_sampler.sampler = RandomSampler(replaced_loader.dataset, shuffle=shuffle) | |||
new_loader = DataLoader(replaced_loader.dataset, batch_sampler=batch_sampler) | |||
new_loader.batch_sampler.sampler.load_state_dict(sampler_states) | |||
for idx, batch in enumerate(new_loader): | |||
left_idxes.update(batch) | |||
assert len(left_idxes) + len(already_seen_idx) == len(self.dataset) | |||
@@ -1,31 +0,0 @@ | |||
import unittest | |||
import random | |||
from fastNLP.core.samplers import SequentialSampler, RandomSampler, BucketSampler | |||
from fastNLP.core.dataset import DataSet | |||
from array import array | |||
import torch | |||
from fastNLP.core.samplers.sampler import ReproduceBatchSampler | |||
from fastNLP.core.drivers.torch_driver.utils import replace_batch_sampler | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset | |||
class SamplerTest(unittest.TestCase): | |||
def test_sequentialsampler(self): | |||
ds = DataSet({'x': [1, 2, 3, 4] * 10}) | |||
sqspl = SequentialSampler(ds) | |||
for idx, inst in enumerate(sqspl): | |||
self.assertEqual(idx, inst) | |||
def test_randomsampler(self): | |||
ds = DataSet({'x': [1, 2, 3, 4] * 10}) | |||
rdspl = RandomSampler(ds) | |||
ans = [ds[i] for i in rdspl] | |||
self.assertEqual(len(ans), len(ds)) | |||
def test_bucketsampler(self): | |||
data_set = DataSet({"x": [[0] * random.randint(1, 10)] * 10, "y": [[5, 6]] * 10}) | |||
sampler = BucketSampler(data_set, num_buckets=3, batch_size=16, seq_len_field_name="seq_len") | |||
@@ -1,6 +1,6 @@ | |||
import os | |||
from fastNLP.envs.set_env import dump_fastnlp_backend | |||
from fastNLP.envs.set_backend import dump_fastnlp_backend | |||
from tests.helpers.utils import Capturing | |||
from fastNLP.core import synchronize_safe_rm | |||
@@ -72,7 +72,7 @@ class RecordTrainerEventTriggerCallback(Callback): | |||
print("on_train_end") | |||
def on_train_epoch_begin(self, trainer): | |||
if trainer.current_epoch_idx >= 1: | |||
if trainer.cur_epoch_idx >= 1: | |||
# 触发 on_exception; | |||
raise Exception | |||
print("on_train_epoch_begin") | |||
@@ -0,0 +1,68 @@ | |||
""" | |||
这个文件主要用于提供测试 callback 时的 Trainer 的参数,可以直接使用进行对Trainer进行初始化。只需要再额外传入相应的callback就可以运行 | |||
""" | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
from fastNLP.core.metrics import Accuracy | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
from torch import nn | |||
from torch.utils.data import DataLoader | |||
import torch.nn.functional as F | |||
class DataSet: | |||
def __init__(self, num_samples=1000, num_features=10): | |||
g = torch.Generator() | |||
g.manual_seed(1000) | |||
self.data = torch.randn(num_samples, num_features, generator=g) | |||
self.y = self.data.argmax(dim=-1) | |||
def __getitem__(self, item): | |||
return {'x': self.data[item], 'target': self.y[item]} | |||
def __len__(self): | |||
return len(self.data) | |||
class Model(nn.Module): | |||
def __init__(self, num_features=5): | |||
super().__init__() | |||
self.mlps = nn.Sequential( | |||
nn.Linear(num_features, 20), | |||
nn.ReLU(), | |||
nn.Linear(20, 20), | |||
nn.Dropout(p=0.3), | |||
nn.ReLU(), | |||
nn.Linear(20, num_features) | |||
) | |||
def forward(self, x, target): | |||
y = self.mlps(x) | |||
if self.training: | |||
return {'loss': F.cross_entropy(y, target)} | |||
return {'pred': y} | |||
def get_trainer_args(num_features=5, num_samples=20, bsz=4, lr=0.1, n_epochs=5, device=None): | |||
ds = DataSet(num_samples=num_samples, num_features=num_features) | |||
dl = DataLoader(ds, batch_size=bsz) | |||
model = Model(num_features=num_features) | |||
optimizer = torch.optim.SGD(model.parameters(), lr=lr) | |||
kwargs = { | |||
'model': model, | |||
'driver': 'torch', | |||
'device': device, | |||
'optimizers': optimizer, | |||
'train_dataloader': dl, | |||
'evaluate_dataloaders': dl, | |||
'metrics': {'acc': Accuracy()}, | |||
'n_epochs': n_epochs | |||
} | |||
return kwargs |
@@ -26,7 +26,7 @@ class PaddleNormalModel_Classification_1(paddle.nn.Layer): | |||
x = self(x) | |||
return {"loss": self.loss_fn(x, y)} | |||
def validate_step(self, x, y): | |||
def evaluate_step(self, x, y): | |||
x = self(x) | |||
return {"pred": x, "target": y.reshape((-1,))} | |||