@@ -219,10 +219,10 @@ class Trainer(TrainerEventTrigger): | |||
""" 设置内部的 Evaluator """ | |||
if metrics is None and evaluate_dataloaders is not None: | |||
raise ValueError("You have set 'validate_dataloader' but forget to set 'metrics'.") | |||
raise ValueError("You have set 'evaluate_dataloader' but forget to set 'metrics'.") | |||
if metrics is not None and evaluate_dataloaders is None: | |||
raise ValueError("You have set 'metrics' but forget to set 'validate_dataloader'.") | |||
raise ValueError("You have set 'metrics' but forget to set 'evaluate_dataloader'.") | |||
self.evaluator = None | |||
self.monitor = monitor | |||
@@ -1,5 +1,5 @@ | |||
import os | |||
from typing import Optional, Union | |||
from typing import Optional, Union, Callable, Dict, Tuple | |||
from .jittor_driver import JittorDriver | |||
from fastNLP.envs.imports import _NEED_IMPORT_JITTOR | |||
@@ -61,14 +61,11 @@ class JittorMPIDriver(JittorDriver): | |||
return self._data_device | |||
return self.model_device | |||
def train_step(self, batch): | |||
return self._train_step(batch) | |||
def validate_step(self, batch): | |||
return self._validate_step(batch) | |||
def model_call(self, batch, fn: Callable, signature_fn: Optional[Callable]) -> Dict: | |||
pass | |||
def test_step(self, batch): | |||
return self._test_step(batch) | |||
def get_model_call_fn(self, fn: str) -> Tuple: | |||
pass | |||
def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleSampler]], | |||
reproducible: bool = False, sampler_or_batch_sampler=None): | |||
@@ -1,9 +1,11 @@ | |||
from typing import Dict, Union | |||
from typing import Dict, Union, Tuple, Callable, Optional | |||
from .jittor_driver import JittorDriver | |||
from fastNLP.core.utils import auto_param_call | |||
from fastNLP.core.utils.utils import _get_fun_msg | |||
from fastNLP.envs.imports import _NEED_IMPORT_JITTOR | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler | |||
from fastNLP.core.log import logger | |||
if _NEED_IMPORT_JITTOR: | |||
import jittor | |||
@@ -27,42 +29,6 @@ class JittorSingleDriver(JittorDriver): | |||
self.global_rank = 0 | |||
self.world_size = 1 | |||
if hasattr(self.model, "train_step"): | |||
self._train_step = self.model.train_step | |||
self._train_signature_fn = None | |||
else: | |||
self._train_step = self.model | |||
model = self.unwrap_model() | |||
self._train_signature_fn = model.execute | |||
if hasattr(self.model, "evaluate_step"): | |||
self._validate_step = self.model.evaluate_step | |||
self._validate_signature_fn = None | |||
elif hasattr(self.model, "test_step"): | |||
self._validate_step = self.model.test_step | |||
self._validate_signature_fn = self.model.test_step | |||
else: | |||
self._validate_step = self.model | |||
model = self.unwrap_model() | |||
self._validate_signature_fn = model.execute | |||
if hasattr(self.model, "test_step"): | |||
self._test_step = self.model.test_step | |||
self._test_signature_fn = None | |||
elif hasattr(self.model, "evaluate_step"): | |||
self._test_step = self.model.evaluate_step | |||
self._test_signature_fn = self.model.evaluate_step | |||
else: | |||
self._test_step = self.model | |||
model = self.unwrap_model() | |||
self._test_signature_fn = model.execute | |||
def train_step(self, batch) -> Dict: | |||
if isinstance(batch, Dict): | |||
return auto_param_call(self._train_step, batch, signature_fn=self._train_signature_fn) | |||
else: | |||
return self._train_step(batch) | |||
def step(self): | |||
""" | |||
jittor optimizers 的step函数可以传入参数loss | |||
@@ -80,18 +46,24 @@ class JittorSingleDriver(JittorDriver): | |||
for optimizer in self.optimizers: | |||
optimizer.zero_grad() | |||
def validate_step(self, batch): | |||
if isinstance(batch, Dict): | |||
return auto_param_call(self._validate_step, batch, signature_fn=self._validate_signature_fn) | |||
def model_call(self, batch, fn: Callable, signature_fn: Optional[Callable]) -> Dict: | |||
if isinstance(batch, Dict) and not self.wo_auto_param_call: | |||
return auto_param_call(fn, batch, signature_fn=signature_fn) | |||
else: | |||
return self._validate_step(batch) | |||
def test_step(self, batch): | |||
if isinstance(batch, Dict): | |||
return auto_param_call(self._test_step, batch, signature_fn=self._test_signature_fn) | |||
return fn(batch) | |||
def get_model_call_fn(self, fn: str) -> Tuple: | |||
if hasattr(self.model, fn): | |||
fn = getattr(self.model, fn) | |||
if not callable(fn): | |||
raise RuntimeError(f"The `{fn}` attribute is not `Callable`.") | |||
logger.debug(f'Use {_get_fun_msg(fn, with_fp=False)}...') | |||
return fn, None | |||
elif fn in {"train_step", "evaluate_step"}: | |||
logger.debug(f'Use {_get_fun_msg(self.model.forward, with_fp=False)}...') | |||
return self.model, self.model.forward | |||
else: | |||
return self._test_step(batch) | |||
raise RuntimeError(f"There is no `{fn}` method in your {type(self.model)}.") | |||
def unwrap_model(self): | |||
return self.model | |||
@@ -0,0 +1,376 @@ | |||
import io | |||
import pickle | |||
_pickler = pickle.Pickler | |||
_unpickler = pickle.Unpickler | |||
from typing import Any, List | |||
from fastNLP.envs.imports import _TORCH_GREATER_EQUAL_1_8 | |||
from fastNLP.core.utils.torch_utils import DEFAULT_TORCH_GROUP | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
from torch import distributed as dist | |||
if _TORCH_GREATER_EQUAL_1_8: | |||
try: | |||
from torch._C._distributed_c10d import ProcessGroupGloo | |||
from torch._C._distributed_c10d import _ProcessGroupWrapper | |||
except ImportError: | |||
pass | |||
from fastNLP.core.utils import apply_to_collection | |||
def _validate_output_list_for_rank(my_rank, dst, gather_list): | |||
if dst == my_rank: | |||
if not gather_list: | |||
raise ValueError( | |||
"Argument ``gather_list`` must be specified on destination rank." | |||
) | |||
elif gather_list: | |||
raise ValueError( | |||
"Argument ``gather_list`` must NOT be specified " | |||
"on non-destination ranks." | |||
) | |||
def fastnlp_paddle_gather_object(obj, object_gather_list=None, dst=0, group=DEFAULT_TORCH_GROUP): | |||
""" | |||
从其它 rank gather 东西到 dst rank 。 | |||
Gathers picklable objects from the whole group in a single process. | |||
Similar to :func:`gather`, but Python objects can be passed in. Note that the | |||
object must be picklable in order to be gathered. | |||
Args: | |||
obj (Any): Input object. Must be picklable. | |||
object_gather_list (list[Any]): Output list. On the ``dst`` rank, it | |||
should be correctly sized as the size of the group for this | |||
collective and will contain the output. Must be ``None`` on non-dst | |||
ranks. (default is ``None``) | |||
dst (int, optional): Destination rank. (default is 0) | |||
group: (ProcessGroup, optional): The process group to work on. If None, | |||
the default process group will be used. Default is ``None``. | |||
Returns: | |||
None. On the ``dst`` rank, ``object_gather_list`` will contain the | |||
output of the collective. | |||
.. note:: Note that this API differs slightly from the gather collective | |||
since it does not provide an async_op handle and thus will be a blocking | |||
call. | |||
.. note:: Note that this API is not supported when using the NCCL backend. | |||
.. warning:: | |||
:func:`gather_object` uses ``pickle`` module implicitly, which is | |||
known to be insecure. It is possible to construct malicious pickle data | |||
which will execute arbitrary code during unpickling. Only call this | |||
function with data you trust. | |||
Example:: | |||
>>> # Note: Process group initialization omitted on each rank. | |||
>>> import torch.distributed as dist | |||
>>> # Assumes world_size of 3. | |||
>>> gather_objects = ["foo", 12, {1: 2}] # any picklable object | |||
>>> output = [None for _ in gather_objects] | |||
>>> dist.gather_object( | |||
gather_objects[dist.get_rank()], | |||
output if dist.get_rank() == 0 else None, | |||
dst=0 | |||
) | |||
>>> # On rank 0 | |||
>>> output | |||
['foo', 12, {1: 2}] | |||
""" | |||
if group is None: | |||
group = DEFAULT_TORCH_GROUP | |||
if dist.distributed_c10d._rank_not_in_group(group): | |||
return | |||
# Ensure object_gather_list is specified appopriately. | |||
my_rank = dist.get_rank() | |||
_validate_output_list_for_rank(my_rank, dst, object_gather_list) | |||
# 防止 unpickle 的时候出现在了发送的 gpu 上。 | |||
obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu')) | |||
input_tensor, local_size = _object_to_tensor(obj) | |||
group_backend = dist.get_backend(group) | |||
current_device = torch.device("cpu") | |||
is_nccl_backend = group_backend == dist.Backend.NCCL | |||
if is_nccl_backend: | |||
current_device = torch.device('cuda', torch.cuda.current_device()) | |||
input_tensor = input_tensor.to(current_device) | |||
local_size = local_size.to(current_device) | |||
# Gather all local sizes. This is so that we can find the max size, and index | |||
# until the correct size when deserializing the tensors. | |||
group_size = dist.get_world_size(group=group) | |||
object_sizes_tensor = torch.zeros(group_size, dtype=torch.long, device=current_device) | |||
object_size_list = [ | |||
object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size) | |||
] | |||
# Allgather tensor sizes. An all-gather is needed here despite this being a | |||
# gather, since each rank needs to broadcast a tensor of the same (maximal) | |||
# size. | |||
dist.all_gather(object_size_list, local_size, group=group) | |||
max_object_size = int(max(object_size_list).item()) # type: ignore[type-var] | |||
# Resize tensor to max size across all ranks. | |||
input_tensor.resize_(max_object_size) | |||
# Avoid populating output tensors if the result won't be gathered on this rank. | |||
if my_rank == dst: | |||
coalesced_output_tensor = torch.empty( | |||
max_object_size * group_size, dtype=torch.uint8, device=current_device | |||
) | |||
# Output tensors are nonoverlapping views of coalesced_output_tensor | |||
output_tensors = [ | |||
coalesced_output_tensor[max_object_size * i : max_object_size * (i + 1)] | |||
for i in range(group_size) | |||
] | |||
# All ranks call gather with equal-sized tensors. | |||
dist.gather( | |||
input_tensor, | |||
gather_list=output_tensors if my_rank == dst else None, | |||
dst=dst, | |||
group=group, | |||
) | |||
if my_rank != dst: | |||
return | |||
for i, tensor in enumerate(output_tensors): | |||
tensor = tensor.type(torch.uint8) # type: ignore[call-overload] | |||
tensor_size = object_size_list[i] | |||
object_gather_list[i] = _tensor_to_object(tensor, tensor_size) | |||
def _object_to_tensor(obj, device=None): | |||
f = io.BytesIO() | |||
_pickler(f).dump(obj) | |||
byte_storage = torch.ByteStorage.from_buffer(f.getvalue()) # type: ignore[attr-defined] | |||
# Do not replace `torch.ByteTensor` or `torch.LongTensor` with torch.tensor and specifying dtype. | |||
# Otherwise, it will casue 100X slowdown. | |||
# See: https://github.com/pytorch/pytorch/issues/65696 | |||
byte_tensor = torch.ByteTensor(byte_storage) | |||
local_size = torch.LongTensor([byte_tensor.numel()]) | |||
if device is not None: | |||
byte_tensor = byte_tensor.to(device) | |||
local_size = local_size.to(device) | |||
return byte_tensor, local_size | |||
def _tensor_to_object(tensor, tensor_size): | |||
buf = tensor.detach().cpu().numpy().tobytes()[:tensor_size] | |||
return _unpickler(io.BytesIO(buf)).load() | |||
def send_recv_object(obj, src, cur_rank, device, group=None, tag=0): | |||
# src rank send to all other ranks | |||
size = torch.LongTensor([0]).to(device) | |||
if cur_rank == src: | |||
world_size = dist.get_world_size(group=group) | |||
tensor, size = _object_to_tensor(obj) | |||
tensor = tensor.to(device) | |||
size = size.to(device) | |||
# 首先同步 obj 的 size 的信息; | |||
dist.broadcast(size, src, group=group) | |||
for subrank in range(world_size): | |||
if subrank != src: | |||
dist.send(tensor=tensor, dst=subrank, group=group, tag=tag) | |||
else: | |||
dist.broadcast(size, src, group=group) | |||
tensor = torch.ByteTensor([0] * size).to(device) | |||
dist.recv(tensor=tensor, src=src, group=group, tag=tag) | |||
return _tensor_to_object(tensor.cpu(), size) | |||
def fastnlp_paddle_all_gather(obj: Any, device=None, group=DEFAULT_TORCH_GROUP) ->List: | |||
""" | |||
实现任何类型的数据都使用该接口可以进行 all_gather 操作。对于非 tensor 类型的数据,通过 pickle 序列化再反序列化的方式进行传输。 | |||
example: | |||
obj = { | |||
'a': [1, 1], | |||
'b': [[1, 2], [1, 2]], | |||
'c': { | |||
'd': [1, 2] | |||
} | |||
} | |||
-> | |||
[ | |||
{'a': 1, 'b':[1, 2], 'c':{'d': 1}}, | |||
{'a': 1, 'b':[1, 2], 'c':{'d': 2}} | |||
] | |||
:param obj: 任意结构的数据,如果为 tensor ,需要保证每个显卡上的 tensor 的形状是一样的。如果传入的是非 tensor 对象都将直接进行 | |||
序列化之后进行传输。 | |||
:param device: 当前该参数无意义。 | |||
:param group: | |||
:return: 返回的结果是 [obj0, obj1, ...],其中 obj_i 即为第 i 个 rank 上的 obj 。 | |||
""" | |||
if group is None: | |||
group = DEFAULT_TORCH_GROUP | |||
if isinstance(obj, torch.Tensor): | |||
objs = [torch.zeros_like(obj) for _ in range(dist.get_world_size(group))] | |||
dist.all_gather(objs, obj, group=group) | |||
else: | |||
objs = [None for _ in range(dist.get_world_size(group))] | |||
# 防止 unpickle 的时候弄到发送的 gpu 上了 | |||
obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu')) | |||
if _TORCH_GREATER_EQUAL_1_8: | |||
dist.all_gather_object(objs, obj, group=group) | |||
else: | |||
objs = all_gather_object(objs, obj, group=group) | |||
return objs | |||
def fastnlp_torch_broadcast_object(obj, src, device=None, group=DEFAULT_TORCH_GROUP): | |||
""" | |||
将 src 上的 obj 对象广播到其它 rank 上。 | |||
:param obj: | |||
:param src: | |||
:param device: | |||
:param group: | |||
:return: | |||
""" | |||
if group is None: | |||
group = DEFAULT_TORCH_GROUP | |||
cur_rank = dist.get_rank(group) | |||
if cur_rank == src: | |||
# 如果有 tensor 全部移动到 cpu 上,方便 pickle , 不然 unpickle 的时候可能会 pickle 到发送过来的卡那里 | |||
obj = apply_to_collection(obj, torch.Tensor, _to_device, device=torch.device('cpu')) | |||
if _TORCH_GREATER_EQUAL_1_8: | |||
if cur_rank!=src: | |||
get_obj = [None] | |||
dist.broadcast_object_list(get_obj, src=src, group=group) | |||
return get_obj[0] | |||
else: | |||
dist.broadcast_object_list([obj], src=src, group=group) | |||
return obj | |||
if device is None: | |||
device = torch.cuda.current_device() | |||
if cur_rank == src: | |||
tensor, size = _object_to_tensor(obj, device=device) | |||
else: | |||
size = torch.LongTensor([0]).to(device) | |||
dist.broadcast(size, src=src, group=group) | |||
if cur_rank != src: | |||
tensor = torch.empty( | |||
size.int().item(), # type: ignore[arg-type] | |||
dtype=torch.uint8, | |||
device=device | |||
) | |||
dist.broadcast(tensor, src=src, group=group) | |||
return _tensor_to_object(tensor, tensor_size=size.item()) | |||
def _check_for_nccl_backend(group): | |||
pg = group or dist.distributed_c10d._get_default_group() | |||
# It is not expected for PG to be wrapped many times, but support it just | |||
# in case | |||
while isinstance(pg, _ProcessGroupWrapper): | |||
pg = pg.wrapped_pg | |||
return ( | |||
dist.is_nccl_available() and | |||
isinstance(pg, dist.ProcessGroupNCCL) | |||
) | |||
def all_gather_object(object_list, obj, group=None): | |||
""" | |||
复制 pytorch 的代码,使得可以版本兼容低版本的 pytorch 。 | |||
Gathers picklable objects from the whole group into a list. Similar to | |||
:func:`all_gather`, but Python objects can be passed in. Note that the object | |||
must be picklable in order to be gathered. | |||
Args: | |||
object_list (list[Any]): Output list. It should be correctly sized as the | |||
size of the group for this collective and will contain the output. | |||
object (Any): Pickable Python object to be broadcast from current process. | |||
group (ProcessGroup, optional): The process group to work on. If None, | |||
the default process group will be used. Default is ``None``. | |||
Returns: | |||
None. If the calling rank is part of this group, the output of the | |||
collective will be populated into the input ``object_list``. If the | |||
calling rank is not part of the group, the passed in ``object_list`` will | |||
be unmodified. | |||
.. note:: Note that this API differs slightly from the :func:`all_gather` | |||
collective since it does not provide an ``async_op`` handle and thus | |||
will be a blocking call. | |||
.. note:: For NCCL-based processed groups, internal tensor representations | |||
of objects must be moved to the GPU device before communication takes | |||
place. In this case, the device used is given by | |||
``torch.cuda.current_device()`` and it is the user's responsiblity to | |||
ensure that this is set so that each rank has an individual GPU, via | |||
``torch.cuda.set_device()``. | |||
.. warning:: | |||
:func:`all_gather_object` uses ``pickle`` module implicitly, which is | |||
known to be insecure. It is possible to construct malicious pickle data | |||
which will execute arbitrary code during unpickling. Only call this | |||
function with data you trust. | |||
Example:: | |||
>>> # Note: Process group initialization omitted on each rank. | |||
>>> import torch.distributed as dist | |||
>>> # Assumes world_size of 3. | |||
>>> gather_objects = ["foo", 12, {1: 2}] # any picklable object | |||
>>> output = [None for _ in gather_objects] | |||
>>> dist.all_gather_object(output, gather_objects[dist.get_rank()]) | |||
>>> output | |||
['foo', 12, {1: 2}] | |||
""" | |||
if dist.distributed_c10d._rank_not_in_group(group): | |||
return | |||
if _TORCH_GREATER_EQUAL_1_8: | |||
current_device = torch.device("cpu") | |||
is_nccl_backend = _check_for_nccl_backend(group) | |||
if is_nccl_backend: | |||
# See note about using torch.cuda.current_device() here in docstring. | |||
# We cannot simply use my_rank since rank == device is not necessarily | |||
# true. | |||
current_device = torch.device("cuda", torch.cuda.current_device()) | |||
else: | |||
current_device = torch.cuda.current_device() | |||
input_tensor, local_size = _object_to_tensor(obj, device=current_device) | |||
# Gather all local sizes. This is so that we can find the max size, and index | |||
# until the correct size when deserializing the tensors. | |||
group_size = dist.get_world_size(group=group) | |||
object_sizes_tensor = torch.zeros( | |||
group_size, dtype=torch.long, device=current_device | |||
) | |||
object_size_list = [ | |||
object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size) | |||
] | |||
# Allgather tensor sizes | |||
dist.all_gather(object_size_list, local_size, group=group) | |||
max_object_size = int(max(object_size_list).item()) # type: ignore[type-var] | |||
# Resize tensor to max size across all ranks. | |||
input_tensor.resize_(max_object_size) | |||
coalesced_output_tensor = torch.empty( | |||
max_object_size * group_size, dtype=torch.uint8, device=current_device | |||
) | |||
# Output tensors are nonoverlapping views of coalesced_output_tensor | |||
output_tensors = [ | |||
coalesced_output_tensor[max_object_size * i : max_object_size * (i + 1)] | |||
for i in range(group_size) | |||
] | |||
dist.all_gather(output_tensors, input_tensor, group=group) | |||
# Deserialize outputs back to object. | |||
for i, tensor in enumerate(output_tensors): | |||
tensor = tensor.type(torch.uint8) | |||
if tensor.device != torch.device("cpu"): | |||
tensor = tensor.cpu() | |||
tensor_size = object_size_list[i] | |||
object_list[i] = _tensor_to_object(tensor, tensor_size) | |||
return object_list |
@@ -1,13 +1,12 @@ | |||
import os | |||
import shutil | |||
from functools import partial | |||
from typing import List, Union, Optional, Dict | |||
from typing import List, Union, Optional, Dict, Tuple, Callable | |||
from .paddle_driver import PaddleDriver | |||
from .fleet_launcher import FleetLauncher | |||
from .utils import ( | |||
_FleetWrappingModel, | |||
ForwardState, | |||
_MODE_PARAMETER, | |||
get_device_from_visible, | |||
reset_seed, | |||
replace_sampler, | |||
@@ -47,8 +46,7 @@ if _NEED_IMPORT_PADDLE: | |||
__all__ = [ | |||
"PaddleFleetDriver", | |||
] | |||
# if os.path.exists(self.gloo_rendezvous_dir): | |||
# shutil.rmtree(self.gloo_rendezvous_dir) | |||
class PaddleFleetDriver(PaddleDriver): | |||
def __init__( | |||
self, | |||
@@ -104,34 +102,6 @@ class PaddleFleetDriver(PaddleDriver): | |||
# 我们就直接将 model_device 置为 None; | |||
self._model_device = None | |||
def _running_fn_(batch, step_fn, signature_fn, wo_auto_param_call): | |||
if isinstance(batch, Dict) and not wo_auto_param_call: | |||
return auto_param_call(step_fn, batch, signature_fn=signature_fn) | |||
else: | |||
return self._validate_step(batch) | |||
model = model._layers | |||
if hasattr(model, "train_step"): | |||
logger.warning( | |||
"Notice your model is a `paddle.DataParallel` model. And your " | |||
"model also implements the `train_step` method, which we can not call actually, we will" | |||
" call `forward` function instead of `train_step` and you should note that.") | |||
self._train_step = partial(_running_fn_, step_fn=self.model, signature_fn=model.forward, wo_auto_param_call=self.wo_auto_param_call) | |||
if hasattr(model, "evaluate_step"): | |||
logger.warning( | |||
"Notice your model is a `paddle.DataParallel` model. And your " | |||
"model also implements the `evaluate_step` method, which we can not call actually, " | |||
"we will call `forward` function instead of `evaluate_step` and you should note that.") | |||
self._validate_step = partial(_running_fn_, step_fn=self.model, signature_fn=model.forward, wo_auto_param_call=self.wo_auto_param_call) | |||
if hasattr(model, "test_step"): | |||
logger.warning( | |||
"Notice your model is a `paddle.DataParallel` model. And your " | |||
"model also implements the `test_step` method, which we can not call actually, we will" | |||
" call `forward` function instead of `test_step` and you should note that.") | |||
self._test_step = partial(_running_fn_, step_fn=self.model, signature_fn=model.forward, wo_auto_param_call=self.wo_auto_param_call) | |||
# 当参数 `device` 为 None 时并且该参数不为 None,表示将对应的数据移到指定的机器上; | |||
self._data_device = kwargs.get("data_device", None) | |||
if self._data_device is not None: | |||
@@ -150,8 +120,6 @@ class PaddleFleetDriver(PaddleDriver): | |||
self.world_size = None | |||
self.global_rank = 0 | |||
self._configured = False # 防止重复调用 configure_ddp() 函数使用 | |||
self._has_setup = False # 防止重复调用 setup() 函数 | |||
self._fleet_kwargs = kwargs.get("paddle_fleet_kwargs", {}) | |||
check_user_specific_params(self._fleet_kwargs, DataParallel.__init__) | |||
@@ -173,6 +141,9 @@ class PaddleFleetDriver(PaddleDriver): | |||
os.makedirs(name=self.output_from_new_proc, exist_ok=True) | |||
self.output_from_new_proc = os.path.abspath(self.output_from_new_proc) | |||
self._has_setup = False # 设置这一参数是因为 evaluator 中也会进行 setup 操作,但是显然是不需要的也不应该的; | |||
self._has_fleetwrapped = False # 判断传入的模型是否经过 _has_fleetwrapped 包裹; | |||
def setup(self): | |||
""" | |||
在主进程拉起其它子进程,将主进程作为rank 0 | |||
@@ -268,17 +239,17 @@ class PaddleFleetDriver(PaddleDriver): | |||
dist.barrier() | |||
def configure_fleet(self): | |||
if not self._configured and not isinstance(self.model, DataParallel): | |||
if not self._has_fleetwrapped and not isinstance(self.model, DataParallel): | |||
self.model = DataParallel( | |||
_FleetWrappingModel(self.model), | |||
**self._fleet_kwargs | |||
) | |||
self._has_fleetwrapped = True | |||
self._train_step = partial(self.model, **{_MODE_PARAMETER: ForwardState.TRAIN}, wo_auto_param_call=self.wo_auto_param_call) | |||
self._validate_step = partial(self.model, **{_MODE_PARAMETER: ForwardState.VALIDATE}, wo_auto_param_call=self.wo_auto_param_call) | |||
self._test_step = partial(self.model, **{_MODE_PARAMETER: ForwardState.TEST}, wo_auto_param_call=self.wo_auto_param_call) | |||
self._configured = True | |||
def on_exception(self): | |||
if os.path.exists(self.gloo_rendezvous_dir): | |||
shutil.rmtree(self.gloo_rendezvous_dir) | |||
super().on_exception() | |||
@property | |||
def world_size(self) -> int: | |||
@@ -310,14 +281,39 @@ class PaddleFleetDriver(PaddleDriver): | |||
return self._data_device | |||
return self.model_device | |||
def train_step(self, batch): | |||
return self._train_step(batch) | |||
def validate_step(self, batch): | |||
return self._validate_step(batch) | |||
def model_call(self, batch, fn: Callable, signature_fn: Optional[Callable]) -> Dict: | |||
if self._has_fleetwrapped: | |||
return self.model(batch, fastnlp_fn=fn, fastnlp_signature_fn=signature_fn, | |||
wo_auto_param_call=self.wo_auto_param_call) | |||
else: | |||
if isinstance(batch, Dict) and not self.wo_auto_param_call: | |||
return auto_param_call(fn, batch, signature_fn=signature_fn) | |||
else: | |||
return fn(batch) | |||
def get_model_call_fn(self, fn: str) -> Tuple: | |||
model = self.unwrap_model() | |||
if self._has_fleetwrapped: | |||
if hasattr(model, fn): | |||
fn = getattr(model, fn) | |||
if not callable(fn): | |||
raise RuntimeError(f"The `{fn}` attribute of model is not `Callable`.") | |||
return fn, None | |||
elif fn in {"train_step", "evaluate_step"}: | |||
return model, model.forward | |||
else: | |||
raise RuntimeError(f"There is no `{fn}` method in your model.") | |||
else: | |||
if hasattr(model, fn): | |||
logger.warning("Notice your model is a `DistributedDataParallel` model. And your model also implements " | |||
f"the `{fn}` method, which we can not call actually, we will" | |||
" call `forward` function instead of `train_step` and you should note that.") | |||
elif fn not in {"train_step", "evaluate_step"}: | |||
raise RuntimeError(f"There is no `{fn}` method in your model. And also notice that your model is a " | |||
"`DistributedDataParallel` model, which means that we will only call model.forward " | |||
"function when we are in forward propagation.") | |||
def test_step(self, batch): | |||
return self._test_step(batch) | |||
return self.model, model.forward | |||
def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleSampler, RandomBatchSampler]], | |||
reproducible: bool = False, sampler_or_batch_sampler=None): | |||
@@ -406,14 +402,6 @@ class PaddleFleetDriver(PaddleDriver): | |||
else: | |||
raise ValueError("Parameter `dist_sampler` can only be one of three values: ('dist', 'unrepeatdist', None).") | |||
def backward(self, loss): | |||
self.grad_scaler.scale(loss).backward() | |||
def step(self): | |||
for optimizer in self.optimizers: | |||
self.grad_scaler.step(optimizer) | |||
self.grad_scaler.update() | |||
def is_global_zero(self): | |||
return self.global_rank == 0 | |||
@@ -450,3 +438,45 @@ class PaddleFleetDriver(PaddleDriver): | |||
if not isinstance(each_optimizer, (Optimizer, DistribuedOptimizer)): | |||
raise ValueError(f"Each optimizer of parameter `optimizers` should be 'paddle.optimizer.Optimizer' type, " | |||
f"not {type(each_optimizer)}.") | |||
def broadcast_object(self, obj, src:int=0, group=None, **kwargs): | |||
""" | |||
从 src 端将 obj 对象(可能是 tensor ,可能是 object )发送到 dst 处。如果是非 tensor 的对象会尝试使用 pickle 进行打包进行 | |||
传输,然后再 dst 处再加载回来。仅在分布式的 driver 中有实际意义。 | |||
:param obj: obj,可能是 Tensor 或 嵌套类型的数据 | |||
:param int src: source 的 global rank 。 | |||
:param int dst: target 的 global rank,可以是多个目标 rank | |||
:param group: 所属的 group | |||
:param kwargs: | |||
:return: 如果当前不是分布式 driver 直接返回输入的 obj 。如果当前 rank 是接收端(其 global rank 包含在了 dst 中),则返回 | |||
接收到的参数;如果是 source 端则返回发射的内容;既不是发送端、又不是接收端,则返回 None 。 | |||
""" | |||
return | |||
return fastnlp_paddle_broadcast_object(obj, src, device=self.data_device, group=group) | |||
def all_gather(self, obj, group) -> List: | |||
""" | |||
将 obj 互相传送到其它所有的 rank 上,其中 obj 可能是 Tensor,也可能是嵌套结构的 object 。如果不是基础类型的数据,尝试通过 | |||
pickle 进行序列化,接收到之后再反序列化。 | |||
example: | |||
obj = { | |||
'a': [1, 1], | |||
'b': [[1, 2], [1, 2]], | |||
'c': { | |||
'd': [1, 2] | |||
} | |||
} | |||
-> | |||
[ | |||
{'a': 1, 'b':[1, 2], 'c':{'d': 1}}, | |||
{'a': 1, 'b':[1, 2], 'c':{'d': 2}} | |||
] | |||
:param obj: 需要传输的对象,在每个rank上都应该保持相同的结构。 | |||
:param group: | |||
:return: | |||
""" | |||
return | |||
return fastnlp_paddle_all_gather(obj, group=group) |
@@ -71,6 +71,14 @@ class PaddleDriver(Driver): | |||
for optimizer in self.optimizers: | |||
optimizer.clear_grad() | |||
def backward(self, loss): | |||
self.grad_scaler.scale(loss).backward() | |||
def step(self): | |||
for optimizer in self.optimizers: | |||
self.grad_scaler.step(optimizer) | |||
self.grad_scaler.update() | |||
@staticmethod | |||
def check_dataloader_legality(dataloader, dataloader_name, is_train: bool = False): | |||
r""" | |||
@@ -115,28 +123,6 @@ class PaddleDriver(Driver): | |||
raise ValueError(f"Each optimizer of parameter `optimizers` should be 'paddle.optimizer.Optimizer' type, " | |||
f"not {type(each_optimizer)}.") | |||
def check_evaluator_mode(self, mode: str): | |||
r""" | |||
因为我们在具体的 driver 的 evaluate_step 和 test_step 的逻辑是如果模型没有实现本函数,那么就去检测模型是否实现了另一个函数; | |||
因此如果用户的 evaluator evaluate_fn 是 validate,但是传入的 model 却没有实现 evaluate_step 函数,而是实现了 test_step 函数,那么 | |||
我们应当提醒用户这一行为; | |||
""" | |||
model = self.unwrap_model() | |||
if mode == "validate": | |||
if not hasattr(model, "evaluate_step"): | |||
if hasattr(model, "test_step"): | |||
logger.warning( | |||
"Your model does not have 'evaluate_step' method but has 'test_step' method, but you" | |||
"are using 'Evaluator.validate', we are going to use 'test_step' to substitute for" | |||
"'evaluate_step'.") | |||
else: | |||
if not hasattr(model, "test_step"): | |||
if hasattr(model, "evaluate_step"): | |||
logger.warning_once("Your model does not have 'test_step' method but has 'validate' method, but you" | |||
"are using 'Evaluator.test', we are going to use 'evaluate_step' to substitute for" | |||
"'test_step'.") | |||
@staticmethod | |||
def tensor_to_numeric(tensor, reduce=None): | |||
r""" | |||
@@ -258,20 +244,21 @@ class PaddleDriver(Driver): | |||
if hasattr(sampler, "state_dict") and callable(sampler.state_dict): | |||
sampler_states = sampler.state_dict() | |||
# 如果有,需要针对 num_consumed_samples 做特殊的处理。因为DataLoader存在预取行为,直接使用sampler中的num_consumed_samples | |||
# 会造成多余实际消耗的问题。 | |||
num_consumed_samples_array = sampler_states.pop("num_consumed_samples_array", None) | |||
# 会造成多余实际消耗的问题。 | |||
num_consumed_samples_array = sampler_states.pop('num_consumed_samples_array', None) | |||
if num_consumed_samples_array is not None: | |||
sampler_states["num_consumed_samples"] = num_consumed_samples_array[num_consumed_batches] | |||
else: | |||
try: | |||
sampler_states["num_consumed_samples"] = num_consumed_batches * dataloader_args.batch_size | |||
except: # 有可能 batch_size 为 None,就只有损失精度了 | |||
pass | |||
assert sampler_states["num_consumed_samples"] != -1, "This is a bug, please report." | |||
if isinstance(sampler, ReproducibleSampler): | |||
# 如果是 sampler 的话,需要计算出实际的 sample 数目 | |||
try: | |||
num_consumed_batches = num_consumed_batches * dataloader_args.batch_size | |||
except: # 有可能 batch_size 为 None,就只有损失精度了 | |||
num_consumed_batches = sampler_states['num_consumed_samples'] | |||
sampler_states['num_consumed_samples'] = num_consumed_samples_array[num_consumed_batches] | |||
assert sampler_states['num_consumed_samples'] != -1, "This is a bug, please report." | |||
states['sampler_states'] = sampler_states | |||
else: | |||
raise RuntimeError( | |||
"The sampler has no `state_dict()` method, it will fail to recover to the specific batch.") | |||
states["sampler_states"] = sampler_states | |||
# 2. 保存模型的状态; | |||
if should_save_model: | |||
@@ -1,5 +1,5 @@ | |||
import os | |||
from typing import Optional, Dict, Union | |||
from typing import Optional, Dict, Union, Callable, Tuple | |||
from .paddle_driver import PaddleDriver | |||
from .utils import replace_batch_sampler, replace_sampler, get_device_from_visible | |||
@@ -11,16 +11,19 @@ from fastNLP.core.utils import ( | |||
get_paddle_device_id, | |||
paddle_move_data_to_device, | |||
) | |||
from fastNLP.core.utils.utils import _get_fun_msg | |||
from fastNLP.core.samplers import ( | |||
ReproducibleBatchSampler, | |||
RandomBatchSampler, | |||
ReproducibleSampler, | |||
RandomSampler, | |||
re_instantiate_sampler, | |||
) | |||
from fastNLP.core.log import logger | |||
if _NEED_IMPORT_PADDLE: | |||
import paddle | |||
from paddle import DataParallel | |||
from paddle.fluid.reader import _DatasetKind | |||
__all__ = [ | |||
@@ -28,109 +31,57 @@ __all__ = [ | |||
] | |||
class PaddleSingleDriver(PaddleDriver): | |||
def __init__(self, model, device: str, fp16: Optional[bool] = False, **kwargs): | |||
def __init__(self, model, device: Union[str, int], fp16: Optional[bool] = False, **kwargs): | |||
if isinstance(model, DataParallel): | |||
raise ValueError("`paddle.DataParallel` is not supported in `PaddleSingleDriver`") | |||
cuda_visible_devices = os.environ.get(USER_CUDA_VISIBLE_DEVICES, None) | |||
if cuda_visible_devices == "": | |||
device = "cpu" | |||
logger.info("You have set `CUDA_VISIBLE_DEVICES` to '' in system environment variable, and we are gonna to" | |||
"use `cpu` instead of `gpu` device.") | |||
super(PaddleSingleDriver, self).__init__(model, fp16=fp16, **kwargs) | |||
if device is None: | |||
raise ValueError("Parameter `device` can not be None in `PaddleSingleDriver`.") | |||
if device != "cpu": | |||
if isinstance(device, int): | |||
device_id = device | |||
else: | |||
device_id = get_paddle_device_id(device) | |||
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ[USER_CUDA_VISIBLE_DEVICES].split(",")[device_id] | |||
self.model_device = get_paddle_gpu_str(device) | |||
self.local_rank = 0 | |||
self.global_rank = 0 | |||
self.world_size = 1 | |||
if isinstance(model, paddle.DataParallel): | |||
# 注意这里的 unwrap_model 调用的是具体子类的方法; | |||
model = self.unwrap_model() | |||
if hasattr(model, "train_step"): | |||
logger.warning("Notice your model is a `paddle.DataParallel` model. And your model also " | |||
"implements the `train_step` method, which we can not call actually, we will " | |||
" call `forward` function instead of `train_step` and you should note that.") | |||
self._train_step = self.model | |||
self._train_signature_fn = model.forward | |||
if hasattr(model, "evaluate_step"): | |||
logger.warning("Notice your model is a `paddle.DataParallel` model. And your model also " | |||
"implements the `evaluate_step` method, which we can not call actually, we " | |||
"will call `forward` function instead of `evaluate_step` and you should note that.") | |||
self._validate_step = self.model | |||
self._validate_signature_fn = model.forward | |||
if hasattr(model, "test_step"): | |||
logger.warning("Notice your model is a `paddle.DataParallel` model. And your model also " | |||
"implements the `test_step` method, which we can not call actually, we will " | |||
"call `forward` function instead of `test_step` and you should note that.") | |||
self._test_step = self.model | |||
self._test_signature_fn = model.forward | |||
else: | |||
if hasattr(self.model, "train_step"): | |||
self._train_step = self.model.train_step | |||
self._train_signature_fn = None | |||
else: | |||
self._train_step = self.model | |||
# 输入的模型是 `DataParallel`,我们需要保证其 signature_fn 是正确的; | |||
model = self.unwrap_model() | |||
self._train_signature_fn = model.forward | |||
if hasattr(self.model, "evaluate_step"): | |||
self._validate_step = self.model.evaluate_step | |||
self._validate_signature_fn = None | |||
elif hasattr(self.model, "test_step"): | |||
self._validate_step = self.model.test_step | |||
self._validate_signature_fn = self.model.test_step | |||
else: | |||
self._validate_step = self.model | |||
model = self.unwrap_model() | |||
self._validate_signature_fn = model.forward | |||
if hasattr(self.model, "test_step"): | |||
self._test_step = self.model.test_step | |||
self._test_signature_fn = None | |||
elif hasattr(self.model, "evaluate_step"): | |||
self._test_step = self.model.evaluate_step | |||
self._test_signature_fn = self.model.evaluate_step | |||
else: | |||
self._test_step = self.model | |||
model = self.unwrap_model() | |||
self._test_signature_fn = model.forward | |||
def setup(self): | |||
device = self.model_device | |||
if device != "cpu": | |||
device_id = get_paddle_device_id(device) | |||
device_id = os.environ[USER_CUDA_VISIBLE_DEVICES].split(",")[device_id] | |||
os.environ["CUDA_VISIBLE_DEVICES"] = str(device_id) | |||
device = get_device_from_visible(device, output_type=str) | |||
device = get_device_from_visible(device, output_type=str) | |||
paddle.device.set_device(device) | |||
self.model.to(device) | |||
def train_step(self, batch) -> Dict: | |||
# 如果 batch 是一个 Dict,我们就默认帮其做参数匹配,否则就直接传入到 `train_step` 函数中,让用户自己处理; | |||
def model_call(self, batch, fn: Callable, signature_fn: Optional[Callable]) -> Dict: | |||
if isinstance(batch, Dict) and not self.wo_auto_param_call: | |||
return auto_param_call(self._train_step, batch, signature_fn=self._train_signature_fn) | |||
return auto_param_call(fn, batch, signature_fn=signature_fn) | |||
else: | |||
return self._train_step(batch) | |||
def backward(self, loss): | |||
self.grad_scaler.scale(loss).backward() | |||
def step(self): | |||
for optimizer in self.optimizers: | |||
self.grad_scaler.step(optimizer) | |||
self.grad_scaler.update() | |||
def validate_step(self, batch) -> Dict: | |||
if isinstance(batch, Dict) and not self.wo_auto_param_call: | |||
return auto_param_call(self._validate_step, batch, signature_fn=self._validate_signature_fn) | |||
return fn(batch) | |||
def get_model_call_fn(self, fn: str) -> Tuple: | |||
if hasattr(self.model, fn): | |||
fn = getattr(self.model, fn) | |||
if not callable(fn): | |||
raise RuntimeError(f"The `{fn}` attribute is not `Callable`.") | |||
logger.debug(f'Use {_get_fun_msg(fn, with_fp=False)}...') | |||
return fn, None | |||
elif fn in {"train_step", "evaluate_step"}: | |||
logger.debug(f'Use {_get_fun_msg(self.model.forward, with_fp=False)}...') | |||
return self.model, self.model.forward | |||
else: | |||
return self._validate_step(batch) | |||
def test_step(self, batch) -> Dict: | |||
if isinstance(batch, Dict) and not self.wo_auto_param_call: | |||
return auto_param_call(self._test_step, batch, signature_fn=self._test_signature_fn) | |||
else: | |||
return self._test_step(batch) | |||
raise RuntimeError(f"There is no `{fn}` method in your {type(self.model)}.") | |||
def move_data_to_device(self, batch: 'paddle.Tensor'): | |||
r""" | |||
@@ -164,12 +115,18 @@ class PaddleSingleDriver(PaddleDriver): | |||
return replace_sampler(dataloader, sampler) | |||
if reproducible: | |||
batch_sampler = RandomBatchSampler( | |||
batch_sampler=args.batch_sampler, | |||
batch_size=args.batch_size, | |||
drop_last=args.drop_last | |||
) | |||
return replace_batch_sampler(dataloader, batch_sampler) | |||
if isinstance(args.sampler, paddle.io.RandomSampler): | |||
# 如果本来就是随机的,直接替换 | |||
sampler = RandomSampler(args.sampler.data_source) | |||
logger.debug("Replace paddle RandomSampler into fastNLP RandomSampler.") | |||
return replace_sampler(dataloader, sampler) | |||
else: | |||
batch_sampler = RandomBatchSampler( | |||
batch_sampler=args.batch_sampler, | |||
batch_size=args.batch_size, | |||
drop_last=args.drop_last | |||
) | |||
return replace_batch_sampler(dataloader, batch_sampler) | |||
else: | |||
return dataloader | |||
@@ -11,7 +11,6 @@ from typing import Dict, Optional, Union | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
from fastNLP.core.utils import get_paddle_device_id, auto_param_call, paddle_to | |||
from fastNLP.core.samplers import RandomSampler | |||
from fastNLP.envs.env import FASTNLP_GLOBAL_SEED, FASTNLP_SEED_WORKERS, USER_CUDA_VISIBLE_DEVICES | |||
from fastNLP.core.log import logger | |||
@@ -87,8 +86,6 @@ class ForwardState(IntEnum): | |||
TEST = 2 | |||
PREDICT = 3 | |||
_MODE_PARAMETER = "forward_state" | |||
class _FleetWrappingModel(Layer): | |||
""" | |||
参考_DDPWrappingModel,paddle的分布式训练也需要用paddle.nn.DataParallel进行包装,采用和 | |||
@@ -98,83 +95,16 @@ class _FleetWrappingModel(Layer): | |||
super(_FleetWrappingModel, self).__init__() | |||
self.model = model | |||
if isinstance(model, paddle.DataParallel): | |||
model = model._layers | |||
if hasattr(model, "train_step"): | |||
logger.warning( | |||
"Notice your model is a `paddle.DataParallel` model. And your " | |||
"model also implements the `train_step` method, which we can not call actually, we will" | |||
" call `forward` function instead of `train_step` and you should note that.") | |||
self._train_step = self.model | |||
self._train_signature_fn = model.forward | |||
if hasattr(model, "evaluate_step"): | |||
logger.warning( | |||
"Notice your model is a `paddle.DataParallel` model. And your " | |||
"model also implements the `evaluate_step` method, which we can not call actually, " | |||
"we will call `forward` function instead of `evaluate_step` and you should note that.") | |||
self._validate_step = self.model | |||
self._validate_signature_fn = model.forward | |||
if hasattr(model, "test_step"): | |||
logger.warning( | |||
"Notice your model is a `paddle.DataParallel` model. And your " | |||
"model also implements the `test_step` method, which we can not call actually, we will" | |||
" call `forward` function instead of `test_step` and you should note that.") | |||
self._test_step = self.model | |||
self._test_signature_fn = model.forward | |||
else: | |||
if hasattr(model, "train_step"): | |||
self._train_step = model.train_step | |||
self._train_signature_fn = None | |||
else: | |||
self._train_step = model | |||
self._train_signature_fn = model.forward | |||
if hasattr(model, "evaluate_step"): | |||
self._validate_step = model.validate_step | |||
self._validate_signature_fn = None | |||
elif hasattr(model, "test_step"): | |||
self._validate_step = model.test_step | |||
self._validate_signature_fn = None | |||
else: | |||
self._validate_step = model | |||
self._validate_signature_fn = model.forward | |||
if hasattr(model, "test_step"): | |||
self._test_step = model.test_step | |||
self._test_signature_fn = None | |||
elif hasattr(model, "evaluate_step"): | |||
self._test_step = model.validate_step | |||
self._test_signature_fn = None | |||
else: | |||
self._test_step = model | |||
self._test_signature_fn = model.forward | |||
def forward(self, batch, **kwargs) -> Dict: | |||
forward_state = kwargs.pop(_MODE_PARAMETER) | |||
fn = kwargs.pop("fastnlp_fn") | |||
signature_fn = kwargs.pop("fastnlp_signature_fn") | |||
wo_auto_param_call = kwargs.pop("wo_auto_param_call") | |||
if forward_state == ForwardState.TRAIN: | |||
if isinstance(batch, Dict) and not wo_auto_param_call: | |||
return auto_param_call(self._train_step, batch, signature_fn=self._train_signature_fn) | |||
else: | |||
return self._train_step(batch) | |||
elif forward_state == ForwardState.VALIDATE: | |||
if isinstance(batch, Dict) and not wo_auto_param_call: | |||
return auto_param_call(self._validate_step, batch, signature_fn=self._validate_signature_fn) | |||
else: | |||
return self._validate_step(batch) | |||
elif forward_state == ForwardState.TEST: | |||
if isinstance(batch, Dict) and not wo_auto_param_call: | |||
return auto_param_call(self._test_step, batch, signature_fn=self._test_signature_fn) | |||
else: | |||
return self._test_step(batch) | |||
elif forward_state == ForwardState.PREDICT: | |||
raise NotImplementedError("'PREDICT' evaluate_fn has not been implemented.") | |||
if isinstance(batch, Dict) and not wo_auto_param_call: | |||
return auto_param_call(fn, batch, signature_fn=signature_fn) | |||
else: | |||
raise NotImplementedError("You should direct a concrete evaluate_fn.") | |||
return fn(batch) | |||
class DummyGradScaler: | |||
""" | |||
@@ -1,6 +1,7 @@ | |||
from typing import Optional, Dict, Union, Callable | |||
from typing import Optional, Dict, Union, Callable, Tuple | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE, _NEED_IMPORT_TORCH | |||
from fastNLP.core.utils.utils import _get_fun_msg | |||
if _NEED_IMPORT_PADDLE: | |||
@@ -48,33 +49,6 @@ class TorchPaddleDriver(Driver): | |||
elif self._data_device is not None: | |||
raise ValueError("Parameter `device` is wrong type, please check our documentation for the right use.") | |||
if hasattr(self.model, "train_step"): | |||
self._train_step = self.model.train_step | |||
self._train_signature_fn = None | |||
else: | |||
self._train_step = self.model | |||
self._train_signature_fn = self.model.forward | |||
if hasattr(self.model, "evaluate_step"): | |||
self._validate_step = self.model.evaluate_step | |||
self._validate_signature_fn = None | |||
elif hasattr(self.model, "test_step"): | |||
self._validate_step = self.model.test_step | |||
self._validate_signature_fn = self.model.forward | |||
else: | |||
self._validate_step = self.model | |||
self._validate_signature_fn = self.model.forward | |||
if hasattr(self.model, "test_step"): | |||
self._test_step = self.model.test_step | |||
self._test_signature_fn = None | |||
elif hasattr(self.model, "evaluate_step"): | |||
self._test_step = self.model.evaluate_step | |||
self._test_signature_fn = self.model.forward | |||
else: | |||
self._test_step = self.model | |||
self._test_signature_fn = self.model.forward | |||
def setup(self): | |||
if self.model_device is not None: | |||
paddle.device.set_device(self.model_device.replace("cuda", "gpu")) | |||
@@ -103,12 +77,6 @@ class TorchPaddleDriver(Driver): | |||
f"'torch.optim.Optimizer' or 'paddle.optimizers.Optimizer' type, " | |||
f"not {type(each_optimizer)}.") | |||
def train_step(self, batch) -> Dict: | |||
if isinstance(batch, Dict): | |||
return auto_param_call(self._train_step, batch) | |||
else: | |||
return self._train_step(batch) | |||
def step(self): | |||
for optimizer in self.optimizers: | |||
optimizer.step() | |||
@@ -125,17 +93,24 @@ class TorchPaddleDriver(Driver): | |||
else: | |||
raise ValueError("Unknown optimizers type.") | |||
def validate_step(self, batch): | |||
if isinstance(batch, Dict): | |||
return auto_param_call(self._validate_step, batch) | |||
def model_call(self, batch, fn: Callable, signature_fn: Optional[Callable]) -> Dict: | |||
if isinstance(batch, Dict) and not self.wo_auto_param_call: | |||
return auto_param_call(fn, batch, signature_fn=signature_fn) | |||
else: | |||
return self._validate_step(batch) | |||
def test_step(self, batch): | |||
if isinstance(batch, Dict): | |||
return auto_param_call(self._test_step, batch) | |||
return fn(batch) | |||
def get_model_call_fn(self, fn: str) -> Tuple: | |||
if hasattr(self.model, fn): | |||
fn = getattr(self.model, fn) | |||
if not callable(fn): | |||
raise RuntimeError(f"The `{fn}` attribute is not `Callable`.") | |||
logger.debug(f'Use {_get_fun_msg(fn, with_fp=False)}...') | |||
return fn, None | |||
elif fn in {"train_step", "evaluate_step"}: | |||
logger.debug(f'Use {_get_fun_msg(self.model.forward, with_fp=False)}...') | |||
return self.model, self.model.forward | |||
else: | |||
return self._test_step(batch) | |||
raise RuntimeError(f"There is no `{fn}` method in your {type(self.model)}.") | |||
def predict_step(self, batch): | |||
if isinstance(batch, Dict): | |||
@@ -5,7 +5,6 @@ | |||
import os | |||
import json | |||
import sys | |||
import subprocess | |||
from collections import defaultdict | |||
@@ -85,7 +85,7 @@ class MixModule: | |||
def test_step(self, batch): | |||
raise NotImplementedError | |||
def validate_step(self, batch): | |||
def evaluate_step(self, batch): | |||
raise NotImplementedError | |||
def train(self): | |||
@@ -1,13 +1,11 @@ | |||
import pytest | |||
import os | |||
os.environ["FASTNLP_BACKEND"] = "paddle" | |||
from typing import Any | |||
from dataclasses import dataclass | |||
from fastNLP.core.controllers.trainer import Trainer | |||
from fastNLP.core.metrics.accuracy import Accuracy | |||
from fastNLP.core.callbacks.progress_callback import RichCallback | |||
from fastNLP.envs import FASTNLP_DISTRIBUTED_CHECK | |||
from paddle.optimizer import Adam | |||
from paddle.io import DataLoader | |||
@@ -19,40 +17,18 @@ from tests.helpers.callbacks.helper_callbacks import RecordLossCallback, RecordM | |||
from tests.helpers.utils import magic_argv_env_context | |||
@dataclass | |||
class MNISTTrainPaddleConfig: | |||
class TrainPaddleConfig: | |||
num_labels: int = 10 | |||
feature_dimension: int = 784 | |||
feature_dimension: int = 10 | |||
batch_size: int = 32 | |||
batch_size: int = 2 | |||
shuffle: bool = True | |||
validate_every = -5 | |||
evaluate_every = 2 | |||
driver: str = "paddle" | |||
device = "gpu" | |||
@dataclass | |||
class MNISTTrainFleetConfig: | |||
num_labels: int = 10 | |||
feature_dimension: int = 784 | |||
batch_size: int = 32 | |||
shuffle: bool = True | |||
validate_every = -5 | |||
@dataclass | |||
class TrainerParameters: | |||
model: Any = None | |||
optimizers: Any = None | |||
train_dataloader: Any = None | |||
validate_dataloaders: Any = None | |||
input_mapping: Any = None | |||
output_mapping: Any = None | |||
metrics: Any = None | |||
@pytest.mark.parametrize("driver,device", [("paddle", "cpu")("paddle", 1)]) | |||
@pytest.mark.parametrize("driver,device", [("paddle", "cpu"), ("paddle", 1)]) | |||
# @pytest.mark.parametrize("driver,device", [("fleet", [0, 1])]) | |||
@pytest.mark.parametrize("callbacks", [[RecordMetricCallback(monitor="acc#acc", metric_threshold=0.7, larger_better=True), | |||
RichCallback(5), RecordLossCallback(loss_threshold=0.3)]]) | |||
@pytest.mark.parametrize("callbacks", [[RecordMetricCallback(monitor="acc#acc", metric_threshold=0.0, larger_better=True), | |||
RichCallback(5)]]) | |||
@magic_argv_env_context | |||
def test_trainer_paddle( | |||
driver, | |||
@@ -60,38 +36,36 @@ def test_trainer_paddle( | |||
callbacks, | |||
n_epochs=2, | |||
): | |||
trainer_params = TrainerParameters() | |||
trainer_params.model = PaddleNormalModel_Classification_1( | |||
num_labels=MNISTTrainPaddleConfig.num_labels, | |||
feature_dimension=MNISTTrainPaddleConfig.feature_dimension | |||
model = PaddleNormalModel_Classification_1( | |||
num_labels=TrainPaddleConfig.num_labels, | |||
feature_dimension=TrainPaddleConfig.feature_dimension | |||
) | |||
trainer_params.optimizers = Adam(parameters=trainer_params.model.parameters(), learning_rate=0.0001) | |||
optimizers = Adam(parameters=model.parameters(), learning_rate=0.0001) | |||
train_dataloader = DataLoader( | |||
dataset=PaddleRandomMaxDataset(6400, 10), | |||
batch_size=MNISTTrainPaddleConfig.batch_size, | |||
dataset=PaddleRandomMaxDataset(20, 10), | |||
batch_size=TrainPaddleConfig.batch_size, | |||
shuffle=True | |||
) | |||
val_dataloader = DataLoader( | |||
dataset=PaddleRandomMaxDataset(1000, 10), | |||
batch_size=MNISTTrainPaddleConfig.batch_size, | |||
dataset=PaddleRandomMaxDataset(20, 10), | |||
batch_size=TrainPaddleConfig.batch_size, | |||
shuffle=True | |||
) | |||
trainer_params.train_dataloader = train_dataloader | |||
trainer_params.validate_dataloaders = val_dataloader | |||
trainer_params.validate_every = MNISTTrainPaddleConfig.validate_every | |||
trainer_params.metrics = {"acc": Accuracy(backend="paddle")} | |||
train_dataloader = train_dataloader | |||
evaluate_dataloaders = val_dataloader | |||
evaluate_every = TrainPaddleConfig.evaluate_every | |||
metrics = {"acc": Accuracy(backend="paddle")} | |||
trainer = Trainer( | |||
model=trainer_params.model, | |||
model=model, | |||
driver=driver, | |||
device=device, | |||
optimizers=trainer_params.optimizers, | |||
train_dataloader=trainer_params.train_dataloader, | |||
validate_dataloaders=trainer_params.validate_dataloaders, | |||
validate_every=trainer_params.validate_every, | |||
input_mapping=trainer_params.input_mapping, | |||
output_mapping=trainer_params.output_mapping, | |||
metrics=trainer_params.metrics, | |||
optimizers=optimizers, | |||
train_dataloader=train_dataloader, | |||
evaluate_dataloaders=evaluate_dataloaders, | |||
evaluate_every=evaluate_every, | |||
input_mapping=None, | |||
output_mapping=None, | |||
metrics=metrics, | |||
n_epochs=n_epochs, | |||
callbacks=callbacks, | |||
@@ -117,12 +117,13 @@ class TestSetDistReproDataloader: | |||
""" | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_batch_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_batch_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 BucketedBatchSampler 时的表现 | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=True) | |||
batch_sampler = BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=not shuffle) | |||
batch_sampler = BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, batch_sampler, False) | |||
assert not (replaced_loader is dataloader) | |||
@@ -133,12 +134,13 @@ class TestSetDistReproDataloader: | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 RandomSampler 时的表现 | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=True) | |||
sampler = RandomSampler(self.dataset, shuffle=True) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=not shuffle) | |||
sampler = RandomSampler(self.dataset, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, sampler, False) | |||
assert not (replaced_loader is dataloader) | |||
@@ -171,14 +173,15 @@ class TestSetDistReproDataloader: | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_none_reproducible_false_dataloader_reproducible_batch_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_none_reproducible_false_dataloader_reproducible_batch_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 False 、dataloader 有 BucketedBatchSampler | |||
时的表现 | |||
""" | |||
dataloader = DataLoader( | |||
self.dataset, | |||
batch_sampler = BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4), | |||
batch_sampler = BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle), | |||
) | |||
dataloader.batch_sampler.set_distributed( | |||
num_replicas=self.driver.world_size, | |||
@@ -195,12 +198,13 @@ class TestSetDistReproDataloader: | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_none_reproducible_false_dataloader_reproducible_smpler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_none_reproducible_false_dataloader_reproducible_smpler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 False 、dataloader 有 RandomSampler 时的表现 | |||
""" | |||
batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2) | |||
batch_sampler.sampler = RandomSampler(self.dataset, True) | |||
batch_sampler.sampler = RandomSampler(self.dataset, shuffle) | |||
batch_sampler.sampler.set_distributed( | |||
num_replicas=self.driver.world_size, | |||
rank=self.driver.global_rank | |||
@@ -222,11 +226,12 @@ class TestSetDistReproDataloader: | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_none_reproducible_false_dataloader_normal(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_none_reproducible_false_dataloader_normal(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 False 、dataloader 为一般情况时的表现 | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=True) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False) | |||
assert replaced_loader is dataloader | |||
@@ -238,14 +243,15 @@ class TestSetDistReproDataloader: | |||
""" | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_dist_dataloader_reproducible_batch_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_dist_dataloader_reproducible_batch_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 'dist'、dataloader.batch_sampler 为 ReproducibleBatchSampler | |||
的表现 | |||
""" | |||
dataloader = DataLoader( | |||
dataset=self.dataset, | |||
batch_sampler=BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4) | |||
batch_sampler=BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle) | |||
) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
@@ -258,13 +264,14 @@ class TestSetDistReproDataloader: | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_dist_dataloader_reproducible_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_dist_dataloader_reproducible_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 'dist'、dataloader.batch_sampler.sampler 为 ReproducibleSampler | |||
的表现 | |||
""" | |||
batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2) | |||
batch_sampler.sampler = RandomSampler(self.dataset, True) | |||
batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2, shuffle=shuffle) | |||
batch_sampler.sampler = RandomSampler(self.dataset, shuffle) | |||
dataloader = DataLoader( | |||
self.dataset, | |||
batch_sampler=batch_sampler | |||
@@ -276,16 +283,17 @@ class TestSetDistReproDataloader: | |||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
assert not (replaced_loader.batch_sampler.sampler is dataloader.batch_sampler.sampler) | |||
assert replaced_loader.batch_sampler.batch_size == 2 | |||
assert replaced_loader.batch_sampler.sampler.shuffle == True | |||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_dist_dataloader_normal(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_dist_dataloader_normal(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 'dist'、dataloader 为一般情况的表现 | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=True) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
assert not (replaced_loader is dataloader) | |||
@@ -293,7 +301,7 @@ class TestSetDistReproDataloader: | |||
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) | |||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
assert replaced_loader.batch_sampler.sampler.shuffle == True | |||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle | |||
dist.barrier() | |||
""" | |||
@@ -302,13 +310,14 @@ class TestSetDistReproDataloader: | |||
""" | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_unrepeat_dataloader_reproducible_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_unrepeat_dataloader_reproducible_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 'unrepeatdist'、dataloader.batch_sampler.sampler 为 ReproducibleSampler | |||
的表现 | |||
""" | |||
batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2) | |||
batch_sampler.sampler = RandomSampler(self.dataset, True) | |||
batch_sampler.sampler = RandomSampler(self.dataset, shuffle) | |||
dataloader = DataLoader( | |||
self.dataset, | |||
batch_sampler=batch_sampler | |||
@@ -320,18 +329,19 @@ class TestSetDistReproDataloader: | |||
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) | |||
assert isinstance(replaced_loader.batch_sampler.sampler, UnrepeatedRandomSampler) | |||
assert replaced_loader.batch_sampler.batch_size == 2 | |||
assert replaced_loader.batch_sampler.sampler.shuffle == True | |||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_unrepeat_dataloader_unrepreated_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_unrepeat_dataloader_unrepreated_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 'unrepeatdist'、dataloader.batch_sampler.sampler 为 UnrepeatedSampler | |||
的表现 | |||
""" | |||
batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2) | |||
batch_sampler.sampler = UnrepeatedRandomSampler(self.dataset, True) | |||
batch_sampler.sampler = UnrepeatedRandomSampler(self.dataset, shuffle) | |||
dataloader = DataLoader( | |||
self.dataset, | |||
batch_sampler=batch_sampler | |||
@@ -349,11 +359,12 @@ class TestSetDistReproDataloader: | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_set_dist_repro_dataloader_with_dist_unrepeat_dataloader_normal(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_unrepeat_dataloader_normal(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 中 dist 为 'unrepeatdist'、dataloader 为一般情况的表现 | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=True) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) | |||
assert not (replaced_loader is dataloader) | |||
@@ -1,4 +1,5 @@ | |||
import os | |||
from re import S | |||
os.environ["FASTNLP_BACKEND"] = "paddle" | |||
import pytest | |||
from pathlib import Path | |||
@@ -56,34 +57,57 @@ def test_save_and_load_with_randombatchsampler(only_state_dict): | |||
dataset=dataset, | |||
batch_sampler=RandomBatchSampler(BatchSampler(dataset, batch_size=4), 4, False) | |||
) | |||
num_consumed_batches = 2 | |||
# TODO 断点重训完善后在这里迭代几次 | |||
already_seen_set = set() | |||
for idx, batch in enumerate(dataloader): | |||
if idx >= num_consumed_batches: | |||
break | |||
already_seen_set.update(batch) | |||
sampler_states = dataloader.batch_sampler.state_dict() | |||
save_states = {"num_consumed_batches": num_consumed_batches} | |||
if only_state_dict: | |||
driver1.save(Path(path), {}, dataloader, only_state_dict, should_save_model=True) | |||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
else: | |||
driver1.save(Path(path), {}, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
# 加载 | |||
# 更改 batch_size | |||
dataloader = DataLoader( | |||
dataset=dataset, | |||
batch_sampler=RandomBatchSampler(BatchSampler(dataset, batch_size=2), 2, False) | |||
) | |||
load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
replaced_loader = load_states.pop("dataloader") | |||
# 1. 检查 optimizer 的状态 | |||
# TODO optimizer 的 state_dict 总是为空 | |||
# 2. 检查 batch_sampler 是否被正确地加载和替换 | |||
replaced_loader = states["dataloader"] | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert replaced_loader.batch_sampler.index_list == sampler_states["index_list"] | |||
assert replaced_loader.batch_sampler.data_idx == sampler_states["data_idx"] | |||
# 3. 检查 model 的参数是否被正确加载 | |||
for batch in dataloader: | |||
res1 = driver1.validate_step(batch) | |||
res2 = driver2.validate_step(batch) | |||
res1 = driver1.model.evaluate_step(**batch) | |||
res2 = driver2.model.evaluate_step(**batch) | |||
assert paddle.equal_all(res1["pred"], res2["pred"]) | |||
# 4. 检查 batch_idx | |||
# TODO | |||
start_batch = load_states.pop('batch_idx_in_epoch') | |||
assert start_batch == 2 * num_consumed_batches | |||
left_batches = set() | |||
for idx, batch in enumerate(replaced_loader): | |||
left_batches.update(batch) | |||
assert len(left_batches) + len(already_seen_set) == len(dataset) | |||
assert len(left_batches | already_seen_set) == len(dataset) | |||
finally: | |||
synchronize_safe_rm(path) | |||
@@ -104,21 +128,36 @@ def test_save_and_load_with_randomsampler(only_state_dict): | |||
dataset, | |||
batch_sampler=batch_sampler | |||
) | |||
num_consumed_batches = 2 | |||
# TODO 断点重训完善后在这里迭代几次 | |||
already_seen_set = set() | |||
for idx, batch in enumerate(dataloader): | |||
if idx >= num_consumed_batches: | |||
break | |||
already_seen_set.update(batch) | |||
sampler_states = dataloader.batch_sampler.sampler.state_dict() | |||
save_states = {"num_consumed_batches": num_consumed_batches} | |||
if only_state_dict: | |||
driver1.save(Path(path), {}, dataloader, only_state_dict, should_save_model=True) | |||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
else: | |||
driver1.save(Path(path), {}, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[paddle.ones((16, 10))]) | |||
# 加载 | |||
# 更改 batch_size | |||
dataloader = DataLoader( | |||
dataset=dataset, | |||
batch_sampler=RandomBatchSampler(BatchSampler(dataset, batch_size=2), 2, False) | |||
) | |||
load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
replaced_loader = load_states.pop("dataloader") | |||
# 1. 检查 optimizer 的状态 | |||
# TODO optimizer 的 state_dict 总是为空 | |||
# 2. 检查 sampler 是否被正确地加载和替换 | |||
replaced_loader = states["dataloader"] | |||
replaced_loader = load_states["dataloader"] | |||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
assert replaced_loader.batch_sampler.sampler.seed == sampler_states["seed"] | |||
@@ -129,60 +168,51 @@ def test_save_and_load_with_randomsampler(only_state_dict): | |||
# 3. 检查 model 的参数是否被正确加载 | |||
for batch in dataloader: | |||
res1 = driver1.validate_step(batch) | |||
res2 = driver2.validate_step(batch) | |||
res1 = driver1.model.evaluate_step(**batch) | |||
res2 = driver2.model.evaluate_step(**batch) | |||
assert paddle.equal_all(res1["pred"], res2["pred"]) | |||
# 4. 检查 batch_idx | |||
# TODO | |||
finally: | |||
synchronize_safe_rm(path) | |||
def test_save_and_load_state_dict(prepare_test_save_load): | |||
""" | |||
测试save和load函数 | |||
TODO optimizer的state_dict为空,暂时不测试 | |||
""" | |||
try: | |||
path = "dict" | |||
driver1, driver2, dataloader = prepare_test_save_load | |||
driver1.save_model(path) | |||
driver2.load_model(path) | |||
for batch in dataloader: | |||
batch = driver1.move_data_to_device(batch) | |||
res1 = driver1.validate_step(batch) | |||
res2 = driver2.validate_step(batch) | |||
start_batch = load_states.pop('batch_idx_in_epoch') | |||
assert start_batch == 2 * num_consumed_batches | |||
left_batches = set() | |||
for idx, batch in enumerate(replaced_loader): | |||
left_batches.update(batch) | |||
assert paddle.equal_all(res1["pred"], res2["pred"]) | |||
assert len(left_batches) + len(already_seen_set) == len(dataset) | |||
assert len(left_batches | already_seen_set) == len(dataset) | |||
finally: | |||
synchronize_safe_rm(path) | |||
def test_save_and_load_whole_model(prepare_test_save_load): | |||
@pytest.mark.parametrize("only_state_dict", ([True, False])) | |||
def test_save_and_load_model(prepare_test_save_load, only_state_dict): | |||
""" | |||
测试save和load函数 | |||
TODO optimizer的state_dict为空,暂时不测试 | |||
测试 save_model 和 load_model 函数 | |||
""" | |||
try: | |||
path = "model" | |||
driver1, driver2, dataloader = prepare_test_save_load | |||
driver1.save_model(path, only_state_dict=False, input_spec=[paddle.ones((32, 10))]) | |||
driver2.load_model(path, only_state_dict=False) | |||
if only_state_dict: | |||
driver1.save_model(path, only_state_dict) | |||
else: | |||
driver1.save_model(path, only_state_dict, input_spec=[paddle.ones((32, 10))]) | |||
driver2.load_model(path, only_state_dict) | |||
for batch in dataloader: | |||
batch = driver1.move_data_to_device(batch) | |||
res1 = driver1.validate_step(batch) | |||
res2 = driver2.validate_step(batch) | |||
res1 = driver1.model.evaluate_step(**batch) | |||
res2 = driver2.model.evaluate_step(**batch) | |||
assert paddle.equal_all(res1["pred"], res2["pred"]) | |||
finally: | |||
synchronize_safe_rm(path + ".pdiparams") | |||
synchronize_safe_rm(path + ".pdiparams.info") | |||
synchronize_safe_rm(path + ".pdmodel") | |||
if only_state_dict: | |||
synchronize_safe_rm(path) | |||
else: | |||
synchronize_safe_rm(path + ".pdiparams") | |||
synchronize_safe_rm(path + ".pdiparams.info") | |||
synchronize_safe_rm(path + ".pdmodel") | |||
class TestSingleDeviceFunction: | |||
""" | |||
@@ -199,13 +229,7 @@ class TestSingleDeviceFunction: | |||
测试能否运行 | |||
""" | |||
res = self.driver.unwrap_model() | |||
def test_check_evaluator_mode(self): | |||
""" | |||
这两个函数没有返回值和抛出异常,仅检查是否有import错误等影响运行的因素 | |||
""" | |||
self.driver.check_evaluator_mode("validate") | |||
self.driver.check_evaluator_mode("test") | |||
assert res is self.driver.model | |||
def test_is_distributed(self): | |||
assert self.driver.is_distributed() == False | |||
@@ -237,44 +261,55 @@ class TestSetDistReproDataloder: | |||
assert replaced_loader is dataloader | |||
def test_set_dist_repro_dataloader_with_reproducible_true(self): | |||
@pytest.mark.parametrize("shuffle", [True, False]) | |||
def test_set_dist_repro_dataloader_with_reproducible_true(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 参数 `reproducible` 为 True 时的表现 | |||
当dist为字符串时,此时应该返回新的 dataloader,且 batch_sampler 为 RandomBatchSampler | |||
当dist为字符串时,此时应该返回新的 dataloader,且如果原 sampler 为 paddle.io.RandomSampler(shuffle=True), | |||
只会替换 Sampler 为 RandomSampler;否则会替换 batch_sampler 为 RandomBatchSampler | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=True) | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=True) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler.batch_sampler, BatchSampler) | |||
if shuffle: | |||
# 此时会替换 sampler | |||
assert isinstance(replaced_loader.batch_sampler, paddle.io.BatchSampler) | |||
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) | |||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
else: | |||
# 此时会替换 batch_sampler | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler.batch_sampler, BatchSampler) | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
# self.check_set_dist_repro_dataloader(dataloader, replaced_loader) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
def test_set_dist_repro_dataloader_with_dist_batch_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_batch_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 参数 dist 不是字符串时的表现,且 dist 是 ReproducibleBatchSampler | |||
应该返回新的 dataloader,并将 batch_sampler 替换为 dist 对应的 Sampler | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=True) | |||
dist = RandomBatchSampler(BatchSampler(self.dataset, batch_size=4), 4, False) | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=not shuffle) | |||
dist = RandomBatchSampler(BatchSampler(self.dataset, batch_size=4, shuffle=shuffle), 4, False) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist=dist, reproducible=False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert replaced_loader.batch_sampler is dist | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
def test_set_dist_repro_dataloader_with_dist_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dist_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 参数 dist 不是字符串时的表现 | |||
应该返回新的 dataloader,并将 batch_sampler.sampler 替换为 dist 对应的 Sampler | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=True) | |||
dist = RandomSampler(self.dataset, shuffle=True) | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=not shuffle) | |||
dist = RandomSampler(self.dataset, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist=dist, reproducible=False) | |||
assert not (replaced_loader is dataloader) | |||
@@ -284,16 +319,21 @@ class TestSetDistReproDataloder: | |||
assert replaced_loader.batch_sampler.sampler is dist | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
def test_set_dist_repro_dataloader_with_dataloader_reproducible_batch_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dataloader_reproducible_batch_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 参数 dataloader 已经支持断点重训时的表现 | |||
应该返回新的 dataloader,且其余各项设置和原来相同 | |||
""" | |||
dataloader = DataLoader( | |||
dataset=self.dataset, | |||
batch_sampler=RandomBatchSampler(BatchSampler(self.dataset, batch_size=4), 4, False) | |||
batch_sampler=RandomBatchSampler( | |||
BatchSampler(self.dataset, batch_size=4, shuffle=shuffle), | |||
batch_size=4, | |||
drop_last=False, | |||
) | |||
) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=False) | |||
@@ -303,15 +343,16 @@ class TestSetDistReproDataloder: | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
def test_set_dist_repro_dataloader_with_dataloader_reproducible_sampler(self): | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_set_dist_repro_dataloader_with_dataloader_reproducible_sampler(self, shuffle): | |||
""" | |||
测试 set_dist_repro_dataloader 参数 dataloader 已经支持断点重训时的表现 | |||
应该返回新的 dataloader,且其余各项设置和原来相同 | |||
""" | |||
batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2) | |||
batch_sampler.sampler = RandomSampler(self.dataset, True) | |||
batch_sampler = BatchSampler(dataset=self.dataset, batch_size=2, shuffle=shuffle) | |||
batch_sampler.sampler = RandomSampler(self.dataset, shuffle) | |||
dataloader = DataLoader( | |||
self.dataset, | |||
batch_sampler=batch_sampler | |||
@@ -323,11 +364,11 @@ class TestSetDistReproDataloder: | |||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
assert not (replaced_loader.batch_sampler.sampler is dataloader.batch_sampler.sampler) | |||
assert replaced_loader.batch_sampler.batch_size == 2 | |||
assert replaced_loader.batch_sampler.sampler.shuffle == True | |||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
def check_set_dist_repro_dataloader(self, dataloader, replaced_loader): | |||
def check_set_dist_repro_dataloader(self, dataloader, replaced_loader, shuffle): | |||
""" | |||
测试单卡下 set_dist_repro_dataloader 函数的执行结果是否正确 | |||
""" | |||
@@ -346,9 +387,6 @@ class TestSetDistReproDataloder: | |||
# 加载 num_consumed_samples_array,设置正确取出的 batch 数目 | |||
num_consumed_samples_array = sampler_states.pop('num_consumed_samples_array', None) | |||
import time | |||
time.sleep(5) | |||
# 重新加载,应该可以输出剩下的内容,且对于 PaddleNormalDataset 来说,排序后应该是一个 range | |||
left_idxes = set() | |||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler): | |||
@@ -357,16 +395,29 @@ class TestSetDistReproDataloder: | |||
sampler_states["num_consumed_samples"] = num_consumed_samples_array[num_consumed_batches] | |||
else: | |||
sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size | |||
replaced_loader.batch_sampler.load_state_dict(sampler_states) | |||
# 重新改造 dataloader | |||
new_loader = DataLoader( | |||
dataset=replaced_loader.dataset, | |||
batch_sampler=RandomBatchSampler( | |||
BatchSampler(replaced_loader.dataset, shuffle=shuffle, batch_size=batch_size), | |||
batch_size=batch_size, | |||
drop_last=False, | |||
) | |||
) | |||
new_loader.batch_sampler.load_state_dict(sampler_states) | |||
else: | |||
batch_size = replaced_loader.batch_sampler.batch_size | |||
num_consumed_batches = num_consumed_batches * batch_size | |||
if num_consumed_samples_array is not None: | |||
sampler_states["num_consumed_samples"] = num_consumed_samples_array[num_consumed_batches] | |||
else: | |||
sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size | |||
replaced_loader.batch_sampler.sampler.load_state_dict(sampler_states) | |||
replaced_loader.batch_sampler.sampler.set_epoch(0) | |||
for idx, batch in enumerate(replaced_loader): | |||
# 重新构造 dataloader | |||
batch_sampler = BatchSampler(replaced_loader.dataset, shuffle=shuffle, batch_size=batch_size) | |||
batch_sampler.sampler = RandomSampler(replaced_loader.dataset, shuffle=shuffle) | |||
new_loader = DataLoader(replaced_loader.dataset, batch_sampler=batch_sampler) | |||
new_loader.batch_sampler.sampler.load_state_dict(sampler_states) | |||
for idx, batch in enumerate(new_loader): | |||
left_idxes.update(batch) | |||
assert len(left_idxes) + len(already_seen_idx) == len(self.dataset) | |||
@@ -72,7 +72,7 @@ class RecordTrainerEventTriggerCallback(Callback): | |||
print("on_train_end") | |||
def on_train_epoch_begin(self, trainer): | |||
if trainer.current_epoch_idx >= 1: | |||
if trainer.cur_epoch_idx >= 1: | |||
# 触发 on_exception; | |||
raise Exception | |||
print("on_train_epoch_begin") | |||
@@ -26,7 +26,7 @@ class PaddleNormalModel_Classification_1(paddle.nn.Layer): | |||
x = self(x) | |||
return {"loss": self.loss_fn(x, y)} | |||
def validate_step(self, x, y): | |||
def evaluate_step(self, x, y): | |||
x = self(x) | |||
return {"pred": x, "target": y.reshape((-1,))} | |||