[merge] dpcnn相关,yelploadertags/v0.4.10
@@ -19,7 +19,7 @@ class DotAttention(nn.Module): | |||
补上文档 | |||
""" | |||
def __init__(self, key_size, value_size, dropout=0): | |||
def __init__(self, key_size, value_size, dropout=0.0): | |||
super(DotAttention, self).__init__() | |||
self.key_size = key_size | |||
self.value_size = value_size | |||
@@ -37,7 +37,7 @@ class DotAttention(nn.Module): | |||
""" | |||
output = torch.matmul(Q, K.transpose(1, 2)) / self.scale | |||
if mask_out is not None: | |||
output.masked_fill_(mask_out, -1e8) | |||
output.masked_fill_(mask_out, -1e18) | |||
output = self.softmax(output) | |||
output = self.drop(output) | |||
return torch.matmul(output, V) | |||
@@ -67,9 +67,8 @@ class MultiHeadAttention(nn.Module): | |||
self.k_in = nn.Linear(input_size, in_size) | |||
self.v_in = nn.Linear(input_size, in_size) | |||
# follow the paper, do not apply dropout within dot-product | |||
self.attention = DotAttention(key_size=key_size, value_size=value_size, dropout=0) | |||
self.attention = DotAttention(key_size=key_size, value_size=value_size, dropout=dropout) | |||
self.out = nn.Linear(value_size * num_head, input_size) | |||
self.drop = TimestepDropout(dropout) | |||
self.reset_parameters() | |||
def reset_parameters(self): | |||
@@ -105,7 +104,7 @@ class MultiHeadAttention(nn.Module): | |||
# concat all heads, do output linear | |||
atte = atte.permute(1, 2, 0, 3).contiguous().view(batch, sq, -1) | |||
output = self.drop(self.out(atte)) | |||
output = self.out(atte) | |||
return output | |||
@@ -0,0 +1,111 @@ | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
from fastNLP.modules.decoder import ConditionalRandomField | |||
from fastNLP.modules.encoder import Embedding | |||
from fastNLP.core.utils import seq_len_to_mask | |||
from fastNLP.core.const import Const as C | |||
class IDCNN(nn.Module): | |||
def __init__(self, init_embed, char_embed, | |||
num_cls, | |||
repeats, num_layers, num_filters, kernel_size, | |||
use_crf=False, use_projection=False, block_loss=False, | |||
input_dropout=0.3, hidden_dropout=0.2, inner_dropout=0.0): | |||
super(IDCNN, self).__init__() | |||
self.word_embeddings = Embedding(init_embed) | |||
self.char_embeddings = Embedding(char_embed) | |||
embedding_size = self.word_embeddings.embedding_dim + \ | |||
self.char_embeddings.embedding_dim | |||
self.conv0 = nn.Sequential( | |||
nn.Conv1d(in_channels=embedding_size, | |||
out_channels=num_filters, | |||
kernel_size=kernel_size, | |||
stride=1, dilation=1, | |||
padding=kernel_size//2, | |||
bias=True), | |||
nn.ReLU(), | |||
) | |||
block = [] | |||
for layer_i in range(num_layers): | |||
dilated = 2 ** layer_i | |||
block.append(nn.Conv1d( | |||
in_channels=num_filters, | |||
out_channels=num_filters, | |||
kernel_size=kernel_size, | |||
stride=1, dilation=dilated, | |||
padding=(kernel_size//2) * dilated, | |||
bias=True)) | |||
block.append(nn.ReLU()) | |||
self.block = nn.Sequential(*block) | |||
if use_projection: | |||
self.projection = nn.Sequential( | |||
nn.Conv1d( | |||
in_channels=num_filters, | |||
out_channels=num_filters//2, | |||
kernel_size=1, | |||
bias=True), | |||
nn.ReLU(),) | |||
encode_dim = num_filters // 2 | |||
else: | |||
self.projection = None | |||
encode_dim = num_filters | |||
self.input_drop = nn.Dropout(input_dropout) | |||
self.hidden_drop = nn.Dropout(hidden_dropout) | |||
self.inner_drop = nn.Dropout(inner_dropout) | |||
self.repeats = repeats | |||
self.out_fc = nn.Conv1d( | |||
in_channels=encode_dim, | |||
out_channels=num_cls, | |||
kernel_size=1, | |||
bias=True) | |||
self.crf = ConditionalRandomField( | |||
num_tags=num_cls) if use_crf else None | |||
self.block_loss = block_loss | |||
def forward(self, words, chars, seq_len, target=None): | |||
e1 = self.word_embeddings(words) | |||
e2 = self.char_embeddings(chars) | |||
x = torch.cat((e1, e2), dim=-1) # b,l,h | |||
mask = seq_len_to_mask(seq_len) | |||
x = x.transpose(1, 2) # b,h,l | |||
last_output = self.conv0(x) | |||
output = [] | |||
for repeat in range(self.repeats): | |||
last_output = self.block(last_output) | |||
hidden = self.projection(last_output) if self.projection is not None else last_output | |||
output.append(self.out_fc(hidden)) | |||
def compute_loss(y, t, mask): | |||
if self.crf is not None and target is not None: | |||
loss = self.crf(y, t, mask) | |||
else: | |||
t.masked_fill_(mask == 0, -100) | |||
loss = F.cross_entropy(y, t, ignore_index=-100) | |||
return loss | |||
if self.block_loss: | |||
losses = [compute_loss(o, target, mask) for o in output] | |||
loss = sum(losses) | |||
else: | |||
loss = compute_loss(output[-1], target, mask) | |||
scores = output[-1] | |||
if self.crf is not None: | |||
pred = self.crf.viterbi_decode(scores, target, mask) | |||
else: | |||
pred = scores.max(1)[1] * mask.long() | |||
return { | |||
C.LOSS: loss, | |||
C.OUTPUT: pred, | |||
} | |||
def predict(self, words, chars, seq_len): | |||
return self.forward(words, chars, seq_len)[C.OUTPUT] |
@@ -9,6 +9,7 @@ from fastNLP import Const | |||
# from reproduction.utils import check_dataloader_paths | |||
from functools import partial | |||
class IMDBLoader(DataSetLoader): | |||
""" | |||
读取IMDB数据集,DataSet包含以下fields: | |||
@@ -33,6 +34,7 @@ class IMDBLoader(DataSetLoader): | |||
target = parts[0] | |||
words = parts[1].split() | |||
dataset.append(Instance(words=words, target=target)) | |||
if len(dataset)==0: | |||
raise RuntimeError(f"{path} has no valid data.") | |||
@@ -44,15 +46,13 @@ class IMDBLoader(DataSetLoader): | |||
tgt_vocab_opt: VocabularyOption = None, | |||
src_embed_opt: EmbeddingOption = None, | |||
char_level_op=False): | |||
# paths = check_dataloader_paths(paths) | |||
datasets = {} | |||
info = DataInfo() | |||
for name, path in paths.items(): | |||
dataset = self.load(path) | |||
datasets[name] = dataset | |||
def wordtochar(words): | |||
chars = [] | |||
for word in words: | |||
@@ -94,6 +94,7 @@ class IMDBLoader(DataSetLoader): | |||
return info | |||
if __name__=="__main__": | |||
datapath = {"train": "/remote-home/ygwang/IMDB_data/train.csv", | |||
"test": "/remote-home/ygwang/IMDB_data/test.csv"} | |||
@@ -104,4 +105,4 @@ if __name__=="__main__": | |||
len_count += len(instance["chars"]) | |||
ave_len = len_count / len(datainfo.datasets["train"]) | |||
print(ave_len) | |||
print(ave_len) |
@@ -8,11 +8,21 @@ from fastNLP.io.base_loader import DataInfo,DataSetLoader | |||
from fastNLP.io.embed_loader import EmbeddingOption | |||
from fastNLP.io.file_reader import _read_json | |||
from typing import Union, Dict | |||
from reproduction.Star_transformer.datasets import EmbedLoader | |||
from reproduction.utils import check_dataloader_paths | |||
def clean_str(sentence,char_lower=False): | |||
def get_tokenizer(): | |||
try: | |||
import spacy | |||
en = spacy.load('en') | |||
print('use spacy tokenizer') | |||
return lambda x: [w.text for w in en.tokenizer(x)] | |||
except Exception as e: | |||
print('use raw tokenizer') | |||
return lambda x: x.split() | |||
def clean_str(sentence, tokenizer, char_lower=False): | |||
""" | |||
heavily borrowed from github | |||
https://github.com/LukeZhuang/Hierarchical-Attention-Network/blob/master/yelp-preprocess.ipynb | |||
@@ -20,10 +30,10 @@ def clean_str(sentence,char_lower=False): | |||
:return: | |||
""" | |||
if char_lower: | |||
sentence=sentence.lower() | |||
sentence = sentence.lower() | |||
import re | |||
nonalpnum = re.compile('[^0-9a-zA-Z?!\']+') | |||
words = sentence.split() | |||
words = tokenizer(sentence) | |||
words_collection = [] | |||
for word in words: | |||
if word in ['-lrb-', '-rrb-', '<sssss>', '-r', '-l', 'b-']: | |||
@@ -40,7 +50,6 @@ class yelpLoader(DataSetLoader): | |||
""" | |||
读取Yelp_full/Yelp_polarity数据集, DataSet包含fields: | |||
words: list(str), 需要分类的文本 | |||
target: str, 文本的标签 | |||
chars:list(str),未index的字符列表 | |||
@@ -52,13 +61,14 @@ class yelpLoader(DataSetLoader): | |||
def __init__(self, fine_grained=False,lower=False): | |||
super(yelpLoader, self).__init__() | |||
tag_v = {'1.0': 'very negative', '2.0': 'negative', '3.0': 'neutral', | |||
'4.0': 'positive', '5.0': 'very positive'} | |||
'4.0': 'positive', '5.0': 'very positive'} | |||
if not fine_grained: | |||
tag_v['1.0'] = tag_v['2.0'] | |||
tag_v['5.0'] = tag_v['4.0'] | |||
self.fine_grained = fine_grained | |||
self.tag_v = tag_v | |||
self.lower=lower | |||
self.lower = lower | |||
self.tokenizer = get_tokenizer() | |||
''' | |||
读取Yelp数据集, DataSet包含fields: | |||
@@ -75,6 +85,7 @@ class yelpLoader(DataSetLoader): | |||
数据来源: https://www.yelp.com/dataset/download | |||
def _load_json(self, path): | |||
ds = DataSet() | |||
for idx, d in _read_json(path, fields=self.fields_list, dropna=self.dropna): | |||
@@ -107,6 +118,7 @@ class yelpLoader(DataSetLoader): | |||
print("all count:",all_count) | |||
return ds | |||
''' | |||
def _load(self, path): | |||
ds = DataSet() | |||
csv_reader=csv.reader(open(path,encoding='utf-8')) | |||
@@ -125,6 +137,7 @@ class yelpLoader(DataSetLoader): | |||
return ds | |||
def process(self, paths: Union[str, Dict[str, str]], | |||
train_ds: Iterable[str] = None, | |||
src_vocab_op: VocabularyOption = None, | |||
@@ -139,15 +152,10 @@ class yelpLoader(DataSetLoader): | |||
if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op) | |||
_train_ds = [info.datasets[name] | |||
for name in train_ds] if train_ds else info.datasets.values() | |||
#vocab = Vocabulary(min_freq=2) if vocab_opt is None else Vocabulary(**vocab_opt) | |||
# for name, path in paths.items(): | |||
# dataset = self.load(path) | |||
# datasets[name] = dataset | |||
# vocab.from_dataset(dataset, field_name="words") | |||
# info.vocabs = vocab | |||
# info.datasets = datasets | |||
def wordtochar(words): | |||
chars=[] | |||
for word in words: | |||
word=word.lower() | |||
@@ -173,6 +181,7 @@ class yelpLoader(DataSetLoader): | |||
tgt_vocab.index_dataset( | |||
*info.datasets.values(), | |||
field_name=target_name, new_field_name=target_name) | |||
info.vocabs[target_name]=tgt_vocab | |||
return info | |||
@@ -1,36 +1,38 @@ | |||
import torch | |||
import torch.nn as nn | |||
from fastNLP.modules.utils import get_embeddings | |||
from fastNLP.core import Const as C | |||
class DPCNN(nn.Module): | |||
def __init__(self, init_embed, num_cls, n_filters=256, kernel_size=3, n_layers=7, embed_dropout=0.1, dropout=0.1): | |||
def __init__(self, init_embed, num_cls, n_filters=256, | |||
kernel_size=3, n_layers=7, embed_dropout=0.1, cls_dropout=0.1): | |||
super().__init__() | |||
self.region_embed = RegionEmbedding(init_embed, out_dim=n_filters, kernel_sizes=[3, 5, 9]) | |||
self.region_embed = RegionEmbedding( | |||
init_embed, out_dim=n_filters, kernel_sizes=[1, 3, 5]) | |||
embed_dim = self.region_embed.embedding_dim | |||
self.conv_list = nn.ModuleList() | |||
for i in range(n_layers): | |||
self.conv_list.append(nn.Sequential( | |||
nn.ReLU(), | |||
nn.Conv1d(n_filters, n_filters, kernel_size, padding=kernel_size//2), | |||
nn.Conv1d(n_filters, n_filters, kernel_size, padding=kernel_size//2), | |||
)) | |||
nn.Conv1d(n_filters, n_filters, kernel_size, | |||
padding=kernel_size//2), | |||
nn.Conv1d(n_filters, n_filters, kernel_size, | |||
padding=kernel_size//2), | |||
)) | |||
self.pool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1) | |||
self.embed_drop = nn.Dropout(embed_dropout) | |||
self.classfier = nn.Sequential( | |||
nn.Dropout(dropout), | |||
nn.Dropout(cls_dropout), | |||
nn.Linear(n_filters, num_cls), | |||
) | |||
self.reset_parameters() | |||
def reset_parameters(self): | |||
for m in self.modules(): | |||
if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Linear)): | |||
@@ -39,7 +41,6 @@ class DPCNN(nn.Module): | |||
nn.init.normal_(m.bias, mean=0, std=0.01) | |||
def forward(self, words, seq_len=None): | |||
words = words.long() | |||
# get region embeddings | |||
@@ -58,21 +59,19 @@ class DPCNN(nn.Module): | |||
return {C.OUTPUT: x} | |||
def predict(self, words, seq_len=None): | |||
x = self.forward(words, seq_len)[C.OUTPUT] | |||
return {C.OUTPUT: torch.argmax(x, 1)} | |||
class RegionEmbedding(nn.Module): | |||
def __init__(self, init_embed, out_dim=300, kernel_sizes=None): | |||
super().__init__() | |||
if kernel_sizes is None: | |||
kernel_sizes = [5, 9] | |||
assert isinstance(kernel_sizes, list), 'kernel_sizes should be List(int)' | |||
assert isinstance( | |||
kernel_sizes, list), 'kernel_sizes should be List(int)' | |||
self.embed = get_embeddings(init_embed) | |||
try: | |||
embed_dim = self.embed.embedding_dim | |||
@@ -84,28 +83,24 @@ class RegionEmbedding(nn.Module): | |||
nn.Conv1d(embed_dim, embed_dim, ksz, padding=ksz // 2), | |||
)) | |||
self.linears = nn.ModuleList([nn.Conv1d(embed_dim, out_dim, 1) | |||
for _ in range(len(kernel_sizes) + 1)]) | |||
for _ in range(len(kernel_sizes))]) | |||
self.embedding_dim = embed_dim | |||
def forward(self, x): | |||
x = self.embed(x) | |||
x = x.transpose(1, 2) | |||
# B, C, L | |||
out = self.linears[0](x) | |||
out = 0 | |||
for conv, fc in zip(self.region_embeds, self.linears[1:]): | |||
conv_i = conv(x) | |||
out = out + fc(conv_i) | |||
# B, C, L | |||
return out | |||
if __name__ == '__main__': | |||
x = torch.randint(0, 10000, size=(5, 15), dtype=torch.long) | |||
model = DPCNN((10000, 300), 20) | |||
y = model(x) | |||
print(y.size(), y.mean(1), y.std(1)) | |||
print(y.size(), y.mean(1), y.std(1)) | |||
@@ -1,101 +1,125 @@ | |||
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | |||
import torch.cuda | |||
from fastNLP.core.utils import cache_results | |||
from torch.optim import SGD | |||
from torch.optim.lr_scheduler import CosineAnnealingLR, LambdaLR | |||
from fastNLP.core.trainer import Trainer | |||
from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
from fastNLP.modules.encoder.embedding import StaticEmbedding, CNNCharEmbedding, StackEmbedding | |||
from reproduction.text_classification.model.dpcnn import DPCNN | |||
from data.yelpLoader import yelpLoader | |||
import torch.nn as nn | |||
from fastNLP.core import LRScheduler | |||
from fastNLP.core.const import Const as C | |||
from fastNLP.core.vocabulary import VocabularyOption | |||
from utils.util_init import set_rng_seeds | |||
import os | |||
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | |||
import sys | |||
sys.path.append('../..') | |||
from fastNLP.core.const import Const as C | |||
from fastNLP.core import LRScheduler | |||
import torch.nn as nn | |||
from fastNLP.io.dataset_loader import SSTLoader | |||
from data.yelpLoader import yelpLoader | |||
from reproduction.text_classification.model.dpcnn import DPCNN | |||
from fastNLP.modules.encoder.embedding import StaticEmbedding, CNNCharEmbedding, StackEmbedding | |||
from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
from fastNLP.core.trainer import Trainer | |||
from torch.optim import SGD | |||
import torch.cuda | |||
from torch.optim.lr_scheduler import CosineAnnealingLR | |||
##hyper | |||
# hyper | |||
class Config(): | |||
model_dir_or_name="en-base-uncased" | |||
embedding_grad= False, | |||
train_epoch= 30 | |||
seed = 12345 | |||
model_dir_or_name = "dpcnn-yelp-p" | |||
embedding_grad = True | |||
train_epoch = 30 | |||
batch_size = 100 | |||
num_classes=2 | |||
task= "yelp_p" | |||
num_classes = 2 | |||
task = "yelp_p" | |||
#datadir = '/remote-home/yfshao/workdir/datasets/SST' | |||
datadir = '/remote-home/ygwang/yelp_polarity' | |||
datadir = '/remote-home/yfshao/workdir/datasets/yelp_polarity' | |||
#datafile = {"train": "train.txt", "dev": "dev.txt", "test": "test.txt"} | |||
datafile = {"train": "train.csv", "test": "test.csv"} | |||
lr=1e-3 | |||
lr = 1e-3 | |||
src_vocab_op = VocabularyOption() | |||
embed_dropout = 0.3 | |||
cls_dropout = 0.1 | |||
weight_decay = 1e-4 | |||
def __init__(self): | |||
self.datapath = {k:os.path.join(self.datadir, v) | |||
self.datapath = {k: os.path.join(self.datadir, v) | |||
for k, v in self.datafile.items()} | |||
ops=Config() | |||
ops = Config() | |||
set_rng_seeds(ops.seed) | |||
print('RNG SEED: {}'.format(ops.seed)) | |||
##1.task相关信息:利用dataloader载入dataInfo | |||
# 1.task相关信息:利用dataloader载入dataInfo | |||
#datainfo=SSTLoader(fine_grained=True).process(paths=ops.datapath, train_ds=['train']) | |||
datainfo=yelpLoader(fine_grained=True,lower=True).process(paths=ops.datapath, train_ds=['train']) | |||
print(len(datainfo.datasets['train'])) | |||
print(len(datainfo.datasets['test'])) | |||
@cache_results(ops.model_dir_or_name+'-data-cache') | |||
def load_data(): | |||
datainfo = yelpLoader(fine_grained=True, lower=True).process( | |||
paths=ops.datapath, train_ds=['train'], src_vocab_op=ops.src_vocab_op) | |||
for ds in datainfo.datasets.values(): | |||
ds.apply_field(len, C.INPUT, C.INPUT_LEN) | |||
ds.set_input(C.INPUT, C.INPUT_LEN) | |||
ds.set_target(C.TARGET) | |||
return datainfo | |||
datainfo = load_data() | |||
## 2.或直接复用fastNLP的模型 | |||
# 2.或直接复用fastNLP的模型 | |||
vocab = datainfo.vocabs['words'] | |||
# embedding = StackEmbedding([StaticEmbedding(vocab), CNNCharEmbedding(vocab, 100)]) | |||
#embedding = StaticEmbedding(vocab) | |||
embedding = StaticEmbedding(vocab, model_dir_or_name='en-word2vec-300', requires_grad=True) | |||
embedding = StaticEmbedding( | |||
vocab, model_dir_or_name='en-word2vec-300', requires_grad=ops.embedding_grad, | |||
normalize=False | |||
) | |||
print(len(datainfo.datasets['train'])) | |||
print(len(datainfo.datasets['test'])) | |||
print(datainfo.datasets['train'][0]) | |||
print(len(vocab)) | |||
print(len(datainfo.vocabs['target'])) | |||
model = DPCNN(init_embed=embedding, num_cls=ops.num_classes) | |||
model = DPCNN(init_embed=embedding, num_cls=ops.num_classes, | |||
embed_dropout=ops.embed_dropout, cls_dropout=ops.cls_dropout) | |||
print(model) | |||
## 3. 声明loss,metric,optimizer | |||
loss=CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET) | |||
metric=AccuracyMetric(pred=C.OUTPUT, target=C.TARGET) | |||
optimizer= SGD([param for param in model.parameters() if param.requires_grad==True], | |||
lr=ops.lr, momentum=0.9, weight_decay=0) | |||
# 3. 声明loss,metric,optimizer | |||
loss = CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET) | |||
metric = AccuracyMetric(pred=C.OUTPUT, target=C.TARGET) | |||
optimizer = SGD([param for param in model.parameters() if param.requires_grad == True], | |||
lr=ops.lr, momentum=0.9, weight_decay=ops.weight_decay) | |||
callbacks = [] | |||
callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 5))) | |||
# callbacks.append | |||
# LRScheduler(LambdaLR(optimizer, lambda epoch: ops.lr if epoch < | |||
# ops.train_epoch * 0.8 else ops.lr * 0.1)) | |||
# ) | |||
# callbacks.append( | |||
# FitlogCallback(data=datainfo.datasets, verbose=1) | |||
# ) | |||
device = 'cuda:3' if torch.cuda.is_available() else 'cpu' | |||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |||
print(device) | |||
for ds in datainfo.datasets.values(): | |||
ds.apply_field(len, C.INPUT, C.INPUT_LEN) | |||
ds.set_input(C.INPUT, C.INPUT_LEN) | |||
ds.set_target(C.TARGET) | |||
# 4.定义train方法 | |||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
metrics=[metric], | |||
dev_data=datainfo.datasets['test'], device=device, | |||
check_code_level=-1, batch_size=ops.batch_size, callbacks=callbacks, | |||
n_epochs=ops.train_epoch, num_workers=4) | |||
## 4.定义train方法 | |||
def train(model,datainfo,loss,metrics,optimizer,num_epochs=ops.train_epoch): | |||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
metrics=[metrics], dev_data=datainfo.datasets['test'], device=3, | |||
check_code_level=-1, batch_size=ops.batch_size, callbacks=callbacks, | |||
n_epochs=num_epochs) | |||
if __name__ == "__main__": | |||
print(trainer.train()) | |||
if __name__=="__main__": | |||
train(model,datainfo,loss,metric,optimizer) |
@@ -0,0 +1,11 @@ | |||
import numpy | |||
import torch | |||
import random | |||
def set_rng_seeds(seed): | |||
random.seed(seed) | |||
numpy.random.seed(seed) | |||
torch.random.manual_seed(seed) | |||
torch.cuda.manual_seed_all(seed) | |||
# print('RNG_SEED {}'.format(seed)) |