[merge] dpcnn相关,yelploadertags/v0.4.10
@@ -19,7 +19,7 @@ class DotAttention(nn.Module): | |||||
补上文档 | 补上文档 | ||||
""" | """ | ||||
def __init__(self, key_size, value_size, dropout=0): | |||||
def __init__(self, key_size, value_size, dropout=0.0): | |||||
super(DotAttention, self).__init__() | super(DotAttention, self).__init__() | ||||
self.key_size = key_size | self.key_size = key_size | ||||
self.value_size = value_size | self.value_size = value_size | ||||
@@ -37,7 +37,7 @@ class DotAttention(nn.Module): | |||||
""" | """ | ||||
output = torch.matmul(Q, K.transpose(1, 2)) / self.scale | output = torch.matmul(Q, K.transpose(1, 2)) / self.scale | ||||
if mask_out is not None: | if mask_out is not None: | ||||
output.masked_fill_(mask_out, -1e8) | |||||
output.masked_fill_(mask_out, -1e18) | |||||
output = self.softmax(output) | output = self.softmax(output) | ||||
output = self.drop(output) | output = self.drop(output) | ||||
return torch.matmul(output, V) | return torch.matmul(output, V) | ||||
@@ -67,9 +67,8 @@ class MultiHeadAttention(nn.Module): | |||||
self.k_in = nn.Linear(input_size, in_size) | self.k_in = nn.Linear(input_size, in_size) | ||||
self.v_in = nn.Linear(input_size, in_size) | self.v_in = nn.Linear(input_size, in_size) | ||||
# follow the paper, do not apply dropout within dot-product | # follow the paper, do not apply dropout within dot-product | ||||
self.attention = DotAttention(key_size=key_size, value_size=value_size, dropout=0) | |||||
self.attention = DotAttention(key_size=key_size, value_size=value_size, dropout=dropout) | |||||
self.out = nn.Linear(value_size * num_head, input_size) | self.out = nn.Linear(value_size * num_head, input_size) | ||||
self.drop = TimestepDropout(dropout) | |||||
self.reset_parameters() | self.reset_parameters() | ||||
def reset_parameters(self): | def reset_parameters(self): | ||||
@@ -105,7 +104,7 @@ class MultiHeadAttention(nn.Module): | |||||
# concat all heads, do output linear | # concat all heads, do output linear | ||||
atte = atte.permute(1, 2, 0, 3).contiguous().view(batch, sq, -1) | atte = atte.permute(1, 2, 0, 3).contiguous().view(batch, sq, -1) | ||||
output = self.drop(self.out(atte)) | |||||
output = self.out(atte) | |||||
return output | return output | ||||
@@ -0,0 +1,111 @@ | |||||
import torch | |||||
import torch.nn as nn | |||||
import torch.nn.functional as F | |||||
from fastNLP.modules.decoder import ConditionalRandomField | |||||
from fastNLP.modules.encoder import Embedding | |||||
from fastNLP.core.utils import seq_len_to_mask | |||||
from fastNLP.core.const import Const as C | |||||
class IDCNN(nn.Module): | |||||
def __init__(self, init_embed, char_embed, | |||||
num_cls, | |||||
repeats, num_layers, num_filters, kernel_size, | |||||
use_crf=False, use_projection=False, block_loss=False, | |||||
input_dropout=0.3, hidden_dropout=0.2, inner_dropout=0.0): | |||||
super(IDCNN, self).__init__() | |||||
self.word_embeddings = Embedding(init_embed) | |||||
self.char_embeddings = Embedding(char_embed) | |||||
embedding_size = self.word_embeddings.embedding_dim + \ | |||||
self.char_embeddings.embedding_dim | |||||
self.conv0 = nn.Sequential( | |||||
nn.Conv1d(in_channels=embedding_size, | |||||
out_channels=num_filters, | |||||
kernel_size=kernel_size, | |||||
stride=1, dilation=1, | |||||
padding=kernel_size//2, | |||||
bias=True), | |||||
nn.ReLU(), | |||||
) | |||||
block = [] | |||||
for layer_i in range(num_layers): | |||||
dilated = 2 ** layer_i | |||||
block.append(nn.Conv1d( | |||||
in_channels=num_filters, | |||||
out_channels=num_filters, | |||||
kernel_size=kernel_size, | |||||
stride=1, dilation=dilated, | |||||
padding=(kernel_size//2) * dilated, | |||||
bias=True)) | |||||
block.append(nn.ReLU()) | |||||
self.block = nn.Sequential(*block) | |||||
if use_projection: | |||||
self.projection = nn.Sequential( | |||||
nn.Conv1d( | |||||
in_channels=num_filters, | |||||
out_channels=num_filters//2, | |||||
kernel_size=1, | |||||
bias=True), | |||||
nn.ReLU(),) | |||||
encode_dim = num_filters // 2 | |||||
else: | |||||
self.projection = None | |||||
encode_dim = num_filters | |||||
self.input_drop = nn.Dropout(input_dropout) | |||||
self.hidden_drop = nn.Dropout(hidden_dropout) | |||||
self.inner_drop = nn.Dropout(inner_dropout) | |||||
self.repeats = repeats | |||||
self.out_fc = nn.Conv1d( | |||||
in_channels=encode_dim, | |||||
out_channels=num_cls, | |||||
kernel_size=1, | |||||
bias=True) | |||||
self.crf = ConditionalRandomField( | |||||
num_tags=num_cls) if use_crf else None | |||||
self.block_loss = block_loss | |||||
def forward(self, words, chars, seq_len, target=None): | |||||
e1 = self.word_embeddings(words) | |||||
e2 = self.char_embeddings(chars) | |||||
x = torch.cat((e1, e2), dim=-1) # b,l,h | |||||
mask = seq_len_to_mask(seq_len) | |||||
x = x.transpose(1, 2) # b,h,l | |||||
last_output = self.conv0(x) | |||||
output = [] | |||||
for repeat in range(self.repeats): | |||||
last_output = self.block(last_output) | |||||
hidden = self.projection(last_output) if self.projection is not None else last_output | |||||
output.append(self.out_fc(hidden)) | |||||
def compute_loss(y, t, mask): | |||||
if self.crf is not None and target is not None: | |||||
loss = self.crf(y, t, mask) | |||||
else: | |||||
t.masked_fill_(mask == 0, -100) | |||||
loss = F.cross_entropy(y, t, ignore_index=-100) | |||||
return loss | |||||
if self.block_loss: | |||||
losses = [compute_loss(o, target, mask) for o in output] | |||||
loss = sum(losses) | |||||
else: | |||||
loss = compute_loss(output[-1], target, mask) | |||||
scores = output[-1] | |||||
if self.crf is not None: | |||||
pred = self.crf.viterbi_decode(scores, target, mask) | |||||
else: | |||||
pred = scores.max(1)[1] * mask.long() | |||||
return { | |||||
C.LOSS: loss, | |||||
C.OUTPUT: pred, | |||||
} | |||||
def predict(self, words, chars, seq_len): | |||||
return self.forward(words, chars, seq_len)[C.OUTPUT] |
@@ -9,6 +9,7 @@ from fastNLP import Const | |||||
# from reproduction.utils import check_dataloader_paths | # from reproduction.utils import check_dataloader_paths | ||||
from functools import partial | from functools import partial | ||||
class IMDBLoader(DataSetLoader): | class IMDBLoader(DataSetLoader): | ||||
""" | """ | ||||
读取IMDB数据集,DataSet包含以下fields: | 读取IMDB数据集,DataSet包含以下fields: | ||||
@@ -33,6 +34,7 @@ class IMDBLoader(DataSetLoader): | |||||
target = parts[0] | target = parts[0] | ||||
words = parts[1].split() | words = parts[1].split() | ||||
dataset.append(Instance(words=words, target=target)) | dataset.append(Instance(words=words, target=target)) | ||||
if len(dataset)==0: | if len(dataset)==0: | ||||
raise RuntimeError(f"{path} has no valid data.") | raise RuntimeError(f"{path} has no valid data.") | ||||
@@ -44,15 +46,13 @@ class IMDBLoader(DataSetLoader): | |||||
tgt_vocab_opt: VocabularyOption = None, | tgt_vocab_opt: VocabularyOption = None, | ||||
src_embed_opt: EmbeddingOption = None, | src_embed_opt: EmbeddingOption = None, | ||||
char_level_op=False): | char_level_op=False): | ||||
# paths = check_dataloader_paths(paths) | |||||
datasets = {} | datasets = {} | ||||
info = DataInfo() | info = DataInfo() | ||||
for name, path in paths.items(): | for name, path in paths.items(): | ||||
dataset = self.load(path) | dataset = self.load(path) | ||||
datasets[name] = dataset | datasets[name] = dataset | ||||
def wordtochar(words): | def wordtochar(words): | ||||
chars = [] | chars = [] | ||||
for word in words: | for word in words: | ||||
@@ -94,6 +94,7 @@ class IMDBLoader(DataSetLoader): | |||||
return info | return info | ||||
if __name__=="__main__": | if __name__=="__main__": | ||||
datapath = {"train": "/remote-home/ygwang/IMDB_data/train.csv", | datapath = {"train": "/remote-home/ygwang/IMDB_data/train.csv", | ||||
"test": "/remote-home/ygwang/IMDB_data/test.csv"} | "test": "/remote-home/ygwang/IMDB_data/test.csv"} | ||||
@@ -104,4 +105,4 @@ if __name__=="__main__": | |||||
len_count += len(instance["chars"]) | len_count += len(instance["chars"]) | ||||
ave_len = len_count / len(datainfo.datasets["train"]) | ave_len = len_count / len(datainfo.datasets["train"]) | ||||
print(ave_len) | |||||
print(ave_len) |
@@ -8,11 +8,21 @@ from fastNLP.io.base_loader import DataInfo,DataSetLoader | |||||
from fastNLP.io.embed_loader import EmbeddingOption | from fastNLP.io.embed_loader import EmbeddingOption | ||||
from fastNLP.io.file_reader import _read_json | from fastNLP.io.file_reader import _read_json | ||||
from typing import Union, Dict | from typing import Union, Dict | ||||
from reproduction.Star_transformer.datasets import EmbedLoader | |||||
from reproduction.utils import check_dataloader_paths | from reproduction.utils import check_dataloader_paths | ||||
def clean_str(sentence,char_lower=False): | |||||
def get_tokenizer(): | |||||
try: | |||||
import spacy | |||||
en = spacy.load('en') | |||||
print('use spacy tokenizer') | |||||
return lambda x: [w.text for w in en.tokenizer(x)] | |||||
except Exception as e: | |||||
print('use raw tokenizer') | |||||
return lambda x: x.split() | |||||
def clean_str(sentence, tokenizer, char_lower=False): | |||||
""" | """ | ||||
heavily borrowed from github | heavily borrowed from github | ||||
https://github.com/LukeZhuang/Hierarchical-Attention-Network/blob/master/yelp-preprocess.ipynb | https://github.com/LukeZhuang/Hierarchical-Attention-Network/blob/master/yelp-preprocess.ipynb | ||||
@@ -20,10 +30,10 @@ def clean_str(sentence,char_lower=False): | |||||
:return: | :return: | ||||
""" | """ | ||||
if char_lower: | if char_lower: | ||||
sentence=sentence.lower() | |||||
sentence = sentence.lower() | |||||
import re | import re | ||||
nonalpnum = re.compile('[^0-9a-zA-Z?!\']+') | nonalpnum = re.compile('[^0-9a-zA-Z?!\']+') | ||||
words = sentence.split() | |||||
words = tokenizer(sentence) | |||||
words_collection = [] | words_collection = [] | ||||
for word in words: | for word in words: | ||||
if word in ['-lrb-', '-rrb-', '<sssss>', '-r', '-l', 'b-']: | if word in ['-lrb-', '-rrb-', '<sssss>', '-r', '-l', 'b-']: | ||||
@@ -40,7 +50,6 @@ class yelpLoader(DataSetLoader): | |||||
""" | """ | ||||
读取Yelp_full/Yelp_polarity数据集, DataSet包含fields: | 读取Yelp_full/Yelp_polarity数据集, DataSet包含fields: | ||||
words: list(str), 需要分类的文本 | words: list(str), 需要分类的文本 | ||||
target: str, 文本的标签 | target: str, 文本的标签 | ||||
chars:list(str),未index的字符列表 | chars:list(str),未index的字符列表 | ||||
@@ -52,13 +61,14 @@ class yelpLoader(DataSetLoader): | |||||
def __init__(self, fine_grained=False,lower=False): | def __init__(self, fine_grained=False,lower=False): | ||||
super(yelpLoader, self).__init__() | super(yelpLoader, self).__init__() | ||||
tag_v = {'1.0': 'very negative', '2.0': 'negative', '3.0': 'neutral', | tag_v = {'1.0': 'very negative', '2.0': 'negative', '3.0': 'neutral', | ||||
'4.0': 'positive', '5.0': 'very positive'} | |||||
'4.0': 'positive', '5.0': 'very positive'} | |||||
if not fine_grained: | if not fine_grained: | ||||
tag_v['1.0'] = tag_v['2.0'] | tag_v['1.0'] = tag_v['2.0'] | ||||
tag_v['5.0'] = tag_v['4.0'] | tag_v['5.0'] = tag_v['4.0'] | ||||
self.fine_grained = fine_grained | self.fine_grained = fine_grained | ||||
self.tag_v = tag_v | self.tag_v = tag_v | ||||
self.lower=lower | |||||
self.lower = lower | |||||
self.tokenizer = get_tokenizer() | |||||
''' | ''' | ||||
读取Yelp数据集, DataSet包含fields: | 读取Yelp数据集, DataSet包含fields: | ||||
@@ -75,6 +85,7 @@ class yelpLoader(DataSetLoader): | |||||
数据来源: https://www.yelp.com/dataset/download | 数据来源: https://www.yelp.com/dataset/download | ||||
def _load_json(self, path): | def _load_json(self, path): | ||||
ds = DataSet() | ds = DataSet() | ||||
for idx, d in _read_json(path, fields=self.fields_list, dropna=self.dropna): | for idx, d in _read_json(path, fields=self.fields_list, dropna=self.dropna): | ||||
@@ -107,6 +118,7 @@ class yelpLoader(DataSetLoader): | |||||
print("all count:",all_count) | print("all count:",all_count) | ||||
return ds | return ds | ||||
''' | ''' | ||||
def _load(self, path): | def _load(self, path): | ||||
ds = DataSet() | ds = DataSet() | ||||
csv_reader=csv.reader(open(path,encoding='utf-8')) | csv_reader=csv.reader(open(path,encoding='utf-8')) | ||||
@@ -125,6 +137,7 @@ class yelpLoader(DataSetLoader): | |||||
return ds | return ds | ||||
def process(self, paths: Union[str, Dict[str, str]], | def process(self, paths: Union[str, Dict[str, str]], | ||||
train_ds: Iterable[str] = None, | train_ds: Iterable[str] = None, | ||||
src_vocab_op: VocabularyOption = None, | src_vocab_op: VocabularyOption = None, | ||||
@@ -139,15 +152,10 @@ class yelpLoader(DataSetLoader): | |||||
if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op) | if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op) | ||||
_train_ds = [info.datasets[name] | _train_ds = [info.datasets[name] | ||||
for name in train_ds] if train_ds else info.datasets.values() | for name in train_ds] if train_ds else info.datasets.values() | ||||
#vocab = Vocabulary(min_freq=2) if vocab_opt is None else Vocabulary(**vocab_opt) | |||||
# for name, path in paths.items(): | |||||
# dataset = self.load(path) | |||||
# datasets[name] = dataset | |||||
# vocab.from_dataset(dataset, field_name="words") | |||||
# info.vocabs = vocab | |||||
# info.datasets = datasets | |||||
def wordtochar(words): | def wordtochar(words): | ||||
chars=[] | chars=[] | ||||
for word in words: | for word in words: | ||||
word=word.lower() | word=word.lower() | ||||
@@ -173,6 +181,7 @@ class yelpLoader(DataSetLoader): | |||||
tgt_vocab.index_dataset( | tgt_vocab.index_dataset( | ||||
*info.datasets.values(), | *info.datasets.values(), | ||||
field_name=target_name, new_field_name=target_name) | field_name=target_name, new_field_name=target_name) | ||||
info.vocabs[target_name]=tgt_vocab | info.vocabs[target_name]=tgt_vocab | ||||
return info | return info | ||||
@@ -1,36 +1,38 @@ | |||||
import torch | import torch | ||||
import torch.nn as nn | import torch.nn as nn | ||||
from fastNLP.modules.utils import get_embeddings | from fastNLP.modules.utils import get_embeddings | ||||
from fastNLP.core import Const as C | from fastNLP.core import Const as C | ||||
class DPCNN(nn.Module): | class DPCNN(nn.Module): | ||||
def __init__(self, init_embed, num_cls, n_filters=256, kernel_size=3, n_layers=7, embed_dropout=0.1, dropout=0.1): | |||||
def __init__(self, init_embed, num_cls, n_filters=256, | |||||
kernel_size=3, n_layers=7, embed_dropout=0.1, cls_dropout=0.1): | |||||
super().__init__() | super().__init__() | ||||
self.region_embed = RegionEmbedding(init_embed, out_dim=n_filters, kernel_sizes=[3, 5, 9]) | |||||
self.region_embed = RegionEmbedding( | |||||
init_embed, out_dim=n_filters, kernel_sizes=[1, 3, 5]) | |||||
embed_dim = self.region_embed.embedding_dim | embed_dim = self.region_embed.embedding_dim | ||||
self.conv_list = nn.ModuleList() | self.conv_list = nn.ModuleList() | ||||
for i in range(n_layers): | for i in range(n_layers): | ||||
self.conv_list.append(nn.Sequential( | self.conv_list.append(nn.Sequential( | ||||
nn.ReLU(), | nn.ReLU(), | ||||
nn.Conv1d(n_filters, n_filters, kernel_size, padding=kernel_size//2), | |||||
nn.Conv1d(n_filters, n_filters, kernel_size, padding=kernel_size//2), | |||||
)) | |||||
nn.Conv1d(n_filters, n_filters, kernel_size, | |||||
padding=kernel_size//2), | |||||
nn.Conv1d(n_filters, n_filters, kernel_size, | |||||
padding=kernel_size//2), | |||||
)) | |||||
self.pool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1) | self.pool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1) | ||||
self.embed_drop = nn.Dropout(embed_dropout) | self.embed_drop = nn.Dropout(embed_dropout) | ||||
self.classfier = nn.Sequential( | self.classfier = nn.Sequential( | ||||
nn.Dropout(dropout), | |||||
nn.Dropout(cls_dropout), | |||||
nn.Linear(n_filters, num_cls), | nn.Linear(n_filters, num_cls), | ||||
) | ) | ||||
self.reset_parameters() | self.reset_parameters() | ||||
def reset_parameters(self): | def reset_parameters(self): | ||||
for m in self.modules(): | for m in self.modules(): | ||||
if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Linear)): | if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Linear)): | ||||
@@ -39,7 +41,6 @@ class DPCNN(nn.Module): | |||||
nn.init.normal_(m.bias, mean=0, std=0.01) | nn.init.normal_(m.bias, mean=0, std=0.01) | ||||
def forward(self, words, seq_len=None): | def forward(self, words, seq_len=None): | ||||
words = words.long() | words = words.long() | ||||
# get region embeddings | # get region embeddings | ||||
@@ -58,21 +59,19 @@ class DPCNN(nn.Module): | |||||
return {C.OUTPUT: x} | return {C.OUTPUT: x} | ||||
def predict(self, words, seq_len=None): | def predict(self, words, seq_len=None): | ||||
x = self.forward(words, seq_len)[C.OUTPUT] | x = self.forward(words, seq_len)[C.OUTPUT] | ||||
return {C.OUTPUT: torch.argmax(x, 1)} | return {C.OUTPUT: torch.argmax(x, 1)} | ||||
class RegionEmbedding(nn.Module): | class RegionEmbedding(nn.Module): | ||||
def __init__(self, init_embed, out_dim=300, kernel_sizes=None): | def __init__(self, init_embed, out_dim=300, kernel_sizes=None): | ||||
super().__init__() | super().__init__() | ||||
if kernel_sizes is None: | if kernel_sizes is None: | ||||
kernel_sizes = [5, 9] | kernel_sizes = [5, 9] | ||||
assert isinstance(kernel_sizes, list), 'kernel_sizes should be List(int)' | |||||
assert isinstance( | |||||
kernel_sizes, list), 'kernel_sizes should be List(int)' | |||||
self.embed = get_embeddings(init_embed) | self.embed = get_embeddings(init_embed) | ||||
try: | try: | ||||
embed_dim = self.embed.embedding_dim | embed_dim = self.embed.embedding_dim | ||||
@@ -84,28 +83,24 @@ class RegionEmbedding(nn.Module): | |||||
nn.Conv1d(embed_dim, embed_dim, ksz, padding=ksz // 2), | nn.Conv1d(embed_dim, embed_dim, ksz, padding=ksz // 2), | ||||
)) | )) | ||||
self.linears = nn.ModuleList([nn.Conv1d(embed_dim, out_dim, 1) | self.linears = nn.ModuleList([nn.Conv1d(embed_dim, out_dim, 1) | ||||
for _ in range(len(kernel_sizes) + 1)]) | |||||
for _ in range(len(kernel_sizes))]) | |||||
self.embedding_dim = embed_dim | self.embedding_dim = embed_dim | ||||
def forward(self, x): | def forward(self, x): | ||||
x = self.embed(x) | x = self.embed(x) | ||||
x = x.transpose(1, 2) | x = x.transpose(1, 2) | ||||
# B, C, L | # B, C, L | ||||
out = self.linears[0](x) | |||||
out = 0 | |||||
for conv, fc in zip(self.region_embeds, self.linears[1:]): | for conv, fc in zip(self.region_embeds, self.linears[1:]): | ||||
conv_i = conv(x) | conv_i = conv(x) | ||||
out = out + fc(conv_i) | out = out + fc(conv_i) | ||||
# B, C, L | # B, C, L | ||||
return out | return out | ||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
x = torch.randint(0, 10000, size=(5, 15), dtype=torch.long) | x = torch.randint(0, 10000, size=(5, 15), dtype=torch.long) | ||||
model = DPCNN((10000, 300), 20) | model = DPCNN((10000, 300), 20) | ||||
y = model(x) | y = model(x) | ||||
print(y.size(), y.mean(1), y.std(1)) | |||||
print(y.size(), y.mean(1), y.std(1)) | |||||
@@ -1,101 +1,125 @@ | |||||
# 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | # 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | ||||
import torch.cuda | |||||
from fastNLP.core.utils import cache_results | |||||
from torch.optim import SGD | |||||
from torch.optim.lr_scheduler import CosineAnnealingLR, LambdaLR | |||||
from fastNLP.core.trainer import Trainer | |||||
from fastNLP import CrossEntropyLoss, AccuracyMetric | |||||
from fastNLP.modules.encoder.embedding import StaticEmbedding, CNNCharEmbedding, StackEmbedding | |||||
from reproduction.text_classification.model.dpcnn import DPCNN | |||||
from data.yelpLoader import yelpLoader | |||||
import torch.nn as nn | |||||
from fastNLP.core import LRScheduler | |||||
from fastNLP.core.const import Const as C | |||||
from fastNLP.core.vocabulary import VocabularyOption | |||||
from utils.util_init import set_rng_seeds | |||||
import os | import os | ||||
os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | ||||
os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | ||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | ||||
import sys | |||||
sys.path.append('../..') | |||||
from fastNLP.core.const import Const as C | |||||
from fastNLP.core import LRScheduler | |||||
import torch.nn as nn | |||||
from fastNLP.io.dataset_loader import SSTLoader | |||||
from data.yelpLoader import yelpLoader | |||||
from reproduction.text_classification.model.dpcnn import DPCNN | |||||
from fastNLP.modules.encoder.embedding import StaticEmbedding, CNNCharEmbedding, StackEmbedding | |||||
from fastNLP import CrossEntropyLoss, AccuracyMetric | |||||
from fastNLP.core.trainer import Trainer | |||||
from torch.optim import SGD | |||||
import torch.cuda | |||||
from torch.optim.lr_scheduler import CosineAnnealingLR | |||||
##hyper | |||||
# hyper | |||||
class Config(): | class Config(): | ||||
model_dir_or_name="en-base-uncased" | |||||
embedding_grad= False, | |||||
train_epoch= 30 | |||||
seed = 12345 | |||||
model_dir_or_name = "dpcnn-yelp-p" | |||||
embedding_grad = True | |||||
train_epoch = 30 | |||||
batch_size = 100 | batch_size = 100 | ||||
num_classes=2 | |||||
task= "yelp_p" | |||||
num_classes = 2 | |||||
task = "yelp_p" | |||||
#datadir = '/remote-home/yfshao/workdir/datasets/SST' | #datadir = '/remote-home/yfshao/workdir/datasets/SST' | ||||
datadir = '/remote-home/ygwang/yelp_polarity' | |||||
datadir = '/remote-home/yfshao/workdir/datasets/yelp_polarity' | |||||
#datafile = {"train": "train.txt", "dev": "dev.txt", "test": "test.txt"} | #datafile = {"train": "train.txt", "dev": "dev.txt", "test": "test.txt"} | ||||
datafile = {"train": "train.csv", "test": "test.csv"} | datafile = {"train": "train.csv", "test": "test.csv"} | ||||
lr=1e-3 | |||||
lr = 1e-3 | |||||
src_vocab_op = VocabularyOption() | |||||
embed_dropout = 0.3 | |||||
cls_dropout = 0.1 | |||||
weight_decay = 1e-4 | |||||
def __init__(self): | def __init__(self): | ||||
self.datapath = {k:os.path.join(self.datadir, v) | |||||
self.datapath = {k: os.path.join(self.datadir, v) | |||||
for k, v in self.datafile.items()} | for k, v in self.datafile.items()} | ||||
ops=Config() | |||||
ops = Config() | |||||
set_rng_seeds(ops.seed) | |||||
print('RNG SEED: {}'.format(ops.seed)) | |||||
##1.task相关信息:利用dataloader载入dataInfo | |||||
# 1.task相关信息:利用dataloader载入dataInfo | |||||
#datainfo=SSTLoader(fine_grained=True).process(paths=ops.datapath, train_ds=['train']) | #datainfo=SSTLoader(fine_grained=True).process(paths=ops.datapath, train_ds=['train']) | ||||
datainfo=yelpLoader(fine_grained=True,lower=True).process(paths=ops.datapath, train_ds=['train']) | |||||
print(len(datainfo.datasets['train'])) | |||||
print(len(datainfo.datasets['test'])) | |||||
@cache_results(ops.model_dir_or_name+'-data-cache') | |||||
def load_data(): | |||||
datainfo = yelpLoader(fine_grained=True, lower=True).process( | |||||
paths=ops.datapath, train_ds=['train'], src_vocab_op=ops.src_vocab_op) | |||||
for ds in datainfo.datasets.values(): | |||||
ds.apply_field(len, C.INPUT, C.INPUT_LEN) | |||||
ds.set_input(C.INPUT, C.INPUT_LEN) | |||||
ds.set_target(C.TARGET) | |||||
return datainfo | |||||
datainfo = load_data() | |||||
## 2.或直接复用fastNLP的模型 | |||||
# 2.或直接复用fastNLP的模型 | |||||
vocab = datainfo.vocabs['words'] | vocab = datainfo.vocabs['words'] | ||||
# embedding = StackEmbedding([StaticEmbedding(vocab), CNNCharEmbedding(vocab, 100)]) | # embedding = StackEmbedding([StaticEmbedding(vocab), CNNCharEmbedding(vocab, 100)]) | ||||
#embedding = StaticEmbedding(vocab) | #embedding = StaticEmbedding(vocab) | ||||
embedding = StaticEmbedding(vocab, model_dir_or_name='en-word2vec-300', requires_grad=True) | |||||
embedding = StaticEmbedding( | |||||
vocab, model_dir_or_name='en-word2vec-300', requires_grad=ops.embedding_grad, | |||||
normalize=False | |||||
) | |||||
print(len(datainfo.datasets['train'])) | |||||
print(len(datainfo.datasets['test'])) | |||||
print(datainfo.datasets['train'][0]) | |||||
print(len(vocab)) | print(len(vocab)) | ||||
print(len(datainfo.vocabs['target'])) | print(len(datainfo.vocabs['target'])) | ||||
model = DPCNN(init_embed=embedding, num_cls=ops.num_classes) | |||||
model = DPCNN(init_embed=embedding, num_cls=ops.num_classes, | |||||
embed_dropout=ops.embed_dropout, cls_dropout=ops.cls_dropout) | |||||
print(model) | |||||
## 3. 声明loss,metric,optimizer | |||||
loss=CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET) | |||||
metric=AccuracyMetric(pred=C.OUTPUT, target=C.TARGET) | |||||
optimizer= SGD([param for param in model.parameters() if param.requires_grad==True], | |||||
lr=ops.lr, momentum=0.9, weight_decay=0) | |||||
# 3. 声明loss,metric,optimizer | |||||
loss = CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET) | |||||
metric = AccuracyMetric(pred=C.OUTPUT, target=C.TARGET) | |||||
optimizer = SGD([param for param in model.parameters() if param.requires_grad == True], | |||||
lr=ops.lr, momentum=0.9, weight_decay=ops.weight_decay) | |||||
callbacks = [] | callbacks = [] | ||||
callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 5))) | callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 5))) | ||||
# callbacks.append | |||||
# LRScheduler(LambdaLR(optimizer, lambda epoch: ops.lr if epoch < | |||||
# ops.train_epoch * 0.8 else ops.lr * 0.1)) | |||||
# ) | |||||
# callbacks.append( | |||||
# FitlogCallback(data=datainfo.datasets, verbose=1) | |||||
# ) | |||||
device = 'cuda:3' if torch.cuda.is_available() else 'cpu' | |||||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |||||
print(device) | print(device) | ||||
for ds in datainfo.datasets.values(): | |||||
ds.apply_field(len, C.INPUT, C.INPUT_LEN) | |||||
ds.set_input(C.INPUT, C.INPUT_LEN) | |||||
ds.set_target(C.TARGET) | |||||
# 4.定义train方法 | |||||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||||
metrics=[metric], | |||||
dev_data=datainfo.datasets['test'], device=device, | |||||
check_code_level=-1, batch_size=ops.batch_size, callbacks=callbacks, | |||||
n_epochs=ops.train_epoch, num_workers=4) | |||||
## 4.定义train方法 | |||||
def train(model,datainfo,loss,metrics,optimizer,num_epochs=ops.train_epoch): | |||||
trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||||
metrics=[metrics], dev_data=datainfo.datasets['test'], device=3, | |||||
check_code_level=-1, batch_size=ops.batch_size, callbacks=callbacks, | |||||
n_epochs=num_epochs) | |||||
if __name__ == "__main__": | |||||
print(trainer.train()) | print(trainer.train()) | ||||
if __name__=="__main__": | |||||
train(model,datainfo,loss,metric,optimizer) |
@@ -0,0 +1,11 @@ | |||||
import numpy | |||||
import torch | |||||
import random | |||||
def set_rng_seeds(seed): | |||||
random.seed(seed) | |||||
numpy.random.seed(seed) | |||||
torch.random.manual_seed(seed) | |||||
torch.cuda.manual_seed_all(seed) | |||||
# print('RNG_SEED {}'.format(seed)) |