Browse Source

small

tags/v1.0.0alpha
x54-729 3 years ago
parent
commit
705deeaea9
6 changed files with 15 additions and 15 deletions
  1. +2
    -2
      tests/core/callbacks/test_checkpoint_callback_torch.py
  2. +2
    -2
      tests/core/callbacks/test_load_best_model_callback_torch.py
  3. +2
    -2
      tests/core/callbacks/test_more_evaluate_callback.py
  4. +2
    -2
      tests/core/controllers/test_trainer_w_evaluator_torch.py
  5. +6
    -6
      tests/core/drivers/torch_driver/test_single_device.py
  6. +1
    -1
      tests/helpers/datasets/torch_data.py

+ 2
- 2
tests/core/callbacks/test_checkpoint_callback_torch.py View File

@@ -16,7 +16,7 @@ from fastNLP.envs import FASTNLP_LAUNCH_TIME, FASTNLP_DISTRIBUTED_CHECK
from tests.helpers.utils import magic_argv_env_context
from fastNLP.core import rank_zero_rm
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
from tests.helpers.datasets.torch_data import TorchArgMaxDatset
from tests.helpers.datasets.torch_data import TorchArgMaxDataset
from torchmetrics import Accuracy
from fastNLP.core.log import logger

@@ -53,7 +53,7 @@ def model_and_optimizers(request):
feature_dimension=ArgMaxDatasetConfig.feature_dimension
)
trainer_params.optimizers = SGD(trainer_params.model.parameters(), lr=0.001)
dataset = TorchArgMaxDatset(
dataset = TorchArgMaxDataset(
feature_dimension=ArgMaxDatasetConfig.feature_dimension,
data_num=ArgMaxDatasetConfig.data_num,
seed=ArgMaxDatasetConfig.seed


+ 2
- 2
tests/core/callbacks/test_load_best_model_callback_torch.py View File

@@ -19,7 +19,7 @@ from fastNLP.core import Evaluator
from fastNLP.core.utils.utils import safe_rm
from fastNLP.core.drivers.torch_driver import TorchSingleDriver
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
from tests.helpers.datasets.torch_data import TorchArgMaxDatset
from tests.helpers.datasets.torch_data import TorchArgMaxDataset
from tests.helpers.utils import magic_argv_env_context


@@ -55,7 +55,7 @@ def model_and_optimizers(request):
feature_dimension=ArgMaxDatasetConfig.feature_dimension
)
trainer_params.optimizers = optim.SGD(trainer_params.model.parameters(), lr=0.01)
dataset = TorchArgMaxDatset(
dataset = TorchArgMaxDataset(
feature_dimension=ArgMaxDatasetConfig.feature_dimension,
data_num=ArgMaxDatasetConfig.data_num,
seed=ArgMaxDatasetConfig.seed


+ 2
- 2
tests/core/callbacks/test_more_evaluate_callback.py View File

@@ -24,7 +24,7 @@ from fastNLP.envs import FASTNLP_LAUNCH_TIME, FASTNLP_DISTRIBUTED_CHECK
from tests.helpers.utils import magic_argv_env_context
from fastNLP.core import rank_zero_rm
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
from tests.helpers.datasets.torch_data import TorchArgMaxDatset
from tests.helpers.datasets.torch_data import TorchArgMaxDataset
from torchmetrics import Accuracy
from fastNLP.core.metrics import Metric
from fastNLP.core.log import logger
@@ -64,7 +64,7 @@ def model_and_optimizers(request):
feature_dimension=ArgMaxDatasetConfig.feature_dimension
)
trainer_params.optimizers = SGD(trainer_params.model.parameters(), lr=0.001)
dataset = TorchArgMaxDatset(
dataset = TorchArgMaxDataset(
feature_dimension=ArgMaxDatasetConfig.feature_dimension,
data_num=ArgMaxDatasetConfig.data_num,
seed=ArgMaxDatasetConfig.seed


+ 2
- 2
tests/core/controllers/test_trainer_w_evaluator_torch.py View File

@@ -11,7 +11,7 @@ from torchmetrics import Accuracy

from fastNLP.core.controllers.trainer import Trainer
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification, TorchArgMaxDatset
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification, TorchArgMaxDataset
from tests.helpers.callbacks.helper_callbacks import RecordLossCallback, RecordMetricCallback
from tests.helpers.utils import magic_argv_env_context

@@ -80,7 +80,7 @@ def model_and_optimizers(request):
feature_dimension=ArgMaxDatasetConfig.feature_dimension
)
trainer_params.optimizers = SGD(trainer_params.model.parameters(), lr=0.001)
dataset = TorchArgMaxDatset(
dataset = TorchArgMaxDataset(
feature_dimension=ArgMaxDatasetConfig.feature_dimension,
data_num=ArgMaxDatasetConfig.data_num,
seed=ArgMaxDatasetConfig.seed


+ 6
- 6
tests/core/drivers/torch_driver/test_single_device.py View File

@@ -6,7 +6,7 @@ from pathlib import Path
from fastNLP.core.drivers.torch_driver.single_device import TorchSingleDriver
from fastNLP.core.samplers import RandomBatchSampler, RandomSampler
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1
from tests.helpers.datasets.torch_data import TorchNormalDataset, TorchArgMaxDatset
from tests.helpers.datasets.torch_data import TorchNormalDataset, TorchArgMaxDataset
from tests.helpers.datasets.paddle_data import PaddleNormalDataset
from tests.helpers.models.paddle_model import PaddleNormalModel_Classification_1
from fastNLP.core import rank_zero_rm
@@ -17,7 +17,7 @@ import paddle

def dataloader_with_randombatchsampler(dataset, batch_size, shuffle, drop_last):
"""
建立一个 batch_samper 为 RandomBatchSampler 的 dataloader
建立一个 batch_sampler 为 RandomBatchSampler 的 dataloader
"""
if shuffle:
sampler = torch.utils.data.RandomSampler(dataset)
@@ -38,7 +38,7 @@ def dataloader_with_randombatchsampler(dataset, batch_size, shuffle, drop_last):

def dataloader_with_randomsampler(dataset, batch_size, shuffle, drop_last, seed=0):
"""
建立一个 samper 为 RandomSampler 的 dataloader
建立一个 sampler 为 RandomSampler 的 dataloader
"""
dataloader = DataLoader(
dataset,
@@ -531,7 +531,7 @@ def generate_random_driver(features, labels, fp16=False, device="cpu"):

@pytest.fixture
def prepare_test_save_load():
dataset = TorchArgMaxDatset(10, 40)
dataset = TorchArgMaxDataset(10, 40)
dataloader = DataLoader(dataset, batch_size=4)
driver1, driver2 = generate_random_driver(10, 10), generate_random_driver(10, 10)
return driver1, driver2, dataloader
@@ -566,7 +566,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16):

try:
path = "model.ckp"
dataset = TorchArgMaxDatset(10, 40)
dataset = TorchArgMaxDataset(10, 40)
dataloader = dataloader_with_randombatchsampler(dataset, 4, True, False)
driver1, driver2 = generate_random_driver(10, 10, fp16, "cuda"), generate_random_driver(10, 10, False, "cuda")

@@ -636,7 +636,7 @@ def test_save_and_load_with_randomsampler(only_state_dict, fp16):
path = "model.ckp"

driver1, driver2 = generate_random_driver(10, 10, fp16, "cuda"), generate_random_driver(10, 10, False, "cuda")
dataset = TorchArgMaxDatset(10, 40)
dataset = TorchArgMaxDataset(10, 40)
dataloader = dataloader_with_randomsampler(dataset, 4, True, False)
num_consumed_batches = 2



+ 1
- 1
tests/helpers/datasets/torch_data.py View File

@@ -38,7 +38,7 @@ class TorchNormalDataset_Classification(Dataset):
return {"x": self.x[item], "y": self.y[item]}


class TorchArgMaxDatset(Dataset):
class TorchArgMaxDataset(Dataset):
def __init__(self, feature_dimension=10, data_num=1000, seed=0):
self.num_labels = feature_dimension
self.feature_dimension = feature_dimension


Loading…
Cancel
Save