@@ -325,7 +325,6 @@ class PaddleFleetDriver(PaddleDriver): | |||
assert dataloader.dataset_kind != _DatasetKind.ITER, \ | |||
"FastNLP does not support `IteratorDataset` now." | |||
# 如果 dist 为 ReproducibleBatchSampler, ReproducibleSampler 说明是在断点重训时 driver.load 函数调用; | |||
# 注意这里不需要调用 dist_sampler.set_distributed;因为如果用户使用的是 TorchDDPDriver,那么其在 Trainer 初始化的时候就已经调用了该函数; | |||
if isinstance(dist, ReproducibleBatchSampler): | |||
dist.set_distributed( | |||
num_replicas=self.world_size, | |||
@@ -345,15 +344,16 @@ class PaddleFleetDriver(PaddleDriver): | |||
# trainer, evaluator | |||
if dist is None: | |||
if reproducible: | |||
raise RuntimeError("It is not allowed to use checkpoint retraining when you initialize ddp out of our " | |||
raise RuntimeError("It is not allowed to use checkpoint retraining when you initialize fleet out of our " | |||
"control.") | |||
else: | |||
if isinstance(dist, ReproducibleBatchSampler): | |||
dist = re_instantiate_sampler(dist) | |||
return replace_batch_sampler(dataloader, dist) | |||
if isinstance(dist, ReproducibleSampler): | |||
dist = re_instantiate_sampler(dist) | |||
return replace_sampler(dataloader, dist) | |||
args = self.get_dataloader_args(dataloader) | |||
if isinstance(args.batch_sampler, ReproducibleBatchSampler): | |||
batch_sampler = re_instantiate_sampler(args.batch_sampler) | |||
return replace_batch_sampler(dataloader, batch_sampler) | |||
if isinstance(args.sampler, ReproducibleSampler): | |||
sampler = re_instantiate_sampler(args.sampler) | |||
return replace_sampler(dataloader, sampler) | |||
return dataloader | |||
# trainer | |||
elif dist == "dist": | |||
@@ -66,8 +66,8 @@ class PaddleDriver(Driver): | |||
:param set_to_none: 用来判断是否需要将梯度直接置为 None;Paddle中这个参数无效。 | |||
""" | |||
# if set_to_none: | |||
# log.warning("Parameter `set_to_none` does nothing in paddle since grad cannot be set directly.") | |||
if set_to_none: | |||
logger.warning_once("Parameter `set_to_none` does nothing in paddle since grad cannot be set directly.") | |||
for optimizer in self.optimizers: | |||
optimizer.clear_grad() | |||
@@ -254,8 +254,21 @@ class PaddleDriver(Driver): | |||
else: | |||
raise RuntimeError("This condition is not supposed to appear. Please report a bug to us.") | |||
num_consumed_batches = states.pop('num_consumed_batches') | |||
if hasattr(sampler, 'state_dict') and callable(sampler.state_dict): | |||
states['sampler_states'] = sampler.state_dict() | |||
sampler_states = sampler.state_dict() | |||
# 如果有,需要针对 num_consumed_samples 做特殊的处理。因为DataLoader存在预取行为,直接使用sampler中的num_consumed_samples | |||
# 会造成多余实际消耗的问题。 | |||
num_consumed_samples_array = sampler_states.pop('num_consumed_samples_array', None) | |||
if num_consumed_samples_array is not None: | |||
if isinstance(sampler, ReproducibleSampler): # 如果是 sampler 的话,需要考虑 batch_size 。 | |||
try: | |||
num_consumed_batches = num_consumed_batches * dataloader_args.batch_size | |||
except: # 有可能 batch_size 为 None,就只有损失精度了 | |||
num_consumed_batches = sampler_states['num_consumed_samples'] | |||
sampler_states['num_consumed_samples'] = num_consumed_samples_array[num_consumed_batches] | |||
assert sampler_states['num_consumed_samples'] != -1, "This is a bug, please report." | |||
else: | |||
raise RuntimeError( | |||
'The sampler has no `state_dict()` method, it will fail to recover to the specific batch.') | |||