@@ -74,30 +74,30 @@ class EventEnum(_SingleEventState, Enum): | |||
@unique | |||
class Events(EventEnum): | |||
ON_AFTER_TRAINER_INITIALIZED = "on_after_trainer_initialized" | |||
ON_SANITY_CHECK_BEGIN = "on_sanity_check_begin" | |||
ON_SANITY_CHECK_END = "on_sanity_check_end" | |||
ON_TRAIN_BEGIN = "on_train_begin" | |||
ON_TRAIN_END = "on_train_end" | |||
ON_TRAIN_EPOCH_BEGIN = "on_train_epoch_begin" | |||
ON_TRAIN_EPOCH_END = "on_train_epoch_end" | |||
ON_FETCH_DATA_BEGIN = "on_fetch_data_begin" | |||
ON_FETCH_DATA_END = "on_fetch_data_end" | |||
ON_TRAIN_BATCH_BEGIN = "on_train_batch_begin" | |||
ON_TRAIN_BATCH_END = "on_train_batch_end" | |||
ON_EXCEPTION = "on_exception" | |||
ON_SAVE_MODEL = "on_save_model" | |||
ON_LOAD_MODEL = "on_load_model" | |||
ON_SAVE_CHECKPOINT = "on_save_checkpoint" | |||
ON_LOAD_CHECKPOINT = "on_load_checkpoint" | |||
ON_BEFORE_BACKWARD = "on_before_backward" | |||
ON_AFTER_BACKWARD = "on_after_backward" | |||
ON_BEFORE_OPTIMIZERS_STEP = "on_before_optimizers_step" | |||
ON_AFTER_OPTIMIZERS_STEP = "on_after_optimizers_step" | |||
ON_BEFORE_ZERO_GRAD = "on_before_zero_grad" | |||
ON_AFTER_ZERO_GRAD = "on_after_zero_grad" | |||
ON_VALIDATE_BEGIN = "on_validate_begin" | |||
ON_VALIDATE_END = "on_validate_end" | |||
on_after_trainer_initialized = "on_after_trainer_initialized" | |||
on_sanity_check_begin = "on_sanity_check_begin" | |||
on_sanity_check_end = "on_sanity_check_end" | |||
on_train_begin = "on_train_begin" | |||
on_train_end = "on_train_end" | |||
on_train_epoch_begin = "on_train_epoch_begin" | |||
on_train_epoch_end = "on_train_epoch_end" | |||
on_fetch_data_begin = "on_fetch_data_begin" | |||
on_fetch_data_end = "on_fetch_data_end" | |||
on_train_batch_begin = "on_train_batch_begin" | |||
on_train_batch_end = "on_train_batch_end" | |||
on_exception = "on_exception" | |||
on_save_model = "on_save_model" | |||
on_load_model = "on_load_model" | |||
on_save_checkpoint = "on_save_checkpoint" | |||
on_load_checkpoint = "on_load_checkpoint" | |||
on_before_backward = "on_before_backward" | |||
on_after_backward = "on_after_backward" | |||
on_before_optimizers_step = "on_before_optimizers_step" | |||
on_after_optimizers_step = "on_after_optimizers_step" | |||
on_before_zero_grad = "on_before_zero_grad" | |||
on_after_zero_grad = "on_after_zero_grad" | |||
on_validate_begin = "on_validate_begin" | |||
on_validate_end = "on_validate_end" | |||
class EventsList: | |||
@@ -171,20 +171,8 @@ class Filter: | |||
self.num_called += 1 | |||
# 因为我们的 callback 函数的输入是固定的,而且我们能够保证第一个参数一定是 trainer; | |||
# 因此我们就可以这样进行操作,将 trainer 从 callback 函数的输入中取出来,送到我们的 trainer 里去,从而实现一些复杂的逻辑; | |||
# 与此同时,当我们发现 Filter 所修饰的函数的输入第一个参数不是 trainer 时,我们就只传入一个 self 到 _filter 函数中; | |||
# 提取参数的逻辑; | |||
trainer = kwargs.get("trainer", None) | |||
if trainer is None and len(args) > 0: | |||
trainer = args[0] | |||
if isinstance(trainer, fastNLP.Trainer): # 这里因为重复调用的问题,我们不能直接使用 fastNLP.Trainer,因为 Trainer | |||
# 也会调用这个 module,但是 Controller 不会; | |||
param = (self, trainer) | |||
else: | |||
param = (self, ) | |||
if self._filter(*param): | |||
trainer = args[0] | |||
if self._filter(self, trainer): | |||
self.num_executed += 1 | |||
return fn(*args, **kwargs) | |||
@@ -224,13 +224,14 @@ class Trainer(TrainerEventTrigger): | |||
# 为了在 train 的循环中每次都检查是否需要进行 validate,这里我们提前在 trainer 初始化的时候就将对应时间点需要运行的函数确定下来; | |||
# _epoch_validate 表示每隔几个 epoch validate 一次;_step_validate 表示每隔几个 step validate 一次; | |||
self.evaluator = None | |||
self.epoch_validate = lambda *args, **kwargs: ... | |||
self.step_validate = lambda *args, **kwargs: ... | |||
self.monitor = monitor | |||
self.larger_better = larger_better | |||
if metrics is not None and validate_dataloaders is not None: | |||
if not callable(validate_every) and (not isinstance(validate_every, int) or validate_every == 0): | |||
raise ValueError("Parameter 'validate_every' should be set to 'int' type and either < 0 or > 0.") | |||
if callable(validate_every): | |||
logger.info("Notice you are using a 'filter function' as the value of parameter `validate_every`, " | |||
"and in this way, the kind of controlling frequency is depending on the 'step'.") | |||
self.evaluator = Evaluator( | |||
model=model, | |||
@@ -248,16 +249,6 @@ class Trainer(TrainerEventTrigger): | |||
progress_bar=kwargs.get('progress_bar', 'auto') | |||
) | |||
if callable(validate_every): | |||
self._step_validate_filter = Filter(filter_fn=validate_every) | |||
logger.info("Notice you are using a 'filter function' as the value of parameter `validate_every`, " | |||
"and in this way, the kind of controlling frequency is depending on the 'step'.") | |||
elif validate_every < 0: | |||
self._epoch_validate_filter = Filter(every=-validate_every) | |||
else: | |||
# validate_every > 0 | |||
self._step_validate_filter = Filter(every=validate_every) | |||
self.metrics = metrics | |||
self.validate_every = validate_every | |||
@@ -356,31 +347,38 @@ class Trainer(TrainerEventTrigger): | |||
raise e | |||
def _set_num_eval_batch_per_dl(self, num_eval_batch_per_dl): | |||
def _validate_fn(validate_fn: Callable, trainer: Trainer) -> None: | |||
def _validate_fn(trainer: Trainer, validate_fn: Callable) -> None: | |||
trainer.on_validate_begin() | |||
_validate_res: dict = validate_fn() | |||
trainer.on_validate_end(_validate_res) | |||
self.validate_fn = partial(_validate_fn, self, partial(self.evaluator.run, num_eval_batch_per_dl)) | |||
def step_validate(self): | |||
if self.evaluator is not None: | |||
should_run_validate = False | |||
if callable(self.validate_every): | |||
self.step_validate = self._step_validate_filter(partial( | |||
_validate_fn, | |||
partial(self.evaluator.run, num_eval_batch_per_dl), | |||
self | |||
)) | |||
elif self.validate_every < 0: | |||
self.epoch_validate = self._epoch_validate_filter(partial( | |||
_validate_fn, | |||
partial(self.evaluator.run, num_eval_batch_per_dl), | |||
self | |||
)) | |||
else: | |||
# validate_every > 0 | |||
self.step_validate = self._step_validate_filter(partial( | |||
_validate_fn, | |||
partial(self.evaluator.run, num_eval_batch_per_dl), | |||
self | |||
)) | |||
if self.validate_every(self): | |||
should_run_validate = True | |||
elif self.validate_every > 0: | |||
if self.global_forward_batches % self.validate_every == 0: | |||
should_run_validate = True | |||
if should_run_validate: | |||
self.validate_fn() | |||
def epoch_validate(self): | |||
if self.evaluator is not None: | |||
should_run_validate = False | |||
if isinstance(self.validate_every, int) and self.validate_every < 0: | |||
validate_every = -self.validate_every | |||
if self.cur_epoch_idx % validate_every == 0: | |||
should_run_validate = True | |||
if should_run_validate: | |||
self.validate_fn() | |||
def add_callback_fn(self, event: Optional[Union[Events, EventsList]], fn: Callable): | |||
r""" | |||
@@ -238,7 +238,7 @@ def test_model_checkpoint_callback_2( | |||
from fastNLP.core.callbacks.callback_events import Events | |||
@Trainer.on(Events.ON_TRAIN_EPOCH_END) | |||
@Trainer.on(Events.on_train_epoch_end) | |||
def raise_exception(trainer): | |||
if trainer.driver.get_local_rank() == 0 and trainer.cur_epoch_idx == 4: | |||
raise NotImplementedError | |||
@@ -98,14 +98,16 @@ def model_and_optimizers(request): | |||
# 测试一下普通的情况; | |||
@pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch", 1), ("torch", [0, 1])]) #, ("torch", 1), ("torch", [0, 1]) | |||
@pytest.mark.parametrize("driver,device", [("torch", [0, 1])]) # ("torch", "cpu"), ("torch", 1), ("torch", [0, 1]) | |||
@pytest.mark.parametrize("callbacks", [[RecordMetricCallback(monitor="acc", metric_threshold=0.2, larger_better=True)]]) | |||
@pytest.mark.parametrize("validate_every", [-3]) | |||
@magic_argv_env_context | |||
def test_trainer_torch_with_evaluator( | |||
model_and_optimizers: TrainerParameters, | |||
driver, | |||
device, | |||
callbacks, | |||
validate_every, | |||
n_epochs=10, | |||
): | |||
trainer = Trainer( | |||
@@ -118,11 +120,11 @@ def test_trainer_torch_with_evaluator( | |||
input_mapping=model_and_optimizers.input_mapping, | |||
output_mapping=model_and_optimizers.output_mapping, | |||
metrics=model_and_optimizers.metrics, | |||
validate_every=validate_every, | |||
n_epochs=n_epochs, | |||
callbacks=callbacks, | |||
output_from_new_proc="all" | |||
) | |||
trainer.run() | |||
@@ -169,4 +171,42 @@ def test_trainer_torch_with_evaluator_fp16_accumulation_steps( | |||
dist.destroy_process_group() | |||
@pytest.mark.parametrize("driver,device", [("torch", 1)]) # ("torch", [0, 1]),("torch", 1) | |||
@magic_argv_env_context | |||
def test_trainer_validate_every( | |||
model_and_optimizers: TrainerParameters, | |||
driver, | |||
device, | |||
n_epochs=6, | |||
): | |||
def validate_every(trainer): | |||
if trainer.global_forward_batches % 10 == 0: | |||
print(trainer) | |||
print("\nfastNLP test validate every.\n") | |||
print(trainer.global_forward_batches) | |||
return True | |||
trainer = Trainer( | |||
model=model_and_optimizers.model, | |||
driver=driver, | |||
device=device, | |||
optimizers=model_and_optimizers.optimizers, | |||
train_dataloader=model_and_optimizers.train_dataloader, | |||
validate_dataloaders=model_and_optimizers.validate_dataloaders, | |||
input_mapping=model_and_optimizers.input_mapping, | |||
output_mapping=model_and_optimizers.output_mapping, | |||
metrics=model_and_optimizers.metrics, | |||
n_epochs=n_epochs, | |||
output_from_new_proc="all", | |||
validate_every=validate_every | |||
) | |||
trainer.run() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@@ -254,7 +254,7 @@ def test_trainer_on_exception( | |||
): | |||
from fastNLP.core.callbacks.callback_events import Events | |||
@Trainer.on(Events.ON_TRAIN_EPOCH_END) | |||
@Trainer.on(Events.on_train_epoch_end) | |||
def raise_exception(trainer): | |||
if trainer.driver.get_local_rank() == cur_rank: | |||
raise NotImplementedError | |||