@@ -72,8 +72,8 @@ class BertEmbedding(ContextualEmbedding): | |||
if model_dir_or_name.lower() in PRETRAINED_BERT_MODEL_DIR: | |||
if 'cn' in model_dir_or_name.lower() and pool_method not in ('first', 'last'): | |||
logger.warn("For Chinese bert, pooled_method should choose from 'first', 'last' in order to achieve" | |||
" faster speed.") | |||
logger.warning("For Chinese bert, pooled_method should choose from 'first', 'last' in order to achieve" | |||
" faster speed.") | |||
warnings.warn("For Chinese bert, pooled_method should choose from 'first', 'last' in order to achieve" | |||
" faster speed.") | |||
@@ -111,7 +111,7 @@ def _read_conll(path, encoding='utf-8', indexes=None, dropna=True): | |||
yield line_idx, res | |||
except Exception as e: | |||
if dropna: | |||
logger.warn('Invalid instance which ends at line: {} has been dropped.'.format(line_idx)) | |||
logger.warning('Invalid instance which ends at line: {} has been dropped.'.format(line_idx)) | |||
continue | |||
raise ValueError('Invalid instance which ends at line: {}'.format(line_idx)) | |||
elif line.startswith('#'): | |||
@@ -387,7 +387,7 @@ class SST2Pipe(_CLSPipe): | |||
f" in {[name for name in data_bundle.datasets.keys() if 'train' not in name]} " \ | |||
f"data set but not in train data set!." | |||
warnings.warn(warn_msg) | |||
logger.warn(warn_msg) | |||
logger.warning(warn_msg) | |||
datasets = [] | |||
for name, dataset in data_bundle.datasets.items(): | |||
if dataset.has_field(Const.TARGET): | |||
@@ -121,7 +121,7 @@ class MatchingBertPipe(Pipe): | |||
f" in {[name for name in data_bundle.datasets.keys() if 'train' not in name]} " \ | |||
f"data set but not in train data set!." | |||
warnings.warn(warn_msg) | |||
logger.warn(warn_msg) | |||
logger.warning(warn_msg) | |||
has_target_datasets = [dataset for name, dataset in data_bundle.datasets.items() if | |||
dataset.has_field(Const.TARGET)] | |||
@@ -258,7 +258,7 @@ class MatchingPipe(Pipe): | |||
f" in {[name for name in data_bundle.datasets.keys() if 'train' not in name]} " \ | |||
f"data set but not in train data set!." | |||
warnings.warn(warn_msg) | |||
logger.warn(warn_msg) | |||
logger.warning(warn_msg) | |||
has_target_datasets = [dataset for name, dataset in data_bundle.datasets.items() if | |||
dataset.has_field(Const.TARGET)] | |||
@@ -130,11 +130,12 @@ def _indexize(data_bundle, input_field_names=Const.INPUT, target_field_names=Con | |||
if ('train' not in name) and (ds.has_field(target_field_name))] | |||
) | |||
if len(tgt_vocab._no_create_word) > 0: | |||
warn_msg = f"There are {len(tgt_vocab._no_create_word)} target labels" \ | |||
warn_msg = f"There are {len(tgt_vocab._no_create_word)} `{target_field_name}` labels" \ | |||
f" in {[name for name in data_bundle.datasets.keys() if 'train' not in name]} " \ | |||
f"data set but not in train data set!." | |||
f"data set but not in train data set!.\n" \ | |||
f"These label(s) are {tgt_vocab._no_create_word}" | |||
warnings.warn(warn_msg) | |||
logger.warn(warn_msg) | |||
logger.warning(warn_msg) | |||
tgt_vocab.index_dataset(*data_bundle.datasets.values(), field_name=target_field_name) | |||
data_bundle.set_vocab(tgt_vocab, target_field_name) | |||
@@ -65,7 +65,7 @@ class BertForSequenceClassification(BaseModel): | |||
self.bert.model.include_cls_sep = True | |||
warn_msg = "Bert for sequence classification excepts BertEmbedding `include_cls_sep` True, " \ | |||
"but got False. FastNLP has changed it to True." | |||
logger.warn(warn_msg) | |||
logger.warning(warn_msg) | |||
warnings.warn(warn_msg) | |||
def forward(self, words): | |||
@@ -110,7 +110,7 @@ class BertForSentenceMatching(BaseModel): | |||
self.bert.model.include_cls_sep = True | |||
warn_msg = "Bert for sentence matching excepts BertEmbedding `include_cls_sep` True, " \ | |||
"but got False. FastNLP has changed it to True." | |||
logger.warn(warn_msg) | |||
logger.warning(warn_msg) | |||
warnings.warn(warn_msg) | |||
def forward(self, words): | |||
@@ -156,7 +156,7 @@ class BertForMultipleChoice(BaseModel): | |||
self.bert.model.include_cls_sep = True | |||
warn_msg = "Bert for multiple choice excepts BertEmbedding `include_cls_sep` True, " \ | |||
"but got False. FastNLP has changed it to True." | |||
logger.warn(warn_msg) | |||
logger.warning(warn_msg) | |||
warnings.warn(warn_msg) | |||
def forward(self, words): | |||
@@ -206,7 +206,7 @@ class BertForTokenClassification(BaseModel): | |||
self.bert.model.include_cls_sep = False | |||
warn_msg = "Bert for token classification excepts BertEmbedding `include_cls_sep` False, " \ | |||
"but got True. FastNLP has changed it to False." | |||
logger.warn(warn_msg) | |||
logger.warning(warn_msg) | |||
warnings.warn(warn_msg) | |||
def forward(self, words): | |||
@@ -250,7 +250,7 @@ class BertForQuestionAnswering(BaseModel): | |||
self.bert.model.include_cls_sep = True | |||
warn_msg = "Bert for question answering excepts BertEmbedding `include_cls_sep` True, " \ | |||
"but got False. FastNLP has changed it to True." | |||
logger.warn(warn_msg) | |||
logger.warning(warn_msg) | |||
warnings.warn(warn_msg) | |||
def forward(self, words): | |||
@@ -488,10 +488,10 @@ class BertModel(nn.Module): | |||
load(model, prefix='' if hasattr(model, 'bert') else 'bert.') | |||
if len(missing_keys) > 0: | |||
logger.warn("Weights of {} not initialized from pretrained model: {}".format( | |||
logger.warning("Weights of {} not initialized from pretrained model: {}".format( | |||
model.__class__.__name__, missing_keys)) | |||
if len(unexpected_keys) > 0: | |||
logger.warn("Weights from pretrained model not used in {}: {}".format( | |||
logger.warning("Weights from pretrained model not used in {}: {}".format( | |||
model.__class__.__name__, unexpected_keys)) | |||
logger.info(f"Load pre-trained BERT parameters from file {weights_path}.") | |||
@@ -800,7 +800,7 @@ class BertTokenizer(object): | |||
for token in tokens: | |||
ids.append(self.vocab[token]) | |||
if len(ids) > self.max_len: | |||
logger.warn( | |||
logger.warning( | |||
"Token indices sequence length is longer than the specified maximum " | |||
" sequence length for this BERT model ({} > {}). Running this" | |||
" sequence through BERT will result in indexing errors".format(len(ids), self.max_len) | |||
@@ -824,8 +824,8 @@ class BertTokenizer(object): | |||
with open(vocab_file, "w", encoding="utf-8") as writer: | |||
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): | |||
if index != token_index: | |||
logger.warn("Saving vocabulary to {}: vocabulary indices are not consecutive." | |||
" Please check that the vocabulary is not corrupted!".format(vocab_file)) | |||
logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive." | |||
" Please check that the vocabulary is not corrupted!".format(vocab_file)) | |||
index = token_index | |||
writer.write(token + u'\n') | |||
index += 1 | |||