@@ -72,8 +72,8 @@ class BertEmbedding(ContextualEmbedding): | |||||
if model_dir_or_name.lower() in PRETRAINED_BERT_MODEL_DIR: | if model_dir_or_name.lower() in PRETRAINED_BERT_MODEL_DIR: | ||||
if 'cn' in model_dir_or_name.lower() and pool_method not in ('first', 'last'): | if 'cn' in model_dir_or_name.lower() and pool_method not in ('first', 'last'): | ||||
logger.warn("For Chinese bert, pooled_method should choose from 'first', 'last' in order to achieve" | |||||
" faster speed.") | |||||
logger.warning("For Chinese bert, pooled_method should choose from 'first', 'last' in order to achieve" | |||||
" faster speed.") | |||||
warnings.warn("For Chinese bert, pooled_method should choose from 'first', 'last' in order to achieve" | warnings.warn("For Chinese bert, pooled_method should choose from 'first', 'last' in order to achieve" | ||||
" faster speed.") | " faster speed.") | ||||
@@ -111,7 +111,7 @@ def _read_conll(path, encoding='utf-8', indexes=None, dropna=True): | |||||
yield line_idx, res | yield line_idx, res | ||||
except Exception as e: | except Exception as e: | ||||
if dropna: | if dropna: | ||||
logger.warn('Invalid instance which ends at line: {} has been dropped.'.format(line_idx)) | |||||
logger.warning('Invalid instance which ends at line: {} has been dropped.'.format(line_idx)) | |||||
continue | continue | ||||
raise ValueError('Invalid instance which ends at line: {}'.format(line_idx)) | raise ValueError('Invalid instance which ends at line: {}'.format(line_idx)) | ||||
elif line.startswith('#'): | elif line.startswith('#'): | ||||
@@ -387,7 +387,7 @@ class SST2Pipe(_CLSPipe): | |||||
f" in {[name for name in data_bundle.datasets.keys() if 'train' not in name]} " \ | f" in {[name for name in data_bundle.datasets.keys() if 'train' not in name]} " \ | ||||
f"data set but not in train data set!." | f"data set but not in train data set!." | ||||
warnings.warn(warn_msg) | warnings.warn(warn_msg) | ||||
logger.warn(warn_msg) | |||||
logger.warning(warn_msg) | |||||
datasets = [] | datasets = [] | ||||
for name, dataset in data_bundle.datasets.items(): | for name, dataset in data_bundle.datasets.items(): | ||||
if dataset.has_field(Const.TARGET): | if dataset.has_field(Const.TARGET): | ||||
@@ -121,7 +121,7 @@ class MatchingBertPipe(Pipe): | |||||
f" in {[name for name in data_bundle.datasets.keys() if 'train' not in name]} " \ | f" in {[name for name in data_bundle.datasets.keys() if 'train' not in name]} " \ | ||||
f"data set but not in train data set!." | f"data set but not in train data set!." | ||||
warnings.warn(warn_msg) | warnings.warn(warn_msg) | ||||
logger.warn(warn_msg) | |||||
logger.warning(warn_msg) | |||||
has_target_datasets = [dataset for name, dataset in data_bundle.datasets.items() if | has_target_datasets = [dataset for name, dataset in data_bundle.datasets.items() if | ||||
dataset.has_field(Const.TARGET)] | dataset.has_field(Const.TARGET)] | ||||
@@ -258,7 +258,7 @@ class MatchingPipe(Pipe): | |||||
f" in {[name for name in data_bundle.datasets.keys() if 'train' not in name]} " \ | f" in {[name for name in data_bundle.datasets.keys() if 'train' not in name]} " \ | ||||
f"data set but not in train data set!." | f"data set but not in train data set!." | ||||
warnings.warn(warn_msg) | warnings.warn(warn_msg) | ||||
logger.warn(warn_msg) | |||||
logger.warning(warn_msg) | |||||
has_target_datasets = [dataset for name, dataset in data_bundle.datasets.items() if | has_target_datasets = [dataset for name, dataset in data_bundle.datasets.items() if | ||||
dataset.has_field(Const.TARGET)] | dataset.has_field(Const.TARGET)] | ||||
@@ -130,11 +130,12 @@ def _indexize(data_bundle, input_field_names=Const.INPUT, target_field_names=Con | |||||
if ('train' not in name) and (ds.has_field(target_field_name))] | if ('train' not in name) and (ds.has_field(target_field_name))] | ||||
) | ) | ||||
if len(tgt_vocab._no_create_word) > 0: | if len(tgt_vocab._no_create_word) > 0: | ||||
warn_msg = f"There are {len(tgt_vocab._no_create_word)} target labels" \ | |||||
warn_msg = f"There are {len(tgt_vocab._no_create_word)} `{target_field_name}` labels" \ | |||||
f" in {[name for name in data_bundle.datasets.keys() if 'train' not in name]} " \ | f" in {[name for name in data_bundle.datasets.keys() if 'train' not in name]} " \ | ||||
f"data set but not in train data set!." | |||||
f"data set but not in train data set!.\n" \ | |||||
f"These label(s) are {tgt_vocab._no_create_word}" | |||||
warnings.warn(warn_msg) | warnings.warn(warn_msg) | ||||
logger.warn(warn_msg) | |||||
logger.warning(warn_msg) | |||||
tgt_vocab.index_dataset(*data_bundle.datasets.values(), field_name=target_field_name) | tgt_vocab.index_dataset(*data_bundle.datasets.values(), field_name=target_field_name) | ||||
data_bundle.set_vocab(tgt_vocab, target_field_name) | data_bundle.set_vocab(tgt_vocab, target_field_name) | ||||
@@ -65,7 +65,7 @@ class BertForSequenceClassification(BaseModel): | |||||
self.bert.model.include_cls_sep = True | self.bert.model.include_cls_sep = True | ||||
warn_msg = "Bert for sequence classification excepts BertEmbedding `include_cls_sep` True, " \ | warn_msg = "Bert for sequence classification excepts BertEmbedding `include_cls_sep` True, " \ | ||||
"but got False. FastNLP has changed it to True." | "but got False. FastNLP has changed it to True." | ||||
logger.warn(warn_msg) | |||||
logger.warning(warn_msg) | |||||
warnings.warn(warn_msg) | warnings.warn(warn_msg) | ||||
def forward(self, words): | def forward(self, words): | ||||
@@ -110,7 +110,7 @@ class BertForSentenceMatching(BaseModel): | |||||
self.bert.model.include_cls_sep = True | self.bert.model.include_cls_sep = True | ||||
warn_msg = "Bert for sentence matching excepts BertEmbedding `include_cls_sep` True, " \ | warn_msg = "Bert for sentence matching excepts BertEmbedding `include_cls_sep` True, " \ | ||||
"but got False. FastNLP has changed it to True." | "but got False. FastNLP has changed it to True." | ||||
logger.warn(warn_msg) | |||||
logger.warning(warn_msg) | |||||
warnings.warn(warn_msg) | warnings.warn(warn_msg) | ||||
def forward(self, words): | def forward(self, words): | ||||
@@ -156,7 +156,7 @@ class BertForMultipleChoice(BaseModel): | |||||
self.bert.model.include_cls_sep = True | self.bert.model.include_cls_sep = True | ||||
warn_msg = "Bert for multiple choice excepts BertEmbedding `include_cls_sep` True, " \ | warn_msg = "Bert for multiple choice excepts BertEmbedding `include_cls_sep` True, " \ | ||||
"but got False. FastNLP has changed it to True." | "but got False. FastNLP has changed it to True." | ||||
logger.warn(warn_msg) | |||||
logger.warning(warn_msg) | |||||
warnings.warn(warn_msg) | warnings.warn(warn_msg) | ||||
def forward(self, words): | def forward(self, words): | ||||
@@ -206,7 +206,7 @@ class BertForTokenClassification(BaseModel): | |||||
self.bert.model.include_cls_sep = False | self.bert.model.include_cls_sep = False | ||||
warn_msg = "Bert for token classification excepts BertEmbedding `include_cls_sep` False, " \ | warn_msg = "Bert for token classification excepts BertEmbedding `include_cls_sep` False, " \ | ||||
"but got True. FastNLP has changed it to False." | "but got True. FastNLP has changed it to False." | ||||
logger.warn(warn_msg) | |||||
logger.warning(warn_msg) | |||||
warnings.warn(warn_msg) | warnings.warn(warn_msg) | ||||
def forward(self, words): | def forward(self, words): | ||||
@@ -250,7 +250,7 @@ class BertForQuestionAnswering(BaseModel): | |||||
self.bert.model.include_cls_sep = True | self.bert.model.include_cls_sep = True | ||||
warn_msg = "Bert for question answering excepts BertEmbedding `include_cls_sep` True, " \ | warn_msg = "Bert for question answering excepts BertEmbedding `include_cls_sep` True, " \ | ||||
"but got False. FastNLP has changed it to True." | "but got False. FastNLP has changed it to True." | ||||
logger.warn(warn_msg) | |||||
logger.warning(warn_msg) | |||||
warnings.warn(warn_msg) | warnings.warn(warn_msg) | ||||
def forward(self, words): | def forward(self, words): | ||||
@@ -488,10 +488,10 @@ class BertModel(nn.Module): | |||||
load(model, prefix='' if hasattr(model, 'bert') else 'bert.') | load(model, prefix='' if hasattr(model, 'bert') else 'bert.') | ||||
if len(missing_keys) > 0: | if len(missing_keys) > 0: | ||||
logger.warn("Weights of {} not initialized from pretrained model: {}".format( | |||||
logger.warning("Weights of {} not initialized from pretrained model: {}".format( | |||||
model.__class__.__name__, missing_keys)) | model.__class__.__name__, missing_keys)) | ||||
if len(unexpected_keys) > 0: | if len(unexpected_keys) > 0: | ||||
logger.warn("Weights from pretrained model not used in {}: {}".format( | |||||
logger.warning("Weights from pretrained model not used in {}: {}".format( | |||||
model.__class__.__name__, unexpected_keys)) | model.__class__.__name__, unexpected_keys)) | ||||
logger.info(f"Load pre-trained BERT parameters from file {weights_path}.") | logger.info(f"Load pre-trained BERT parameters from file {weights_path}.") | ||||
@@ -800,7 +800,7 @@ class BertTokenizer(object): | |||||
for token in tokens: | for token in tokens: | ||||
ids.append(self.vocab[token]) | ids.append(self.vocab[token]) | ||||
if len(ids) > self.max_len: | if len(ids) > self.max_len: | ||||
logger.warn( | |||||
logger.warning( | |||||
"Token indices sequence length is longer than the specified maximum " | "Token indices sequence length is longer than the specified maximum " | ||||
" sequence length for this BERT model ({} > {}). Running this" | " sequence length for this BERT model ({} > {}). Running this" | ||||
" sequence through BERT will result in indexing errors".format(len(ids), self.max_len) | " sequence through BERT will result in indexing errors".format(len(ids), self.max_len) | ||||
@@ -824,8 +824,8 @@ class BertTokenizer(object): | |||||
with open(vocab_file, "w", encoding="utf-8") as writer: | with open(vocab_file, "w", encoding="utf-8") as writer: | ||||
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): | for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): | ||||
if index != token_index: | if index != token_index: | ||||
logger.warn("Saving vocabulary to {}: vocabulary indices are not consecutive." | |||||
" Please check that the vocabulary is not corrupted!".format(vocab_file)) | |||||
logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive." | |||||
" Please check that the vocabulary is not corrupted!".format(vocab_file)) | |||||
index = token_index | index = token_index | ||||
writer.write(token + u'\n') | writer.write(token + u'\n') | ||||
index += 1 | index += 1 | ||||