Browse Source

fix a iterant lossfuntion , and some error in comments

tags/v0.2.0
FFTYYY 6 years ago
parent
commit
3cadd5a325
1 changed files with 8 additions and 9 deletions
  1. +8
    -9
      fastNLP/core/loss.py

+ 8
- 9
fastNLP/core/loss.py View File

@@ -5,7 +5,7 @@ def squash(predict , truth , **kwargs):

:param predict : Tensor, model output
:param truth : Tensor, truth from dataset
:param **kwargs : extract arguments
:param **kwargs : extra arguments

:return predict , truth: predict & truth after processing
'''
@@ -18,8 +18,8 @@ def unpad(predict , truth , **kwargs):

:param predict : Tensor, [batch_size , max_len , tag_size]
:param truth : Tensor, [batch_size , max_len]
:param **kwargs : extract arguments, kwargs["lens"] is expected to be exsist
arg["lens"] : list or LongTensor, [batch_size]
:param **kwargs : extra arguments, kwargs["lens"] is expected to be exsist
kwargs["lens"] : list or LongTensor, [batch_size]
the i-th element is true lengths of i-th sequence
:return predict , truth: predict & truth after processing
@@ -39,8 +39,8 @@ def unpad_mask(predict , truth , **kwargs):

:param predict : Tensor, [batch_size , max_len , tag_size]
:param truth : Tensor, [batch_size , max_len]
:param **kwargs : extract arguments, kwargs["lens"] is expected to be exsist
arg["lens"] : list or LongTensor, [batch_size]
:param **kwargs : extra arguments, kwargs["lens"] is expected to be exsist
kwargs["lens"] : list or LongTensor, [batch_size]
the i-th element is true lengths of i-th sequence
:return predict , truth: predict & truth after processing
@@ -56,8 +56,8 @@ def mask(predict , truth , **kwargs):

:param predict : Tensor, [batch_size , max_len , tag_size]
:param truth : Tensor, [batch_size , max_len]
:param **kwargs : extract arguments, kwargs["mask"] is expected to be exsist
arg["mask"] : ByteTensor, [batch_size , max_len]
:param **kwargs : extra arguments, kwargs["mask"] is expected to be exsist
kwargs["mask"] : ByteTensor, [batch_size , max_len]
the mask Tensor , the position that is 1 will be selected
:return predict , truth: predict & truth after processing
@@ -112,7 +112,6 @@ loss_function_name = {
"MarginRankingLoss".lower() : torch.nn.MarginRankingLoss,
"TripletMarginLoss".lower() : torch.nn.TripletMarginLoss,
"HingeEmbeddingLoss".lower() : torch.nn.HingeEmbeddingLoss,
"HingeEmbeddingLoss".lower() : torch.nn.HingeEmbeddingLoss,
"CosineEmbeddingLoss".lower() : torch.nn.CosineEmbeddingLoss,
"MultiLabelMarginLoss".lower() : torch.nn.MultiLabelMarginLoss,
"MultiLabelSoftMarginLoss".lower() : torch.nn.MultiLabelSoftMarginLoss,
@@ -132,7 +131,7 @@ class Loss(object):

pre_pro funcsions should have three arguments: predict, truth, **arg
predict and truth is the necessary parameters in loss function
arg is the extra parameters passed-in when calling loss function
kwargs is the extra parameters passed-in when calling loss function
pre_pro functions should return two objects, respectively predict and truth that after processed

'''


Loading…
Cancel
Save